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Abstract: Wellposedness of differential and algebraic Riccati
equations for control systems with unbounded control operators is
considered, It is shown that the full-classical Riccati theory is recov-
ered for a class of dynamics, whose generators are partially analytic.
Partial analyticity is quantitatively expressed by the validity of the
so-called “singular estimates”, which is immposed on the composition
operator EA'B (A is the generator, B is unbounded control opera-
tor. This class comprises the PDE coupled systems with hyperbolic
and parabolic componenis. Two illustrative examples are given in
the paper: boundary /point control of thermal plates with hyperbolic
character and point control of structural acoustic interactions, The
latter are described by wave equation coupled at an interface to a
plate equation.
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1. Introduction

This paper deals with wellposedness theory for optimal conirol problems gov-
erned by PDEs with unbounded conirol aclions. By unbounded, we mean control
operators whose domain is either a dense, proper subspace of the state space
or the range of control operator lies outside that space. The interest of con-
sidering unbounded control operators has been spurred by numerous engineer-
ing/technological applications where such operators are canonical models for
actuation. Typical examples include boundary and point controls which more
recently have found wide range of applicability in smart materials and, more
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generally, “smart technology” — see Hoffman and Botkin (2000}, Dimitriadis,
Fuller and Rogers (1991) and references therein.

In spite of large popularity of smart materials at the technological level,
relatively little has been known from the point point of view of the mathe-
matical control theory. The reason for this is simple: the unboundedness of
control operators has drastic effect on the underlying PDE dynamics and many
properties which hold in the context of classical, by now, “bounded control”
problems are no longer valid with “unbounded controls”. This fact, recognized
more than 20 years ago, Balakrishnan (1975), has led to and stimulated a wide
range of research in the area of “control theory of PDE with unbounded con-
trols” — see Balakrishnan (1975), Bensoussan, Da Prato, Delfour and Mitter
(1993), Lasiecka and Triggiani (2001) and references therein. In fact, the the-
ory of oplimal control and related Riccali equations, in the context of PDEs
with unbounded controls, has atiracted considerable attention in recent years
— see books Bensoussan, Da Prato, Dellour and Mitter (1993), Lasiecka and
Triggiani (2001) and references therein. The main difficulty and obstacle with
respect to the classical LQR theory, Balakrishnan (1975), Lions (1968), is, of
course, potential unboundedness of the so called “gain operator” which is the
Jormal product of two operators: B® — the adjoint to control operator B and
P — the Riceati operator. Sinee the gain operator B*P enters the nonlinear
termn in the Riccati equation, its wellposedness (e.g. density of the domain,
boundedness, ete.) is the critical ingredient of the analysis.

In order to obtain reasonably strong results pertaining to solvability of Ric-
cati equations, one needs to counteract the unboundedness of control operator
by exploiting other properties of the dynamics. In this context the theory of
LOR problems for analytic generators came forward in the early eighties pro-
ducing an array of results which show that the gain operator B* P, in the case
of analytic dynamics, is actually bounded — see Bensoussan, Da Prato, Delfour
and Mitter (1993), Lasiecka and Triggiani (2001) awd references therein. This
was the main critical step in proving almost classical solvability of Riccati equa-
tions as well as pointwise feedback syuthesis for the oplimal control arising in
the analytic PDE dynamics.

lu contrast with analytic dynamics, other PDE models, including hyper-
bolic, do not display the same regularizing effect. in fact, for hyperbolic dy-
namics one typically obtains gain operators B* P which are intrinsincally un-
bounded, Lasiecka and Triggiani (1991), Flandoli, Lasiecka and Triggiani (1988),
Da Prato, Lasiecka and Triggiani (1936). This leads, in turn, to nonstandard
Riccati equations whose proper formulation requires special extensions of non-
linear terms in the equation, Barbu, Lasiecka and Triggiani (2000), Triggiani
{1997). Riccati equation is no longer satisfied in a regular sense (see counterex-
amples in Weiss and Zwart, 1998, Triggiani, 1997),

In view of this picture one may ask the following rather natural guestion:
what are other (than analytic) dynamics which still preserve the wellposedness
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modeled by an analytic semigroup (e.g. structurally damped plates, some ther-
moelastic plates) then we deal with the situation described above and the model
falls, as we shall see, into the category of partially analytic. In order to estab-
ligh the singular estimate for the structural acoustic model, it may be necessary
(depending on the level of analyticity displayed by the plate equation) to intro-
duce an additional boundary damping acting on the interface. This is to say
that analyticity alone of one of the components may not be sufficient in order
to propagate the desired regularity (singular estimate) onto the entire struc-
ture. However, addition of “strong” boundary overdamping will be shown to
guarantee the validity of this estimate.

An interesting phenomenon to be observed in the context of infinite hori-
zon problem and related stability issues is that the additional overdamping on
the interface, while providing benefits locally in time, may destroy asymptotic
stability properties of the overall system. In fact, strong unboundedness prop-
agated by this damping may introduce continuous spectrum (at the point 0 )
to the spectrum of the generator, This leads to the question: how to remove
this instability? We shall show in Section 4 that this can be done by introdue-
ing an appropriate static damping on the interface. Thus, the ultimate control
mode] is rather complex, but it possesses all the properties which are needed for
the wellposedness of Riccati theory for both finite and infinite horizon control
problems associated with structural acoustic interactions.

