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Abstract: Wellposedness of differential and algebraic Riccati 
equations for control systems with ·unbounded control operators is 
considered. It is shown that the full-classical Riccati theory is recov­
ered for a class of dynamics, whose generators are partially analytic. 
Partial analyticity is quantitatively expressed by the validity of the 
so-called "singular estimates" , which is imposed on the composi tion 
operator EAtB (A is the generator , B is unbounded control opera­
tor. This class comprises the PDE coupled systems with hyperbolic 
and parabolic components. Two illustrative examples are given in 
the paper: boundary /point control of thennal plates with hyperbolic 
character and point control of structural acoustic interactions. The 
latter are described by wave equation coupled at au interface to a 
plate equation. 
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1. Introduction 

This paper deals with wellposedness theory for optimal control problems gov­
erned by PDEs with unbo·unded cont1'0l actions. By unbounded, we mean control 
operators whose domain is either a. dense, proper subspace of the state space 
or the range of control operator lies outside that space. The interest of con­
sidering unbounded control operators has been spurred by numerous engineer­
ing/technological applications where such operators are canonical models for 
actuation. Typical examples include boundary and point controls which more 
recently have found wide range of applicability in smart materials and, more 
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generally, "smart technology" - see Hoffman and Botkin (2000) , Dirnitriadis, 
Fuller and Rogers (1991) and references therein. 

In spite of large popularity of smart materials at the technological level, 
relatively little has been known from the point point of view of the mathe­
matical control theory. The reason for this is simple: the unboundedness of 
control operators has drastic effect on t he underlying PDE dynamics and many 
properties which hold in the context of classical, by now, "bounded control" 
problems are no longer valid with "unbounded controls" . This fact, recognized 
more than 20 years ago, Balakrishnan (1 975 ), has led to and stimulated a wide 
range of research in the area of "control theory of PDE with unbounded con­
trols" - see Balakrishnan (1975), Bensoussan, Da Prato, Delfour and Mitter 
(1993), Lasiecka and Triggiani (2001 ) and references therein. In fact , the the­
ory of optimal control and related Riccati equations , in the context of PDEs 
with unbounded controls, has attracted considerable attention in recent years 
- see books Bensoussan, Da Prato , Delfour and Mitter (1993), Lasiecka and 
Triggiani (2001) and references therein. The main difficulty and obstacle with 
respect to the classical LQR t heory, Balakrishnan (1975) , Lions (1968), is , of 
course, potential unboundedness of t he so called "gain operator" which is the 
j oTmal product of two operators: B * - the adjoint to control operator B and 
P - the Riccati operator. Since the gain operator B * P enters the nonlinear 
term in the Riccati equation, its wellposedness (e.g. density of the domain, 
boundedness, etc. ) is the critical ingredient of the analysis. 

In order to obtain reasonably st rong results pertaini ng to solvability of Ric­
cati equations, one needs to co unteract the unboundedness of control operator 
by exploiting other properties of the dynamics. In this context the theory of 
LQR problems for analytic generato rs came forward in the early eighties pro­
ducing an array of results which show that the gain operator B * P , in the case 
of analytic dynamics, is actually bo·unded - see Bensoussan, Da Prato, Delfour 
and Mitter (1993) , Lasiec ·a ami Triggiani (2001) and references therein. This 
was the wain critical step in proving almost classical solvability of Riccati equa­
tions as well as pointwise feed back syuthesis for the optimal control arising in 
the analytic PDE dynamics . 

In contrast with analytic dynamics, other PDE models, including hyper­
bolic, do not display the same regulari zing effect. In fact , for hyperbolic dy­
namics one typically obtains gain operators B* P which are intrinsincally un­
bomtded, Lasiecka and Triggiani (1991 ), Flandoli , Lasiecka and Triggiani (1988) , 
Da P rato , Lasiecka and Triggiani (1986). This leads , in turn, to nonstandard 
Riccati equations whose proper formulation requires special extensions of non­
linear terms in the equation, Barbu, Lasiecka and Triggiani (2000) , Triggiani 
(1997). Riccati equation is no longer satisfied in a regular sense (see counterex­
amples in Weiss and Zwart , 1998 , Triggiani , 1997). 

In view of this picture one may ask the following rather natural question: 
what are other (than analytic) dynamics which still preserve the wellposedness 
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with unbounded controls? It turns out that the dynamics with the so called 
"singular estimate" possesses this desired property. In mathematical terms this 
property is expressed by the so called "singular estimate" for "transfer function" 
of the system y' = Ay + B'U. This is to say one aims to obtain an estimate of 
the type 

II eA t Bll.c(H) = 0 c~} 0 < t ::::; 1 

with a suitable value of 0 < 1 < 1. Here eAt denotes a sernigroup generated 
by A on a Hilbert space H while B denotes an (unbounded in H) operator 
U---. D(A*)'. 

It is readily seen that the above estimate is satisfied for analytic semigroups 
with control operators B which are relatively bo'unded with respect to A. How­
ever, the main point we wish to make is that the class of systems with "singular 
estimate" is much larger than the analytic class. In fact, this class includes the 
so called "partially analytic" dyuamics which typically arise in coupled PDE 
systems where only one component of the system is modeled by an analytic 
semigroup. For such dynamics, the main challenge is to show that the regular­
izing effect of analyticity is propagated from this one component onto the entire 
structure. Qualitatively this is described by singular estimate which amounts to 
saying that the "unboundedness of control operator" is offset by the dynamics 
once we are away from the origin. 

