Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Wellposedness of differential and algebraic Riccati equations for control systems with unbounded control operators is considered. It is shown that the full-classical Riccati theory is recovered for a class of dynamics, whose generators are partially analytic. Partial analyticity is quantitatively expressed by the validity of the so-called "singular estimates", which is imposed on the composition operator E[sup At]B (A is the generator, B is unbounded control operator. This class comprises the PDE coupled systems with hyperbolic and parabolic components. Two illustrative examples are given in the paper: boumdary/point control of thermal plates with hyperbolic character and point control of structural acoustic interactions. The latter are described by wave equation coupled at an interface to a plate equation.
Czasopismo
Rocznik
Tom
Strony
751--777
Opis fizyczny
Bibliogr. 41 poz.,
Twórcy
autor
- Department of Mathematics, Kerchof Hall, University of Virginia, Charlottesville. Virginia 22901
Bibliografia
- AVALO S, G. (1996) The exponential stability of a coupled hyperbolic/parabolic system arising in structural a caustics. Abstract and Applied Analysis, 1,203-219.
- AVALOS, G., and LASIECKA , I. (1996) Differential Riccati equation for the active control of a problem in structural acoustics. IOTA, 91 , 695- 728.
- AVALOS , G. , and LASIECKA, I. (1997) Exponential Stability of a Thermoelastic System without mechanical Dissipation. Rend. Istit. Mat. Univ. Trieste,XXVIII, 1- 28.
- AVALOS, G., and LASIECKA, I. (1998a) Exponential Stability of a Thermoelastic Plates with free boundary conditions and without mechanical Dissipation. SIAM J. Malhematical Analysis, 29, 155- 182.
- AVALOS, G., and LASIECKA, I. (1998b) The strong stability of a. semigrouparising from a coupled hyperbolic/parabolic system. Semigroup Forum, 57, 278- 292.
- BALAKRISHNAN, A.V. (1975) Applied Funcional Analysis. Springer Verlag.
- BARBU, V., LASIECKA, I. , and TRIGGIANI, R. (2000) Extended Algebraic Riccati Equatious arising in hyperbolic dynamics with unbouuded controls. Nonlinear Analysis, 40, 105-129.
- BEALE, J. (1976) Spectral properties of an acoustic boundary condition. Indiana Univ. Math. J., 9, 895- 917.
- BARBU, V. (1976) Nonlinear Semigroups and Differential Equations in Banach Spaces. Nordhof.
- BENSOUSSAN, A., DA PRATO, G., DELFOUR, M.C., and MITTER, S.K. (1993) Representation and Control of Infinde Dimensional Systems. Vols. I, II,Birkhauser, Boston-Basel-Berlin.
- BREZIS, H. (1973) Operateurs Maximaux Monotones. North-Holland, Amsterdam.
- BUCCI, F., LASIECKA, I., and TRIGGIANI, R. (2002) Singular estimate and uniform stability of coupled systems of hyperbolic /parabolic PDE's. Abstract and Applied Analysis, 7, 4, 169- 236.
- Bucci, F., and LASIECKA, I. (2002) Exponential decay rates for structural acoustic model with an overdarnping on the interface and boundary layer dissipation. Applicable Analysis, 81, 977-999.
- CHEN, S., and TRIGGIANI, R. (1989) Proof of extensions of two conjectures on structural damping for elastic systems. Pacific J. of Mathematics, 136,15- 55.
- CHEN, S., and TRIGGIANI, R. (1990) Characterization of Domains of Fractional Powers of Certain Operators Arising in Elastic Systems and Applications J. Differential Equations, 64, 26-42.
- DA PRATO, G., LASIECKA, l., and TRIGGIANI, R. (1986) A Direct Study of Riccati Equations arising in Hyperbolic Boundary Control Problems. Journal of Differential Equations, 26- 47.
- DIMITRIADIS, E.K., FULLER, C.R., and ROGERS, C.A. (1991) Piezoelectric Actuators for Distributed Noise and Vibration Excitation of Thin Plates.Journal of Vibration and Acoustics, 13, 100- 1017.