2. Abstract theory

In this section we consider an abstract formulation of the optimal control prob-
lern governed by strongly continous semigroup with wunbounded control oper-
ators. The semigroup in question, along with the control operator, will be
eventually assumed to satisly the “singular” estimate. Our first goal is to col-
lect some of the basic resulis pertaining to solvability of this type of control
problem,

2.1. Formulation of abstract control problem

Let H,U, Z be given Hilbert spaces and let the following operators be given
s A is a generator of Cy semigroup on H with D(A) C H € D(A*).
o The operator B UV — [ A*) satisfies the following condition:
|R(A, A)Buly < Cpealulu; A€ p(A) (1)

where R{A, A) denotes the resolvent operator for A and p(A) denotes
the resolvent set. Therefore, B* € L(D{A*) — U) where (B*v,u)y =
(v, Bu)p(as),pra-y

» The operator R: H — Z is bounded. F € Ly(0,T; H) is a given element.

With these quantities we consider the following dynamics
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Associated with (2] is the functional cost where T may be finite or infinite:

T
J(uy) = fu (IRy[3 + uf3 ) dt. (3)

Optimal Control Problem Minimize the functional J{u,y) for all u €
La(0,T5U) and ¥ € La(0,T; H) which salisfy (2)

For the finite time horizon problems (T < o0) a standard optimization ar-
gument, Barbu (1976), Balakrishnan (1975), Lions (1968) provides existence
and uniqueness of the optimal solution «® € La(0,T;U); ¥® € L2((0,T); H) to
the optimal control problem. For the infinite time horizon problems, the same
conclusion follows provided that the so called FCC condition — Finite Cost
Condition formulated in Hypothesis 2 (Section 2.4) is satisfied. FCC condition
is implied by appropriate stabilizability properties of the dynamics generated
by A.B.

Cur main aim is lo derive the optimal synthesis for the control problem along
with a characterization of optimal control via an appropriate Riccati Equation.

2.2. Characterization of the optimal control

Without any further assumptions imposed ou the problem, we are in a position
to provide explicit formulas for the optimal solution. To do this we introduce
the so called solution operator, often also referred as the “control-to-state”™ wap,

t
{hum}sjeﬂWﬂﬂmﬂd; 0<s<t<T. (4)

&

Condition (1) is equivalent to the statement that the control-to-state operator
L is topologically bounded Lz in time. This is to say, for all T < oo

L. € L(La(s,T:U) = Las, T; H)) (5)

or equivalently

L€ L(La(s, T H) — La(s, T, 7)) (G)
where
T
muﬁu=ﬂﬂ[“”““wumh 0<s<;
and (Lf)(t) =0, s>t (7)

One can easily verifly that the following operators are also bounded

[+ L*R*RL,|™" € L{La(s, T:U));
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The effect of the deterministic noise is represented by the element
i
F(t) = f e3P s) ds
(1]

and from standard semigroup theory, Pazy (1986), with F € L,(0, T, H); F €
C([0,T}; H).

In order to provide an expression for the optimal synthesis it is convenient
to introduce evolution operator ®(t, 5) defined by

®(.,8)z =[I + L,L"R*R]"eM "z € Ly(s,T;H) forz € H (9)

The evolution operator allows us to define the *Riccati operator™ P(#) given
by the formula Balakrishnan (1975), Lasiecka and Triggiani (1991), Flandoli,
Lasiecka and Triggiani (1988), Lasiecka and Triggiani (2001),

T
P(t) = f MO R Rd(s, t) ds. (10)
t

From (8), (9) we infer that P(-) € L{H,C([0,T], H)}). Moreover, it is standard to
show that P(t) is selfadjoint and positive on H, Flandoli, Lasiecka and Triggiani
(1988). We define next the “adjoint state” p(t) = j;r e 2= R RyY(s)ds €
C([0,T); H). Finally, we define the variable

r(t) = p(t) = P(t)y°(t) € L2(0,T; H). (11)
Since by (7) B*p = L*R*Ry", we infer by the virtue of (6) that
B*[P(t)y°(t) +r(t)) € U; aein t.

By using the above notation one obtains, Lasiecka and Triggiani (2001), vol
I, sect. 6.2.3, the explicit formulas for the optimal control. These are collecied
in the Lemma below:

LEMmMA 1 With reference to the condrol problem staled o (8), and arbilrary
initil condition yg € H and F € Li(0,T; H), there exists o unique oplimal
pair denoted by (u®,y°) with the follvwing properties:
(i) u® = —[1 + L*R*RL)™'L* R* R[e"Vyy + F] € Ly(0,T;U)
(ii) ¥y = [ + LL* R* R [eM)yq + F) € L2(0, T, H)
(2ii) u®(t) = =B*|P(t)y°(t) +r(t)]; a.e int € (0,T), where P(t),r(t) are given
in (10), (11).

REMARK 1 In the case T = oo the formules i Lemma 1 ostill hold under the
addifional assumption of exponential stability of ™'

Oune of the main goals in optimal control theory is to provide an independent
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the most delicate point where regularity of PDE dynamics has a very strong
bearing on the wellposedness of Riccati Equations.

While full characterization of optimal solution is obtainable (as we have seen
above) under minimal assumption, it is the wellposedness of Riccati Equation
(RE) which requires additional hypotheses. In fact, without these it is known,
Triggiani (1997), Barbu, Lasiecka and Triggiani (2000), Weiss and Zwart (1998},
that the classical wellposedness of RE may fail. The main technical issue is the
wellposedness of the gain operator B* P (introducing a nonlinear term in the
equation) on some dense domain in H.

2.3. Differential Riceati Equations subject to a singular estimate

I this section we shall assume additional condition imposed on A and B which
is referred to as “singular estimate”.

