Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Transport jonów metali przez polimerową membranę inkluzyjną z 1 alkiloimidazolem
Języki publikacji
Abstrakty
The facilitated transport of copper(II), zinc(II), cobalt(II), and nickel(II) ions across polymer inclusion membranes (PIMs), which consist of cellulose triacetate as polymeric support, o-nitrophenyl pentyl ether as plasticizer and 1-alkylimidazole as ion carrier was reported. PIM was characterized by using atomic force microscopy (AFM) technique. The results show that Cu2+ can be separated very effectively from others heavy and transition metal cations as Zn2+, Co2+, and Ni2+ (at concentration of 10-3 M each). Alkyl substituents in position 1 of imidazole ring have an effect on hydrophobic properties and the initial flux of the transported metal ions. Also, the influence of the chloride ions concentration on the separation process was investigated. To explain the mechanism of membrane transport the diffusion of metal ions complexes with 1-alkylimidazole was also measured.
Zbadano selektywność transportu jonów Cu(II), Zn(II), Co(II) i Ni(II) (cMe=0,001M, każdy) przez polimerowe membrany inkluzyjne składające się z trójoctanu celulozy (suportu), eteru o-nitrofenylooktylu (plastyfikatora) i przenośnika jonów (1 alkiloimidazole). Polimerowa membrana została scharakteryzowana przy pomocy mikroskopii sił atomowych (AFM). Wykazano, że podstawnik alkilowy w pozycji 1 pierścienia imidazolu zmieniając własności hydrofobowe przenośnika wpływa na strumień początkowy transportu jonów metali. Wartości strumienia początkowego transportu jonów przy użyciu przenośnika 1 i 2 maleją w szeregu: Cu(II) > Zn(II) > Co(II) > Ni(II), natomiast dla 3 - 5 w szeregu: Cu(II) > Zn(II) > Ni(II), Co(II). Strumień transportu Cu(II) wzrasta w szeregu użytych przenośników: 1 < 2 < 3 < 4 ɝ, osiągając najwyższą wartość 6,36 µµmol/m2 · s (dla 5). Na selektywność transportu wpływ również stężenie jonów chlorkowych w fazie zasilającej. Czynnikiem limitującym szybkości transportu Cu2+ przez PIM jest współczynnik dyfuzji kompleksu przenoszonego kationu przez membranę.
Rocznik
Tom
Strony
119--130
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
autor
autor
- Department of Metal Extraction and Recirculation, Czestochowa University of Technology, 42-200 Częstochowa, Armii Krajowej 19, ulewicz@mim.pcz.czest.pl
Bibliografia
- 1. BERSUKER I.B., Elektronnoe strojenie i svojstva koordinacijonnych sojedineij, Wyd. Chimia,Leningrad 1972 (in Russian).
- 2. CUPREY, M.E. (1974) N-Imidazole compounds and their complex metal derivatives. US Patent, 3,843,667, October 22.
- 3. du PREEZ, J.G.H.; GERBER, T.I.A.; EGDE, W.; MTOTYWA, V.L.V.; van BRECHT, J.A.M. (2001) Nirtogen Reagents in Metal Ion Separation. XI. The Synthesis and Extraction Behavior of a New NS Imidazole Derivative. Solvent. Extr. Ion Exch. 19, 143-154.
- 4. DANESI P.R., (1984-85) Separation of metal species by supported liquid membranes, Sep. Sci. Technol., 19, 857-894.
- 5. GAŽO J., BERSUKER I.B., GARAJ J., (1976) Plasticity of the coordination sphere of copper(II) complexes, is manifestation and causes, Coord. Chem. Rev., 19, 253-297.
- 6. LENARCIK, B.; OJCZENASZ, P. (2002) The influence of the size and position of the alkyl groups in alkylimidazole molecules on their acid – base properties. J. Heterocyclic Chem. 39, 287-290.
- 7. LENARCIK B., OJCZENASZ P., (2004) Investigation of the Stability Constants of Co(II) Complexes with a Homologous Series of 1-Alkylimidazoles in Aqueous Solution by Using a Partition Method with Several Solvents, Sep. Sci. Technol, 39, 199-226.
- 8. LENARCIK B., KIERZKOWSKA A., (2004) The Influence of Alkyl Length on Stability Constants of Zn(II) Complexes with 1-Alkylimidazoles in Aqueous Solutions and Their Partition Between Aqueous Phase and Organic Solvent, Sol. Extr. Ion Exch., 22, 449-471.
