PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Activation of oxidized surface of anthracite waste coal by attrition

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper the activation of oxidized surface of anthracite waste coal was investigated. Coal weathering leads to physical and chemical changes on the coal surfaces and a reduction of its hydrophobicity and floatability. The changes and the presence of oxygen functional groups in the structure and surfaces coal was confirmed by the FTIR study on the raw and waste coal. The groups have remarkable impacts on surface charge and thus flotation kinetics. The floatability of oxidized coal may be improved by the creation of fresh, unoxidized surfaces on coal by attrition at high solid concentration prior to introducing coal to the froth flotation process. This paper presents the results of the effects of attrition on the floatability of the oxidized surface of waste coal, coal pyrite and alumino-silicate minerals through electrokinetics and microflotation experiments. The results show that the attrition, in the viscous pulp with the solid content of 50%, lead to the mechanical cleaning of oxidized surface and activation of the surface of coal particles, which agrees with the change of zeta potential and increasing floatability of coal by 10%. Obviously that the mechanical scrubbing may be able to restore the natural floatability of superficially oxidized coal by removing the thin oxidation layer from the coal surface. The results show that attrition time is an important parameter from the point of view of activating the oxidized coal surface, and positive changes in zeta potential and floatability. The change of zeta potential, as a measure surface charge state of coal particles, from -15 mV to about 0 mV, after attrition for 30 minutes, confirms positive application of attrition. Zeta potential approaching 0 mV resulted in increasing floatability down to the real possibilities of the attrition process prior the coal flotation.
Słowa kluczowe
Rocznik
Strony
5--18
Opis fizyczny
Bibliogr. 37 poz.
Twórcy
  • University of Belgrade, Technical Faculty Bor, Department of Mining, Vojske Jugoslavije 12, 19210, Bor, Serbia, Tel.: +381 30 424 555; Fax: +381 30 421 078, jsokolovic@tf.bor.ac.rs
Bibliografia
  • 1. BEAFORE, F.J., CAWIEZEL, K.E., MONTGOMERY, C.T., 1984. Oxidized coal What it is and how it affects your preparation plant performance. J. Coal Qual. 3, 17-24.
  • 2. BOLAT, E., SAGLAM, S., PISKIN. S., 1998. The effect of oxidation on the flotation properties of a Turkish bituminous coal. Fuel Process. Technol. 55 (2), 101–105.
  • 3. BUTTERMORE, W.H., SLOMKA, B.J., 1991. Effect of sonic treatment on the floatability of oxidized coal. Int. J. Miner. Process. 32 (3–4), 251–257.
  • 4. CALEMMA, V., RAUSE, R., MARGARIT, R., GIRARDI, E., 1988. FTIR study of coal oxidation at low temperature, Fuel 67, 764–769.
  • 5. DIAO, J., FUERSTENAU, D.W., 1991. Characterization of the wettability of solid particles by film flotation: 2. Theoretical analysis. Colloids Surf. 60, 145–160.
  • 6. FUERSTENAU, D.W., DIAO, J., HANSON, J.S., SOTILLO, F., SOMASUNDARAN, P., 1994. Effect of weathering on the wetting behavior and flotation response of coal. In: Blaschke W.S._Ed., New Trends in Coal Preparation Technologies and Equipment. Gordon & Breach, pp. 747–753.
  • 7. FUERSTENAU, D.W., et al.., 1992. Coal Surface Control for Advanced Fine Coal Flotation, Final Report, Project No. DE-AC22-88PC88878.
  • 8. FUERSTENAU, D.W., ROSENBAUM, J.M., LASKOWSKI, J.S., 1983. Effect of surface functional group on the flotation of coal. Colloids Surf. 8, 153–174.
  • 9. FUERSTENAU, D.W., YANG, G.C.C., LASKOWSKI, J.S., 1987. Oxidation phenomena in coal flotation: Part I. Correlation between oxygen functional group concentration, immersion wettability and salt flotation response. Coal Prep. 4, 161–182.
  • 10. GAYLE, J. B., EDDY. W.H., SHOTTS, R.Q., Laboratory investigation of the effect of oxidation on coal flotation, Report of Investigations 6620, US Bureau of Mines, 1965.
  • 11. HORSLEY, R. M., 1951-1952. Oily collectors in coal flotation. Trans. Inst. Min. Eng. 111 (3415), 886–894
  • 12. IGLESIAS, M.J., DE LA PUENTE, G., FUENTE, E., PIS J.J., 1998. Compositional and structural changes during aerial oxidation of coal and their relationswith technological properties. Vib. Spectrosc. 17, 41–52.
  • 13. JIA, R., HARRIS, G.H., FUERSTENAU, D.W., 2000. Improved class of universal collectors for the flotation of oxidized and/or low-rank coal. Int. J. Miner. Process. 58 (1), 99-118.
  • 14. JIANG, C. L., WANG, X. H., PAREKH, B. K., LEONARD, J. W., 1998. The surface and solution chemistry of pyrite flotation with xanthate in the presence of iron ions. Colloids Surf., A Phys.-Chem. Eng. Aspects 136 (1-2), 51-62.