HyproTHESIS 1 [Singular estimate] There exists a constant 0 < v < 1 such
that

|£A'ﬁu|n < %Itf-lu.- D<it<1

REMARK 2 This estimale is trimally satisfied if B : U — H 15 bounded. Also,
for analylic semigroups et and relatively bounded control operators B : U —
DA™Y the above singular estimate follows from the analylic eslimale, see Pazy
(1986), | AN |y € F,0<t < L.

Qur focus in this paper is on a class of non-analylic semigroups ¢ and
unbounded operators B which would still exhibit singular estimate. As we shall
see later, there is a large class of dynamical systems which enjoy the above
property.

We also note that Hypothesis 1 does not necessarily imply that the control
operator is admissible (in the terminology of system theory — see Russell, 1978).
In fact, in many situations of interest the control-to-state map denoted by L is
not necessarily continuous when viewed as a map Ly(0,T:U) — C([0,T]: H).
The lack of this continuily is one of a major Lechnical difficulties in the theory.

Nevertheless, the validity of singular estimate provides, as we shall see below,
full wellposedness of the Riceati theory. This includes critical statement that
the gain operator B* P(t) is in fact a bounded operator U — H.

THEOREM 1 (Lasiecka, 1998, 2001) Consider the control problemn governed by
the dynamics described in (2), and the functional cost given in {3) with T < sc.
The control operator B3 iz subject to Hypothesis 1. Moreover, we gssume that
F e L:(0,T;H). Then, for any initial condition yo € H, there enisls a unique
optimal pair (u?,y") € La(0,T:U % H) with the following properties:
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(it} [regularity of the gains and optimal synthesis] There exist o selfad-

joint positive operator P(t) € L{H) with the property
B*P() € L(H — C([0,T|: U));
Fi(.) € L(D(A) — C([0,T); D(A")'))

and an element v € C{|0,T]; H) (depending on F) with the property
B*r e C([0,T);: U)

such that: u®(t) = =B P()y"(t) — B*r(t); t > 0.

(i1i) [feedback evolution] The eperator Apy = A = BB*P(t) : D(Ap)) €
H — D(A*Y generaies o strongly continnous evolution on H.

(i) [Riccati equation] The operalor P(L) is o unigue (within the class of
selfudjoind positive operators subject to the vegularity in part (i)} solution
of the following opevator Differentiol Riccoti Equation (DRE ).

(Pe(t)z. ) = (A*P(t)z, w)u + (P(E)Az.9)n + (R Rz, 9w
= (B* Pit)z, B" P(tiy)y; for o,y € INA). (12)
(v) [Equation for “ +¥] Wilh Ap(t) defined in part (i) the element r(i)
satisfies the differentinl equation
ri(t) = —Ap(t)r(t) = P(L)F; on [D(A)]; r(T)=0. (13)

REMARK 3 The resull of Theorem 1 was first shoun in Avalos and Lasiecka
(1996) in u specind cose of structural acousiic interaction with elastic equation
on the inlerfuce modeled by plate equalions with Kelvin Voight damping.

BEMARK 4 [t should be noted that the boundedness of the guin operator B* P(1)
13 a very special fealure which s not generally expected. It 15 a consequence of
singqular estimate assumplion. Indeed, m genercl, one does not have (unless B
is bounded) the boundedness of the gains, even for the simplest scalar hyperbolic
equations, Lasiecka and Triggiani (1991).

2.4. Algebraic Riceati Equations subject to singular estimate

In order to obiain solvability of Infinile Horizon Problem, ie. when T = o, one
must assume that the Finde Cost Condilion holds, FOC condition asserts an
existence of at least one control w such that J{u,y) < co. Thus, in what follows
we shall assumne

HypoTuesis 2 [Finite cost condition (FCC) condition] For any initial
condition yp € H there exists u € La(0, 00; U) such that J{uw, y(u)) < co, where
ylu) s the trajectory given by (2) with control v and originaling al yq.

The result stated below provides Lhe wellposedness for Riceati Equations in
the infinite horizon case.

THEOREM 2 (Lasiecka, 1998, 2001, Lasiecka and Triggiani, 2001) Consider the
control problem governed by the dynomics described in (2), and the functional
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Murepver, we assume that FCC condition in Hypothesis 2 is in ploce and F €
La(0,00; H). Then, for any initiel condition yo € H, there exists a unique
optimal pair (1%, ¥°) € La(0,00; U x H) with the following properties:
(i) [regularity of the optimal pair] «° € C{[0,20); U); ¥® € €([0, x); H).
(#i) [regularity of the gains and optimal synthesis] There exist a selfad-
Joint posilive operalor P € L{H) with the properly
B'Pe L{H - U}
and un element r € C([0.oc): H) (depending on F') with the property
B*r € C([0,00); U)
such that: u®(t) = —B*P(t)y°(t) — B*r(t); t > 0.
(i) [feedback semigroup] The operator Ap = A — BB*P: D(Ap)C H —
(A" generates a strongly continuous semigroup on H.
{iv) [Algebraic Riccati Equation] The operator P is a solution of the fol-
lowing operator Algebraic Riceati Equation (ARE):
(A*Px.y)y + (PAz,v)y + (R Rz, y)y — (B* Pr. B* Py)u
Jor z,y € DNA) (14)
(v) [Equation for “#"] With Ap defined in part (iii) the element v(1) satisfies
the differentiul equation
re(t) = —Apr(t) — PF; on [D(A)]; 'rh—!-'»!‘c r(T)=0 (15)

REMARK 5 As usual, the untqueness of ARE is guaranteed by imposing an ap-
propriate “detectalality condition”. In this case the feedback semigroup e**! is
exponentiolly stable on H. This, in turn, @5 quaranieed by the uniform stability
of e, As we shall see later, the examples provided here fall into this category.

