PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of dolomite ore leaching in hydrochloric acid solutions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Optymalizacja ługowania rudy dolomitowej w roztworach kwasu solnego
Języki publikacji
EN
Abstrakty
EN
In this study, the Taguchi method was used to determine the optimum conditions for leaching of dolomite ore in hydrochloric acid solutions. The experimental parameters were leaching temperature, solid-to-liquid ratio, acid initial concentration, leaching time and stirring speed. The following optimum leaching parameter levels were found: temperature 50°C, solid-to-liquid ratio 2%, acid concentration 20 g/cm3 (2 mol/dm3), stirring speed 450 rpm, leaching time 5 min. Under the optimum process conditions, the dolomite ore leaching efficiency was about 83%.
PL
Wykorzystano metodę Taguchi do określenia optymalnych warunków ługowania rudy dolomitowej w roztworach kwasu solnego. Badano takie parametry jak temperatura, stosunek fazy stałej do ciekłej, początkowe stężenie kwasu, czas ługowania i prędkość mieszania. Ustalono, że optymalnymi parametrami są: stosunek fazy stałej do ciekłej 2%, początkowe stężenie kwasu 20 g/cm3 (2 mol/dm3), prędkość mieszania 450 rpm, czas ługowania 5 min. W tych warunkach wyługowanie dolomitu było około 83%.
Rocznik
Tom
Strony
253--262
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
autor
autor
  • Celal Bayar University, Science and Arts Faculty, Department of Chemistry, Manisa, Turkey, salihbayca@gmail.com
Bibliografia
  • 1. ABALI, Y., COLAK, S. and EKMEKYAPAR, A., 1992, Magnezit mineralinin sulu ortamda kukurt dioksit gazi ile çozunme kinetigi, (in Turkish), Doga-Tr. J. Eng. Environ. Sci., 16: 319-326.
  • 2. ABALI, Y., COPUR, M. and YAVUZ, M., 2006, Determination of optimum conditions for dissolution of magnesite with H2SO4 solutions, Indian Journal of Chemical Technology, 13: 391-397.
  • 3. ABALI, Y., COLAK, S. and YAPICI, S., 1997, The optimisation of the dissolution of phosphate rock with Cl2-SO2 gas mixtures in aqueous medium, Hydrometallurgy, 46: 27 – 35.
  • 4. ATA, O. N., COLAK, S., EKINCI, Z. and COPUR, M. 2001, Determination of the optimum conditions for the dissolution of stibnite in HCl solution, Chem Biochem. Eng. Q., 24: 409.
  • 5. BRADY, G. S., CLAUSER, H. R., VACCARI, J. A., 1997, Materials Handbook, McGraw-Hill, New York.
  • 6. BUSENBERG, E., PLUMMER, L. N., 1989, Thermodynamics of magnesian calcite solid-solutions at 25oC and 1 atm total pressure, Geochimica et Cosmochimica Acta, 53: 1189–1208.
  • 7. CHOU, L., GARRELS, R. M. and WOLLAST, R., 1989, Comparative study of the kinetics and mechanism of dissolution of carbonate minerals, Chem. Geology, 78: 269 – 282.
  • 8. COPUR, M., PEKDEMIR, T., CELIK, C. and COLAK, S., 1997, Determination of the optimum conditions for the dissolution of stibnite in HCl solutions, Ind. Eng. Chem. Res., 36: 682.
  • 9. COPUR, M., OZMETIN, C., OZMETIN, E ., KOCAKERIM, M. M., 2004, Optimization study of the dissolution of roasted zinc sulphide concentration with sulfuric acid solution, Chemical Engineering and Processing, 43: 1007 – 1014.
  • 10. DEMIR, F., DONMEZ, B. and COLAK, S., 2003, Dissolution kinetics of magnesite in citric acid solutions, J. Chem. Eng. Jpn., 6: 683.
  • 11. DEMIRBAS, A., ABALI Y. and MERT, E., 1999, Recovery of phosphate from calcinated bone by dissolution in hydrochloric acid solutions, Resources, Conservation and Recycling, 26: 251-258.
  • 12. GAUTLIER, M., OELKERS, E. H., SCHOTT, J., 1999, An experimental study of dolomite dissolution rates as a function of pH from -0.5 to 5 and temperature from 25 to 80 0C, Chemical Geology, 157: 13 – 26.
  • 13. HARRIS, G. B., PEACEY, J. G. and Monette, S., 988, Manufacture of concentrated magnesium chloride solution from magnesite for production of magnesium, Chem. Abst., 109: 24855c.
  • 14. HERMAN, J. S., WHITE, W. B., 1985, Dissolution kinetics of dolomite: Effects of lithology and fluid flow velocity, Geochimica et Cosmochimica Acta, 49: 2017 – 2026.
  • 15. KHOEI, A. R., MASTERS, I., GETHIN, D. T., 2002, Design optimization of aluminum recycling processes using Taguchi technique, J. of Materials Processing Technology, 127: 96.
  • 16. LUND, K., FOGLER, H. S. and MCCUNE, C. C., 1977, Acidization-1. The dissolution of dolomite In hydrochloric acid, Chem. Eng. Sci., 28: 691 – 700.
  • 17. OZBEK, H., ABALI, Y., ÇOLAK, S., CEYHUN, I. and KARAGOLGE, Z., 1999, Dissolution kinetics of magnesite mineral in water saturated by chlorine gas, Hydrometallurgy, 51: 173.
  • 18. PHADKE, M. S., 1989, Quality Engineering Using Robust Design, Prentice Hall: New Jersey, 61–292.
  • 19. PHADKE, M. S., KACKAR, R. N., SPEENEY, D. V., GRIECO, M. J., 1983, Off-line quality control In integrated circuit fabrication using experimental design, Bell System Technical Journal, 62: 1273.
  • 20. PIGNATIELLO, J. J., 1988, An overview of strategy and tactics of Taguchi, I.I.E. Transactions., 20: 247 – 254.
  • 21. SCOTT, W. W., 1963, Standard Methods of Chemical Analysis, Van Nostrand, New York.
  • 22. TAGUCHI, G., 1987, System of Experimental Design, Quality Resources, New York, 108.
  • 23. YARTASI, A., COPUR, M., OZMETIN, C., KOCAKERIM, M. M. and TEMUR, H., 1999, An optimization study of dissolution of oxidized copper ore in NH3 solutions, Energy Educ. Sci. Techn., 3: 77.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0003-0023
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.