  • 15. KARSILAYAN, H., AFSAR, H., YILMAZ, N., YANIC, C., 1992. Increase of efficiency of pine oil by heating and usage in the flotation of oxidized Amasra coal. Fuel Sci. Technol. Int. 10 (8), 124–1250.
  • 16. KISTER, J., GUILIANO, M., MILLE, G., DOU, H., 1988. Changes in the chemical structure of low rank coal after low temperature oxidation or demineralization by acid treatment. Fuel 67, 1076–1082.
  • 17. LASKOWSKI, J.S., 1995. Coal surface chemistry and its effects on fine coal processing. In: Kawatra, S.K. Ed., High Efficiency Coal Preparation: An International Symposium. SME, Littleton, CO, pp. 163–176.
  • 18. LASKOWSKI, J.S., Coal Flotation and Fine Coal Utilization, Elsevier, Amsterdam, 2001.
  • 19. LIU, D., SOMASUNDARAN, P., VASUDEVAN, T.V., HARRIS, C.C., 1994. Role of pH and dissolved mineral species in Pittsburgh No. 8 coal flotation system: 1. Floatability of coal. Int. J. Miner. Process. 41, 201–214.
  • 20. MILLER, J.D., LASKOWSKI, J.S., CHANG. S.S., 1983. Dextrin adsorption by oxidized coal. Colloids Surf. 8 (137), 151.
  • 21. OZKAN, S.G., KUYUMCU, H.Z., 2006. Investigation of mechanism of ultrasound on coal flotation. Int. J. Miner. Process. 81, 201–203.
  • 22. PHILIPS, K.M., GLANVILLE, J.D., WIGHTMAN, J.P., 1987. Heat of immersion of Virginia-C coal in water as a function of surface oxidation. Colloids Surf. 21, 1–8.
  • 23. PIETRZAK, R., WACHOWSKA, H., 2003. Low temperature oxidation of coals of different rank and different sulphur content. Fuel 82, 705–713.
  • 24. PISKIN, S., AKGUEN, M., 1997. Effect of premixing on the flotation of oxidized Amasra coal. Fuel Process. Technol. 51 (1–2),1–6.
  • 25. SADOWSKI, Z., VENKATADRI, R., DRUDING, J.M., MARKUSZEWSKI, R., WHEELOCK, T.D., 1988. Behaviour of oxidized coal during oil agglomeration. Coal Prep. 6, 17-34.
  • 26. SAIKIA, B.K., BORUAH, R.K., GOGOI, P.K. 2007. FT-IR and XRD analysis of coal from Makum coalfield of Assam. J. Earth Syst. Sci 116 (6), 575-579.
  • 27. SARIKAYA, M. 1995. Flotation test as a method for studying coal weathering. Int. J. Miner. Process. 43, 31 –35.
  • 28. SARIKAYA, M., OZBAYOGLU, G., 1995. Flotation characteristics of oxidised coal. Fuel 74 (2), 291-294.
  • 29. SOKOLOVIC, J., STANOJLOVIC, R., MARKOVIC, Z., 2006. Effect of oxidation on flotation and electrokinetic properties of coal. J. Min. Metall. Sect. A 42 (1), 69–81.
  • 30. SOMASUNDARAN, P., ZHANG, L., FUERSTENAU, D.W., 2000. The effect of environment, oxidation and dissolved metalspecies on the chemistry of coal flotation. Int. J. Miner. Process. 58, 85–97.
  • 31. SUN, S.C., 1954. Effects of oxidation of coals on their flotation properties. Trans. Am. Inst. Min. Metall. Eng., 6, 396–401.
  • 32. SWANN, P.D., ALLARDICE, D.J., EVANS, D.G., 1972. Low-temperature oxidation of brown coal: 1. Change in internal surface due to oxidation. Fuel 53, 85–87.
  • 33. TAO, D., LI, B., JOHNSON, S., PAREKH, B.K., 2002. A flotation study of refuse pond coal slurry. Fuel Process. Technol. 76, 201–210.
  • 34. WEN, W.W., SUN, S.C, 1981. An electrokinetic study on the oil flotation of oxidized coal. Sep. Sci. Technol. 16, 1491-1521.
  • 35. WOODBURN, E.T., ROBBINS, D.J., FLYNN, SA, 1983. The demineralization of a weathered coal by froth flotation. Powder Technol. 35, 1-15.
  • 36. XIAO, L., SOMASUNDARAN, P., VASUDEVAN, T.V., 1990. Effect of air oxidation on the floatability of bituminous coals: diffused reflectance infrared fourier transform (DRIFT) spectroscopic analysis. Colloids Surf. 50, 231–240.
  • 37. YARAR, B., LEJA, J., 1981. Flotation of Weathered Coal Fines from Western Canada. In: 9th International Coal Preparation Congress, New Delhi, Paper C5.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0003-0054
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.