REMARK 6 As in the case of DRE, lhe boundedness of the gain operator B° P
is rather exceptional and vesults from the imposition of the singular estimate. Tn
the general case one should not expect B*P to be bounded, but at most densely
defined, Flandoli, Lasiecka and Triggiani (1988). In wddilion, the quadratic
term in (14) involves typicolly o suitable extension of B*P wather than B* P
itself, Barbu, Loasiecka and Triggians (2000), Triggiana (1297),

Next two sections deal with the applicability of abstract theory to specific

PDE systems with boundary and point controls.

3. Boundary control problems for thermoelastic plates

This section is devoted to an analysis of control problem governed by a ther-
moelastic system with boundary or point controls.

3.1. PDE model

We consider the following dynamics described by thermoelastic plates with ro-
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Let © € R? be a smooth, bounded domain with a boundary I'. In & x (0,7T)
we consider a vibrating plate subject to effects of thermoelasticity. The variable
w denotes the vertical displacement of the plate, while # denotes temperature.
The dynamics of the plate is affected by boundary control w acting on the
boundary I' . The corresponding coupled PDE system is

= pAwy + A2w = A
- A0+ Auy =0

with the boundary conditions on I % (0,T)

} in2x(0,7)

w=Aw=0 f#=u (16)
We consider this model on the state space given by
H=Hyx Hy, Hy=(HAQ)NHID) x HAQ), He = La(D)

so the initial conditions are given by y(0) = (w(0),w:(0),8(0)) € H. Witl
equation (16) we associate the functional cost given by

J(u, w,8) = f /“ ( “"f{‘! fg )‘ +[Raﬂ{t.w][2]dxdt
+j; fr|u{t.a;}|2d.-cdz (17)

where R, € L{H*() x H () — La2(0)) and Ry € L(La(R) — L2(82))
Optimal control problem to be considered is the following:

Boundary Control Problem: Minimize J{u,w,#) given by (17} subject
to the dynamics deseribed by (16).

We note that when in eq. (16) the parameter p = 0, the corresponding
system is analytic, Liu and Renardy (1995), Lasiecka and Triggiani (1998a),
(1998b). Thus, in this case the wellposedness of standard Riccati theory follows
from the “analytic LQR" theory, Bensoussan, Da Prato, Delfour and Mitter
(1993}, Lasiecka and Triggiani (2001). As mentioned before, our interest is in
studying the non-analytic case which corresponds to p > 0. Indeed, if p > 0
the thermoelastic system is predominantly Liyperbolic, i.e. it can be written as
a compact perturbation of a group, Lasiecka and Triggiani (2000). Thus, the
main goal here is to show that the control problem defined above is regular, by
which we mean that Hypothesis 1 is satisfied. This, in turn, allows to deduce
that the optimal control problem admits regular optimal synthesis including the
wellposedness of Riccati equation in both finite and infinite horizon case.

3.2. Semigroup formulation

We find convenient to recast the PDE problem (16) in a semigroup framework.
In order to achieve this we introduce several operators:

-
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Az La(2) = La(); A= A%

D(A) = {u e HY{Q)N H}(N); Au=00onT}
D:L4(T) — Ly(0); ADg=0inf), Dg=gonl
M=T+v4p

It is well known that Ap, A and M are selfadjoint, positive operators on
L4(f1). Moreover, standard elliptic theory, Lions and Magenes (1972), gives
D € L(La(I") = HVE(Q)).

Notice that since w|r = Aw|r = 0 and [#— Du]|r = 0,— for smooth solutions
of system (16) we have that # — Du € D(Ap), consequently Af = A(# —
Du) = —Ap(# — Du) and Aw = —Apw, A’w = A?w = Aw. Thus, with the
above notation the semigroup representation for our PDE system (16) becomes,
Lasiecka and Triggiani (2000):

Mg + Aw + Apf = ApDu
E! +Apﬂ—!‘p‘lﬂ! =..41;|DH- {18}

where the equalities are understood in the dual topology of D{Ap)'.
We introduce next A: H — H, B : Lo(I') — D(A") given by

0 I 0
A=| M4 0 -M14, (19)
0 Ap =Ap
D(A) = {(w,v,8) € H; M Aw € H}(Q),v € D(Ap),8 € D(Ap)}
0
Bu=| M ApDu |. (20)
Agﬂu

It is known, Liu and Renardy (1995), Lasiecka and Triggiani (2000), that A
is a generator of a Cy semigroup on /. Moreover, this semigroup contains a
hyperbolic component, hence is non-analytic, Lasiecka and Triggiani (2000).

With the above notation our plate problem can be rewritten as a first order
system:

yvi=Ay+Bu on H;y=|ww,0); ue L0, T:U); U= La(T).
3.3. Main result
Now we are in a position to state the main result of this section:

THEOREM 3 Control system described by (16) satisfies vssumplions required by
?ﬁmrem 1. I'n particular, “singuler estimate” of Hypothesis 1 holds with v =
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The proof of Theorem 3 is relegated to the next subsection,

It has been shown recently, Avalos and Lasiecka (1997), (1998), that ther-
moelastic semigroups are exponentially stable. This is to say |e?!| ¢y < Ce™™",
w >0, £ = 0. Since exponentially stable systems automatically satisfy the FOC
Condition in Hypothesis 2, we obtain the following Corollary:

CoROLLARY 1 All the staiements of Theorems I and 2 apply to Boundury Con-
trol Problem with A, B specified in (19), {20).

