PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wellposedness of optimal control problems for systems with unbounded controls and partially analytic generators

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Wellposedness of differential and algebraic Riccati equations for control systems with unbounded control operators is considered. It is shown that the full-classical Riccati theory is recovered for a class of dynamics, whose generators are partially analytic. Partial analyticity is quantitatively expressed by the validity of the so-called "singular estimates", which is imposed on the composition operator E[sup At]B (A is the generator, B is unbounded control operator. This class comprises the PDE coupled systems with hyperbolic and parabolic components. Two illustrative examples are given in the paper: boumdary/point control of thermal plates with hyperbolic character and point control of structural acoustic interactions. The latter are described by wave equation coupled at an interface to a plate equation.
Rocznik
Strony
751--777
Opis fizyczny
Bibliogr. 41 poz.,
Twórcy
autor
  • Department of Mathematics, Kerchof Hall, University of Virginia, Charlottesville. Virginia 22901
Bibliografia
  • AVALO S, G. (1996) The exponential stability of a coupled hyperbolic/parabolic system arising in structural a caustics. Abstract and Applied Analysis, 1,203-219.
  • AVALOS, G., and LASIECKA , I. (1996) Differential Riccati equation for the active control of a problem in structural acoustics. IOTA, 91 , 695- 728.
  • AVALOS , G. , and LASIECKA, I. (1997) Exponential Stability of a Thermoelastic System without mechanical Dissipation. Rend. Istit. Mat. Univ. Trieste,XXVIII, 1- 28.
  • AVALOS, G., and LASIECKA, I. (1998a) Exponential Stability of a Thermoelastic Plates with free boundary conditions and without mechanical Dissipation. SIAM J. Malhematical Analysis, 29, 155- 182.
  • AVALOS, G., and LASIECKA, I. (1998b) The strong stability of a. semigrouparising from a coupled hyperbolic/parabolic system. Semigroup Forum, 57, 278- 292.
  • BALAKRISHNAN, A.V. (1975) Applied Funcional Analysis. Springer Verlag.
  • BARBU, V., LASIECKA, I. , and TRIGGIANI, R. (2000) Extended Algebraic Riccati Equatious arising in hyperbolic dynamics with unbouuded controls. Nonlinear Analysis, 40, 105-129.
  • BEALE, J. (1976) Spectral properties of an acoustic boundary condition. Indiana Univ. Math. J., 9, 895- 917.
  • BARBU, V. (1976) Nonlinear Semigroups and Differential Equations in Banach Spaces. Nordhof.
  • BENSOUSSAN, A., DA PRATO, G., DELFOUR, M.C., and MITTER, S.K. (1993) Representation and Control of Infinde Dimensional Systems. Vols. I, II,Birkhauser, Boston-Basel-Berlin.
  • BREZIS, H. (1973) Operateurs Maximaux Monotones. North-Holland, Amsterdam.
  • BUCCI, F., LASIECKA, I., and TRIGGIANI, R. (2002) Singular estimate and uniform stability of coupled systems of hyperbolic /parabolic PDE's. Abstract and Applied Analysis, 7, 4, 169- 236.
  • Bucci, F., and LASIECKA, I. (2002) Exponential decay rates for structural acoustic model with an overdarnping on the interface and boundary layer dissipation. Applicable Analysis, 81, 977-999.
  • CHEN, S., and TRIGGIANI, R. (1989) Proof of extensions of two conjectures on structural damping for elastic systems. Pacific J. of Mathematics, 136,15- 55.
  • CHEN, S., and TRIGGIANI, R. (1990) Characterization of Domains of Fractional Powers of Certain Operators Arising in Elastic Systems and Applications J. Differential Equations, 64, 26-42.
  • DA PRATO, G., LASIECKA, l., and TRIGGIANI, R. (1986) A Direct Study of Riccati Equations arising in Hyperbolic Boundary Control Problems. Journal of Differential Equations, 26- 47.
  • DIMITRIADIS, E.K., FULLER, C.R., and ROGERS, C.A. (1991) Piezoelectric Actuators for Distributed Noise and Vibration Excitation of Thin Plates.Journal of Vibration and Acoustics, 13, 100- 1017.