- 9. LENARCIK B., RAUCKYTE T., (2004) The Influence of Alkyl Length on Extraction Equilibria of Ni(II Complexes with 1-Alkylimidazoles in Aqueous Solution/Organic Solvent Systems, Sep. Sci. Technol., 39, 3353-3372.
- 10. LUBOCH, E., WAGNER-WYSIECKA, E., FAINERMAN-MELNIKOVA M., LINDOY L. F., BIERNAT J.F., (2006) Pyrrole azocrown ethers. Synthesis, complexation, selective lead transport and ion-selective membrane electrode studies, Supramol. Chem., 18, 593.
- 11. NGHIEM L.D., MORNANE P., POTTER, I.D., PERERA, J.M., CATTRALL, R.W., KOLEV, S.D. (2006), Extraction and transport of metal ions and small organic compounds using polimer inclusion membranes (PIMs), J. Membrane Sci., 281, 7-41.
- 12. HAYASHI R., HAYASHITA T., YOSHIKAWA T., HIRATANI K., BARTSCH R.A., TERAMAE N., (2003) Design of a polymer inclusion membrane having proton- ionisable polyether carriers and their separation function of lead ions, Bunseki Kagaku, 52, 755-765.
- 13. PERNAK J., KRYSINSKI J., SKRZYPCZAK A.,(1987) Bakterizide wirkung von iminiumverbindungen, Tenside Surfact. Det., 24, 276-286.
- 14. RADZYMIŃSKA-LENARCIK E., (2007) The influence of the alkyl chain length on extraction equlibrium of Cu(II) complexes with 1-alkylimidazoles in aqueous solution/ organic solvent systems. Solvent Extr. Ion Exch. 25, 53-64.
- 15. RADZYMIŃSKA-LENARCIK, E., (2008) Search for the possibility of utilizing the differences in complex-forming capacities of alkylimidazoles for selective extraction of some metal ions from aqueous solutions. Pol. J. Chem. Technol., 10, 73-78.
- 16. SUNDBERG R.J., MARTIN B.R., (1974) Interaction of Histidine and other Imidazole Derivatives with Transition Metal Ions in Chemical and Biological System, Chem. Rev., 74, 471-517
- 17. SCHAEKERS, J.M.; du PREEZ, J.G.H. (2004) Solvent extraction mixture comprising substituted imidazole or benzimidazole for the purification of groups of base metals. US Patent, US 2004/0208808 A1, October 21.
- 18. SALAZAR-ALVAREZ G., BAUTISTA-FLORES A. N., SAN MIGUEL E.R., MUHAMMED M., GYVES, (2005) Transport characterization of a PIM system used for the extraction of Pb(II) rusing D2EHPA as carrier, J. Membr. Sci., 250, 247-257.
- 19. ULEWICZ M., KOZLOWSKI C.A., WALKOWIAK W., (2004) Removal of Zn(II), Cd(II) and Cu(II) ions by polymer inclusion membrane with side-armed diphosphaza-16-crown-6-ethers, Physicochem. Probl. Miner. Process, 38, 2004, 131-138
- 20. ULEWICZ M. (2008), Application of macrocyclic compounds to the transport of Zn(II), Cd(II) and Pb(II) ions cross the polymer inclusion membrane (PIM), Polish J. Chem., 82, 1237-1244.
- 21. ULEWICZ M., LESINSKA U., BOCHENSKA M., (2010), Transport of lead across polymer inclusion membrane with p-tert-butylcalix[4]arene derivative, Physicochem. Probl. Miner. Process., 44, 245-256.
- 22. ULEWICZ M., SZCZYGELSKA –TAO J., BIERNAT J.F., (2007) Transport of Zn(II), Cd(II) and Pb(II) across polymer inclusion membrane doped with imidazole azocrown ethers, Desalination, 214, 352-364.
- 23. ULEWICZ M., SZCZYGELSKA –TAO J., BIERNAT J.F., (2009) Selectivity of Pb(II) transport across polymer inclusion membranes doped with imidazole azothiacrown ethers, J. Membr. Sci., 344, 32-38.
- 24. WALKOWIAK W., ULEWICZ M., KOZLOWSKI C.A., (2002) Application of macrocyclic compounds for metal ions separation and removal – a review, Ars Separatoria Acta, 1, 87-98
- 25. WALKOWIAK W., KOZŁOWSKI C. (2009), Macrocycle carriers for separation of metal ions in liquid membrane processes – a review, Desalination, 240, 186-197.
- 26. WOLF J.R., STRIEDER W., (1990) Toruosities for a random fiber bed: overlapping, parallel cylinder of several radii, J. Membr. Sci., 49, 103-115.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0003-0011