REMARK T Different (than hnged) boundary conditions associaled unth (16)
can be cosidered as well. These include clamped or free homogenous bowndary
conditions — see Lasiecka and Triggiant (2000). The analysis presented below
15 nol critically affected by the structure of the boundury conditions imposed for
the plate. Similarly, boundary conditions associaled with the heal equalion can
be of o Newmann bype. In fact, this latler case 15 easier to hendle.

REMARK 8 One could also consider the following point control problem associ-
ated with this plafe.
wy = pAwy + A%w = Al in Q
B — A0+ Awy = 8, u,  in (), (21)
w=Aw=8=0mT

where xg 15 a designated point in 2. The corresponding functional cost can be
taken as

Point control problem: Minimize
3 w(t) \[*
sy = [ [|ra( ) RO )4 ] (22

with By € C(Hy), Ry € L(L2(5)) and u, w satisfying (21).

All the final statements of Theorems 1, 2 and 3 apply to this model as well.
In fact, the arguments are simpler that in the case of boundary control considered
in Theorem 3.

The remaining part of this section is devoted to the proof of Theorem 3.
In what follows we shall adopt the following notation: |ul. g = |ulgen), where
H* () = [H{ ()], s <0
3.4. Proof of Theorem 3

We begin by verifying that our standing assumption A='B € L(U — H) is
satisfied with U = Ls(I') and H defined above. Indeed, by direct computations:

0
A'B= ( 0 ‘ € L{Ia(T) — H). (23)
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These two integral equations are the main object of the analysis.
Step 2 — analysis of W equation. Integrating equation (25) by parts
yields

o
—L E‘;ﬁ'q'{tuﬂ( M_?ﬂ{.ﬂ]l )d-‘.’l’ {ET]

For #(s) € La(f)

I ( M‘?ﬁ'(a} ) e ( —M:T.{f'l-;iitaz‘ﬂiaj )E He

we obtain

W(t) = eM'W(0) 4 M (=) ( 0 )

M=1(s) /|,
, f.: eAilt=a) 4, ( - )dﬁ, (28)
Hence
W(t) = e 'W(0) + ( .M'?ﬂ{!] ) . s ( M'?HE']} )
# e (_atapaiaa ) o &

The elliptic theory gives
o M1 € £(Ly() — HA(Q) N HYQ) N L(H(@) — HY(@)
e M=lAp M= e L(H-YN) — H}(Q))

and noticing cancellation of terms in (29) we arrive at the estimate:

[W(t)w, < CUBENa-¢a) + 18]z, 0,0:22000) (30)

Step 3 — analysis of # equation. Integrating by parts of the second
term in (26) yields

B(t) = e~4240(0) — wr(t) + e~ we(0) - [D LAy (a)ds.  (31)

On the other hand by recalling the original version of the plate equation in (24)
we obtain:
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Inserting the above relation into (31) and estimating the terms gives
8(t)lo. < le=*°* ApDuloa + e~ ** M~ Ap Dufoa + [we(t)o.0

i
+|f E_"‘"“_“]M_'.ﬂ'lpﬂ{s]ds|
o 1}

[ 4
+|f e A0(=2) A4 =1 fuy(s)ds
0 0,14

(32)

Since the semigroup e~ 2!

and Triggiani (2001),

is analytic and the Dirichlet map satisfies, Lasiecka

D € £(La(T) = D(AR*™))

I D |.I:{L:-{P] .'.-i{ﬂ:l:l -— Eaf't g < -_—r { ]

Moreover, the analyticity of e=42! along with the fact that D(A%) ~ HZ*(Q),

;I'- < f < Jz-, also imply that Ty(f) = jﬂ e~ Aelt=#) f(g)ds satisfies, Lasiecka and
Trigeiani (2001), Bensoussan, Da Prato, Delfour and Mitter {1993):

Ty € L{Loo(0,4; H™1(Q)) — Hy~*(Q)); VWt >0. (34)
Since A = A%,
M= A e C(HHR) = HY (). (33)

Collecting (32) , (33), (34), (35) we obtain:

[8(t)]o.n < G[l"’:{t fo.2 +[ |8(s)lo.nds + |wl 0,010 + tlf‘l“]
0<t<l. (36)
Gronwall’s inequality applied to the above inequality gives

luly

[8(t)]o,0 < C—'[lwzmln.ﬂ + Wl 0,600 gy + e

] 0<t<l. (37)

Step 4 — decoupling W and @ given, respectively, by (30) and (37).
From (30)

i
WOl < C[W“H-Lsz " [ﬂ i) i

i
Y I S T v [ fr .rh'-l Ty
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The H~! norm of # can be easily estimated from (26) as follows:

16(0)]-1.0 < 1452 42'0(0)]0,0 + | ] e A0 A we(s)ds)
o

julu '
< C[m + twly o3 A

where in the last estimate we have used the basic semigroup estimate ouly.
Combining (38) and (39) allows us to decouple the W variable

1
Wl < Cluly |75z + alut 4| + COWs ey (10)

Taking t < 5= we obtain

1
IW(t)ls. < C|“|UWT (41)
which then combined with (37) yields
|| 1
[8(t)]o,0 < GWT'H‘ o<t CTeh (42)
The above argument can be now bootstrapped in order Lo obtain the estimate
for any 1/2C < i < T < oo, Profl of Lemma 2 is thus complete, ]

In order to assert validity of Theorem 3 it suffices Lo combine the result of
Lemma 2 with the fact that e is exponentially stable, Avalos and Lasiecka
(1997, 1998). g

4. Point and boundary control problems in the acoustic-
structure interactions

In this section we shall study an optimal control problem arising in an abstract
model of structural acoustic interactions. lu these applications the goal of con-
trol is to reduce noise entering an acoustic environment.