- FLANDOLI, F., LASIECKA, l. and TRIGGIANI, R. (1988) Algebraic Riccati Equations with non-smoothing observations arising in hyperbolic and Euler-Bernoulli boundary control problems. Annali di Matematica Pura et A Iicata, 153, 307- 382.
- HOFFMAN, K. and BOTKIN, N. (2000) Homogenization of von Karman platesexcited by piewelectric patches. ZAMM, 19, 579-590.
- CHICONE, C. and LATUSHKIN, Y. (1991) Eution Semigroups in Dynamical Systems. AMS.
- LIONS, J.L. and MAGENES , E. (1972) Non-homogenous boundary Value Problems and Applications. Springer Verlag, New York.
- LAGNESE, J. and LIONS, J .L. (1988) Modeling, Analysis and Control of Thin Plates. Masson, Paris.
- LASIECKA, I. (1998) Mathematical control theory in structural acoustic problems. Mathematical Models and Methods in Applied Sciences, 8, 119- 1153.
- LASIECKA, I. (2000) Optimization Problems for Structural Acoustic Models with Thermoelasticity and Smart Materials. Disscussiones Mathematicae Differential Inclusions Control and Optimization, 20, 113-140.
- LASIECKA, I. (2001) Mathematical Control Theory of Coupled PDE Systems.CMBS-NSF Lecture Notes, Sian, Philadelphia.
- LASIECKA, I. and TRIGGIANI, R. (1991a) Differential and Algebraic Riccati Equations with Applications to Boundary and Point Control Problems, Continuous Theory and A roximation Theory. Springer Verlag, LNCIS 164.
- LASIECKA, I. and TRIGGIANI, R. (1991b) Regularity Theory of hyperbolicequations with non-homogenous Neumann boundary conditions II: General boundary data. J. Differential Equations, 94, 112- 164.
- LASIECKA, I. and TRIGGIANI, R. (1998a) Two direct proofs on the analyticity of the S.C. semigroup arising in abstract thermo-elastic equations. Advances in Differential Equations, 3, 387- 416.
- LASIECKA, I. and TRIGGIANI, R. (1998b) Analyticity of thermo-elastic semigroups with free B.C., Annali di Scuola Normale Superiore, XXVII, 457-482.
- LASIECKA, I. and TRIGGIANI, R. (2000) Structural decomposition of thermoelastic semigroups with rotational forces. Semigroup Forum, 60, 16-66.
- LASIECKA, I. and TRIGGIANI, R. (2001a) Control Theory for Partial Differential Equations. Cambridge University Press.
- LASIECKA, I. and TRIGGIANI, R. (2001 b) Optimal control and ARE under singularestimate for eAt B in the absence of analyticity. Differential Equations and Control Theory, 225 LNPAM, Marcel Dekker.
- LITTMAN, W. and Lru, B. (1998) On the spectral properties and stabilization of acoustic flow. SIAM J. Alied Math., 1, 17- 34.
- LIONS, J .L. (1968) Controle Optimale des Systemes Gouvernes par des Equations aux Derivees. Partielles, Dunod.
- LIU, Z. and RENARDY, M. (1995) A note on the equation of thermoelastic plate. A lied Math. Letters , 8, 1- 6.
- MORSE, P.M. and lNGARD, K.U. (1968) Theoretical Acoustics. McGraw-Hill, New York.
- PAZY, A. (1986) Semigroups of Linear Operators and Differential Equations.Springer Verlag.
- RUSSELL, D.L. (1978) Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions. SIAM Review,20, 639-739.
- RUSSELL , D.L. (1986) Mathematical models for the elastic beam and their control-theoretic properties. Semigroups Theory and A lications, Pitman Research Notes , 152, 177-217.
- TRIGGIANI, R. (1997) The Algebraic Riccati Equations with Unbounded Coefficients; Hyperbolic Case Revisited. Contemporary Mathematics: Optimization Methods in PDE's , 209, AMS, Providence , 1997.
- WEISS, G. and ZWART, H. (1998) An example in LQ optimal control. Systems and Control Letters, 8, 339- 349.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0001-1874
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.