  • FLANDOLI, F., LASIECKA, l. and TRIGGIANI, R. (1988) Algebraic Riccati Equations with non-smoothing observations arising in hyperbolic and Euler-Bernoulli boundary control problems. Annali di Matematica Pura et A Iicata, 153, 307- 382.
  • HOFFMAN, K. and BOTKIN, N. (2000) Homogenization of von Karman platesexcited by piewelectric patches. ZAMM, 19, 579-590.
  • CHICONE, C. and LATUSHKIN, Y. (1991) Eution Semigroups in Dynamical Systems. AMS.
  • LIONS, J.L. and MAGENES , E. (1972) Non-homogenous boundary Value Problems and Applications. Springer Verlag, New York.
  • LAGNESE, J. and LIONS, J .L. (1988) Modeling, Analysis and Control of Thin Plates. Masson, Paris.
  • LASIECKA, I. (1998) Mathematical control theory in structural acoustic problems. Mathematical Models and Methods in Applied Sciences, 8, 119- 1153.
  • LASIECKA, I. (2000) Optimization Problems for Structural Acoustic Models with Thermoelasticity and Smart Materials. Disscussiones Mathematicae Differential Inclusions Control and Optimization, 20, 113-140.
  • LASIECKA, I. (2001) Mathematical Control Theory of Coupled PDE Systems.CMBS-NSF Lecture Notes, Sian, Philadelphia.
  • LASIECKA, I. and TRIGGIANI, R. (1991a) Differential and Algebraic Riccati Equations with Applications to Boundary and Point Control Problems, Continuous Theory and A roximation Theory. Springer Verlag, LNCIS 164.
  • LASIECKA, I. and TRIGGIANI, R. (1991b) Regularity Theory of hyperbolicequations with non-homogenous Neumann boundary conditions II: General boundary data. J. Differential Equations, 94, 112- 164.
  • LASIECKA, I. and TRIGGIANI, R. (1998a) Two direct proofs on the analyticity of the S.C. semigroup arising in abstract thermo-elastic equations. Advances in Differential Equations, 3, 387- 416.
  • LASIECKA, I. and TRIGGIANI, R. (1998b) Analyticity of thermo-elastic semigroups with free B.C., Annali di Scuola Normale Superiore, XXVII, 457-482.
  • LASIECKA, I. and TRIGGIANI, R. (2000) Structural decomposition of thermoelastic semigroups with rotational forces. Semigroup Forum, 60, 16-66.
  • LASIECKA, I. and TRIGGIANI, R. (2001a) Control Theory for Partial Differential Equations. Cambridge University Press.
  • LASIECKA, I. and TRIGGIANI, R. (2001 b) Optimal control and ARE under singularestimate for eAt B in the absence of analyticity. Differential Equations and Control Theory, 225 LNPAM, Marcel Dekker.
  • LITTMAN, W. and Lru, B. (1998) On the spectral properties and stabilization of acoustic flow. SIAM J. Alied Math., 1, 17- 34.
  • LIONS, J .L. (1968) Controle Optimale des Systemes Gouvernes par des Equations aux Derivees. Partielles, Dunod.
  • LIU, Z. and RENARDY, M. (1995) A note on the equation of thermoelastic plate. A lied Math. Letters , 8, 1- 6.
  • MORSE, P.M. and lNGARD, K.U. (1968) Theoretical Acoustics. McGraw-Hill, New York.
  • PAZY, A. (1986) Semigroups of Linear Operators and Differential Equations.Springer Verlag.
  • RUSSELL, D.L. (1978) Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions. SIAM Review,20, 639-739.
  • RUSSELL , D.L. (1986) Mathematical models for the elastic beam and their control-theoretic properties. Semigroups Theory and A lications, Pitman Research Notes , 152, 177-217.
  • TRIGGIANI, R. (1997) The Algebraic Riccati Equations with Unbounded Coefficients; Hyperbolic Case Revisited. Contemporary Mathematics: Optimization Methods in PDE's , 209, AMS, Providence , 1997.
  • WEISS, G. and ZWART, H. (1998) An example in LQ optimal control. Systems and Control Letters, 8, 339- 349.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0001-1874
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.