4.1. Description of the model

The model under consideration consists of wave equation interacting on an in-
terface with a dynamic plate equation. This is a typical configuration arizing in
structural acoustic interactions, Morse and Ingard (1968), Beale (1976), Littman
and Lin (1998).

Let £ be a bounded domain in B®, n = 2,3 with a boundary " which consist
of two paris Ty, ['y. We assume that I' = TgU Ty, Ty is flat and Ton Ty = 0.
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The ultimate PDE model considered in this paper (we take p; = 0) can be
writien as:

2 =ctAz —doz + f in x(0,T) (43a)
%z +diz=0 on I'y x(0,T) (43b)
%z + Doz = wy on [gx (0,T) (43c)
wye + Aw + pA*w + 2, =Bu  on Tox (0,T). (43d)

Here the operator B is a control operator acting upon actuator w(t). The control

operators are typically unbounded, such as typically arise in the context of
modeling smart materials.

In concrete applications to structural acoustic, the last equation in (43)
mwodels plate equation with A being fourth order elliptic operator. The con-
trol operator B represents point controls realized via smart actuators such as
piezoceramic or piezoelectric patches. In such instances 5 is just a derivative of
the “delta” function supported either at some interier points of I' (dim [y = 1)
or on some closed curves in Ty if dim Iy = 2, Dimitriadis, Fuller and Rogers
(1991).

In this paper we shall, however, consider more general classes of operators
A, B, which are defined by the following set of Hypotheses,

Hypothests 3 A: D(A) C La(Ty) — La(g) 15 a postlive, selfadjoint operator.
HyPoTHESIS 4 There emsts o posilive constand v, 0 < v < 1/2, such that

A™"B e LU, L2(Tg)): equivalently, B continuous : U — [D(A")];  (44)
where I is o Hilberl spuce.

The following hypothesis is made regarding the boundary operator Dy.
HyroTHESIS 5 Do : La(To) 2 D(D) — La(Ty) is a positive, selfadjoint opera-
tor, and there exists a constant rg, 0 < vy < 1/4, and positive constants §;, 62
such that

&1)2lgare) < (Doz,2) Lyrg) < 2l2lpiare) ¥z € D(A™) = D(Dy'®). (45)
Moreover, we assume that H'(T'y) C D{D,},”}.
REMARK 9 1f A models plate equation (the case of interest to us), then with

ro = 1/4 we have that Dg(A'*) is topologically equivalent to H'(I'p) norm. In
such case, the operator L) corresponds to boundary structural damping modeled
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The control problem considered is the following:
Control Problem: Minimize

J(u, z,w)
T
= fﬂ [IV2l5.0 + |zl 0 + A2 w[§ 1, + hoelg,r, + [u(t)]3]dt (46)

subject to the dynamics of (43).

A cost functional of interest in applications in structural acoustic problems is
a performance index which minimizes the pressure z; in an acoustic environment
and also leads to reduction of vibrations on the wall. For this problem the
functional cost takes the form

T
J(u, z,w) = _/; lolzelf . + 1Awlg r, + lwelg r, + lu(e)[E]de.

REMARK 10 One could alse consider other wmodels for plates, including these
where the analyticity is generated by thermal effects, Lasiecka (2000). Specific
example can be given by considering the same system (§3) with the fourth equa-
tion replaced by thermoelustic system in the variables w, 8 defined on Ty x (0, 50).

Wy + &zw - MG+ Pz = Bu
B = AB + Awy = 0. (47}

With the above system we associate boundary conditions either clamped w =
£Lw = 0, hinged w = Aw = 0 or free, Lasiecka and Triggiani {1998h). The
assoctated control problem can be formulaled as follows:

Control Problem: Minimize

Jlu, z,w)
T

= f (V2150 + |2ls.0 + |AwlE r, + el r, + 100015, + le(t)]i]dt (48)
0

subject to equations (43 a-c) and (47).

Our goal is to show that structural acoustic interactions described above
fit into the abstract framework of Section 2. As a consequence, the results of
Theorems 1 and 2 will apply to these problems as well.

4.2. Semigroup formulation

The following operators will be used in describing the PDE model given in (43)
— see Bueci, Lasiecka and Triggiani (2002).

Operators acting on . (i) Let Ay : L2(92) O D(An) — Lz(02) be the
non-negative, self-adjoint operator defined by

4 L Z2AL A |'| - FF3 ey fa; ¥ :l\li .-.] AN
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(ii) Let N be the Neumann map from La([y) to Lo((2), defined by

i
=g, —-u!r+t-’nb) =ﬂ}-
Ca (a“ I

It is well known, Lions and Magenes (1972), that N continuous: La(T'g) —

HY¥ Q) ¢ D{Ai‘.r""}. ¢ > 0. Moreover, by the Green's second theorem, the
following trace results hold true:

: i
Yy=Ng& {ﬁuﬁ =0in ﬂ,atﬂ

.. _ hlru on [‘q_.
N*Axh= { & aE (50)

where the validity of (50) may be extended to all h € H'(Q) = D(A}°).

Second order abstract model. By using the Green operators introduced
above, the coupled PDE problem (43) can be rewritten as the following abstract
second order system — see Bucci, Lasiecka and Triggiani (2002):

st Apz+ AyNDgN"Apz +dpzy = Ay Noy = f (51a)
vy +Av + p A% + N Axze = Bu, {51L)

the first equation to be read on [D{Ay)]', the second one on [[NA)]".
Function spaces and operators. We define the following spaces

H, =D(AV?) x La(9);  H, = D(AY?) x Ly(y)

On H. we define (unbounded) operator A, : H. — H, given by

_ (0] I .
Ay = ( -An =~ANNDoN*Ay - do ) > &2
Similarly, on H, we define A, : H, — H,
_ ) !
‘4"=(-.al -p.qﬂ)' (53)

Coupling. Finally, we introduce the densely defined (unbounded, un-
closeable) trace operator C': H, 2 D{C) — H, defined by

C[i;}:=[h".2uzg]=(g N'{j‘iw)[;;]‘ (54)

with the domain

D{C} = {lzl,ZQ] €Y, N'Ayz = zill'a € Lgl[].‘g”
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so that D(AN?) x D(AN?) € D(C). lts adjoint C* : H, — D(AY?) x

[D(AY*)), in the sense that (Cyy, y2)m, = (11, C*y2)u.: 11 € D(C),y2 € H,
is given by

e[ 3] - [amwa]= (5 s )[2] 7

where Ay N : La([g) = [D(AY ).
First-order abstract model. Finally, from (52), (53), (54), (55) we define
the operator 4 acting on the space H = H. x H,

A::(f‘é i:):ﬂjnm}—ﬂ, (56)

with the domain

D(A) = {[z1,22,v1,v2) € H : 22 € D(A}?), vy € D(AY?),

A= + pus € D(A*), 21 + NDoN* Ay za — Nova € D{Ax)}. (57)
By applying Lununer Phillips Theorem, Pazy (1986), it is shown, Bucci, Lasiecka
and Triggiani (2002), that A generates a strongly continuous semigroup of con-
tractions on M.

Control operator. Finally, we define the operator B : U — [D{A")]", dual
with respect to H, as a pivol space by:

B =1[0,0,0,5". (58)
It is readily verified that
A™'B = [0,0,0,-A'B|" € L(U; H),

so that B € L(U;[D(A*)]'). Here we have used Hypothesis 4 to deduce that
A™'B = A" ' A~"B is bounded from U into La(g), as r < 1/2.

Finally, returning to the second-order abstract model (51), we see that these
equations can be rewritien as the following first-order abstract equation in the
variable y(t) = [2(t), 2¢(t), v(2), ve(t)):

ye=Ay+ Bi+ F in [D(A")), y(0) = yo (59)
where A, B are defined in (56), (58), respectively, and F = [0,0.0, f]7.

4.3. The finite horizon control problem

In order to apply the abstract results of Section 2, the key property to be
verified is the singular estimate. As we shall see below, in the case of structural
acoustic problem, this property is not always guaranteed by the analyticity of the
semigroup generated by the plate equation. In fact, if the analyticity of the plate
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the additional regularizing effect is needed in order to offset the unboundedness
of B. It turns out that a eritical role in this is played by the boundary damping
). The above discussion motivates the following assumption.

HyroTHESIS 6 We shall assume the following relation between the parameters
representing damping in the system:

(i) eitherro+ 5 27

(i) or a —2r > 1/6 and HY3(Ip) = D(ATF).

REMARK 11 In a canonical case of e plute equation, when A is the fourth order
differential elliptic operator, the condition H'3{I'y) = 'P{A‘J?]I 15 always salis-
fied. This follows from the more general property H¥(Ip) = D(A*):0 <8 <
1/8. Moreover, in that case the first part of Hypolhesis § 15 always fulfilled with
a = 1/2 and rg = 1/4. Thus, any structurally damped plate (o = 1/2) unih
boundary structural damping Dy represented by the Laplace's Bellvami operntor
{ro = 1/4) will always fulfill the requirements of the first part of the hypothesis.

Regarding the second part of the hypothesis, this is always true for a strongly
{Kelvin Voight) damped plate equations when o« = 1. In this latler case we do
nol need any additional overdamping on the interface Ty, This means that one

can toke Dy = 0.

The following singular estimate has been established in Bucei, Lasiecka and
Triggiani (2002).

THEOREM 4 (Bucct, Lasiecka and Triggiani, 2002) We assume Hypotheses 3-5.

I addition we assume the first part of Hypothesis 6. Then, the control system
described by (59) salisfies the “singular estimafe”,

le Bu| < :E*r 0<t<l

wilh the value of 4 given by

1A
TR Y

r
-, r< -a
v=4¢ 7

1/2-a+r

= > =0,
l—e

If the second part of Hypothesis is in force, then the singular estimale holds
also with Dy = 0 and the value of v is given by v = £ < 1/2.

The proof of Theorem 4 given in Bucci, Lasiecka and Triggiani (2002) is
technical and lengthy. It relies critically on two main ingredients: (i) character-
ization of fractional powers of clastic operators, Chen and Triggiani (1990), and
{ii) sharp regularity of traces to wave equation with Neumann data, Lasiecka
and Trigeiani (1991). In the special case when o = 1 (Kelvin Voight damping)
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REMARK 12 We nole that in the case when the operator B s anbounded, v > 0,
the Hypothesis 6 forces certain amount of global damping in the system. The
role of the damping is to offsel the unboundedness resulting from the control
operator.  We have lwo sources of damping present in the model: struclural
damping yeelding analyticity of the “plate” component (measured by the param-
eter 1/2 € a < 1) and boundary structural damping due to the presence of the
operator Do, measured by the parameter 0 < rg < 1/4. The following inter-
pretation of Hypothesis 6 can be given: the more analylicily in the system (i.e.
the higher value of «), the less boundary damping is needed (smaller value of
ro) in order lo control singularily al the origin, In the exfreme case, when the
plute equation has strong analylicily properties, postulated in part (i) of the
Hypothesis 6, there is no need for boundary damping at all. In fact, the extreme
case of e = 1, treated in Avalos and Lasiecka (1996) leads to singular estimate
with D =0 and v = 1/2 = ¢. The resull presented in the second parl of the
theorem extends the estimale in Avalos and Lasiecka (1997) to a larger range
of parameters o and also provides more precise information on the singulavity.

By applying the abstract result from Theorem 1 along with the singular
estimate from Theorem 4 we infer the following final result

THEOREM 5 Under the hypotheses of Theorem § and with reference o finite
horizon condrol problemn consisting of (43} with functional cost (§6), all the
statemenis of abstract Theorem I apply with A, B specified in Seclion 4.2,

REMARK 13 For the control problem governed by the siructurel acoustic interac-
tion with thermoelasticily, see Remark 10, the validity of singulor estimate with
rg = 1/4 and v = Zr was shoun in Lasiecka (2000). Thus, the same stutement
as in Theorem 5 is valid for this dynamics with the cost given in [{8).

4.4. The infinite horizon control problem

If the time T is infinite, the analysis of structural model is more complex.
Indecd, one needs 1o be concerned with the validity of Finile Cost Condition.
This is typically guaranteed by some sort of stabilization result valid for the
system under considerations. Unfortunately, in the case of structural acoustic
problem, the coupled system is slabde but not wniformly stable, Avalos and
Lasiecka (1998). Thus, in order to enforce uniform stability, the corresponding
model must be more complex. It is natural Lo mpose some viscous damping
in the interior of £2. This corresponds to taking dg > 0 in the first equation.
In fact. this strategy works well, when there is no need for strong structural
damping on the interface I'y. More precisely, the following result is known:
Avalos (1996)
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THEOREM 6 Consider ({3) with f =0, u =0, Dy =0 for ryg < 1/8), and
dg > 0,dy > 0. Then, the corresponding system 15 exponentially stable on H,
i.e. there erists w > 0 such thai

|{:M|L{H1‘ < e =10,

As we already know from the results of previous section, in order to assert
singular estimate for the semigroup, depending on the value of o, we may need
strong structural damping on the interface (i.e. the unbounded operator Dy).
One would (naively) surmise that such damping should only enhance the sta-
Lility of the system. However, this is not the case as revealed in Bucci, Lasiecka
and Triggiani (2002), In fact, despite strong viscous damping in £ with dy > 0,
the system (43) is not uniforinly stable, whenever ro > 1/8. Thus, there is a
trade-ofl between regularity and stability, as the result of which the overall con-
trol problem is much more subtle. A natural perception that “more damping”
implies stronger decay rates is obviously false (in fact this is known among engi-
neers as an overdamping phenomenon). In mathematical terms this is explained
by noticing that the presence of strongly unbounded operator Dy introduces an
element of continuous spectrum and 0 € o.,..(A), i.e. the point 0 belongs to the
essential spectrum of A, This is a new phenomenon nol present in structural
acoustic models without the strong damping on the interface. In view of the
above, we are faced with the following dilemma., How to stabilize the system
while preserving regularity guaranteed by the singular estimate?

The solution proposed below is based on the following idea: we counteract
the instability of the systein by introducing an additional static feedback control,
The role of the static damping is to remove the continuous spectrum from the
spectrum of the generator. This leads to the following model:

=c Az —dofz)z + f in 2x(0,T) (G0a)
il

W’ +dyz=10 on I = (0,7 (60L)
ﬁ%: + Doz + 304z = wy on Dy x(0,T) (60c)
wyy 4 Aw + A" w, 4 G zlr, = Bu on Iy x(0,T). (GO

The parameter 3§ > 0 represents static damping on the interface Iy, IF3 > 0,
it was shown in Bueci, Lasiecka and Triggiani (2002), Bucci and Lasiecka (2002)
that the resulting system is exponentially stable also with a strong structural
damping [2z,. Precise lormulation of this result is given below. Since we wish
to consider cases when the damping dy is active only on a subportion of @ we
require the following geometric hypothesis.

HyroTHESIS T We assume thal eler
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o () 15 conver and there exisls o € A" such thael (2 —xg)-v <0 on Ty and
do(z) = dy > 0 inU(Tg) = {x € N, dist(Tg. Q) < &} for some § > 0.

THEOREM T {Bucci and Lasiecka, 2002) Consider (60) with f = 0,u = 0 and
iy > 0,8 >0 and dy subject to Hypothesis 7. Then, the corresponding system
is exponentially stable on M, i.e.

|t!’l'ric””, < Ct.'_"":_ t=0
REMARK 14 If the parameler ro < 1/4, one can lake § =0,

REMARK 15 The slatic damping 60y can be replaced by a more general opero-
tor, say D, which obeys the same estimales (see Hypothesis 5.) as Dy,

The addition of static damping 7Dgz has no effect on the validity of singular
estimate. In fact, it was also shown in Bucci, Lasiecka and Triggiani (2002) that
singular estimate of Theorem 4 still holds with § > 0. Thus, all the assumptions
of the abstract Theorem 2 are satisfied and we conclude with our final result:

THEOREM 8 With reference to system (60) subject to Hypothesis 3-5, 7 and
Junctional cost given by (46), oll the stalements of abstruct Theorem 2 remain
valid with A, B introduced in Section 4.2 bul with A. replaced by

s ] I
A = ( —Ap = BANNDgN*Ay =ApNDgN*Apy =dy ) ' (61)
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