The main goal of the present paper is twofold : (i) to present a brief exposition 
of the theory for partially analytic control problems and, (ii) to illustrate this 
theory with several concrete PDE control systems of physical interest, which fall 
into this class. We shall deal with both fnit e and infinite horizon control prob­
lems. In the context of infinite horiwn problems, questions related to stability 
and stabilizability will be discussed as well. 

We shall begin (Section 2) by recalling abstract results on wellposedness of 
feedback synthesis and on unique solvability of associated Riccati Equations for 
partially analyt'ic systems. 

Sections 3 and 4 serve as an illustration of abstract theory by means of con­
crete PDE control systems with boundary or point control. We shall focus on 
two particular models: system of therrnoelasticity and structural acoustic inter­
actions. In Section 3 we consider boundary control problems associated with 
systems of thennoelasticity. As is known, systems of therrnoelasticity combine 
analytic and hyperbolic properties and therefore serve as a canonical example 
of the model to be tested within our framework . It is shown in Section 3 that 
singular estimate holds for this class of problems. This allows to apply abstract 
results formulated in Section 2 which pertain to solvability of Riccati equations. 

Section 4 deals with a more complex system, which is often referred as struc­
tural acoustic interaction Morse and lngard (1968), Beale (1976) . In fact, the 
mathematical model for structural acoustic interaction comprises a strongly 
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111odeled by an analytic semigroup (e .g. structurally clamped plates, some ther­
moelastic plates) then we deal with the situat ion described above and the model 
falls, as we shall see, into the category of partially analytic. In order to estab­
lish the singular estimate £ r the structural acoustic model, it may be necessary 
(depending on the level of analyticity displayed by the plate equation) to intro­
duce an additional boundary amping acting on the interface. This is to say 
that analyticity alone of one of the components may not be sufficient in order 
to propagate the desired regularity (singular estimate) onto the entire struc­
ture. However, addition of "st rong" boundary overdamping will be shown to 
guarantee the validity of this estimate. 

An interesting phenomenon to be observed in the context of infinite hori­
zon problem and related stabi lity issues is that the additional overdamping on 
the interface, while providing uenefits locally in time, may destroy asymptotic 
stability properties of the overall system. In fact, strong unboundedness prop­
agated by this damping may introduce continuous spectrum (at the point 0 ) 
to the spectrum of the generator. T his leads to the question: how to remove 
this instability? We shall show in Section 4 that this can be done by introduc­
ing an appropriate static damping on the interface. Thus, the ultimate control 
model is rather complex, but it possesses all the properties which are needed for 
the wellposedness of Riccati theory for both finite and infinite horiwn control 
problems associated with structural acoustic interactions. 

2. Abstract theory 

In this section we consider an abstract formulation of the optimal control prob­
lem governed by strongly cont.i tLous sernigroup with unbound~;d control oper­
ators. The sernigroup in question, along with the control operator, will be 
eventually assumed to satisfy the "singular" estimate. Our first goal is to col­
lect some of the basic results pertaining to solvabili ty of this type of control 
problem. 

2.1. Formulation of a bstract control p roblem 

Let H, U, Z be given Hilbert spaces and let the following operators be given 
• A is a generator of Co sernigroup on H with D(A) C H C D(A*)'. 
• The operator B : U ·--+ D (A • )' satisfies the following condition: 

IR(>., A)BuiH :S CRdu lu; >. E p(A) (1) 
where R(A, A) denotes the resolvent operator for A and p(A) denotes 
the resolvent set. Therefore, B* E .C(D(A*) -+ U) where (B*v, u)u = 
(v, Bu)D(A') ,D (A ' )' 

• The operator R : H -+ Z is bounded. F E £ 1 (0, T ; H) is a given element. 
With these quantities we consider the following d ynamics 
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Associated with (2) is the functional cost where T may be finite or infinite: 

J( ·u, y) =loT [IRyl~ +lui~] dt . (3) 

Optimal Control Problem Minimize the functional J( u , y) for all ·u E 

L2(0, T; U) andy E £2(0, T; H) wh·ich sat·isfy (2) 
For the finite time hor·izon problems (T < oo) a standard optimization ar­

gument , Barbu (1976) , Balakrishnan (1975), Lions (1968) provides existence 
and uniqueness of the optimal solution u0 E £2(0, T; U); y0 E £2((0 , T) ; H) to 
the optimal control problem. For the infinde l'i·rne horizon problems, the same 
conclusion follows provided that the so called FCC condition - Fin·i te Gust 
Condition formulated in Hypothesis 2 (Section 2.4) is satisfied. FCC condition 
is implied by appropriate stabilizability properties of the dynamics generated 
by A, B. 

Our main aiill is to derive the optimal synthesis for the control problelll along 
with a characterization of optimal coutrol via an appropri ate Riccati Equation. 

2.2. C h aracterization of the optimal control 

Without any further assumptions imposed on the problem, we are in a position 
to provide explicit formulas for the optimal solution. To do this we introduce 
the so called solut ion operator, ofteu also referred as the "coutrol-to-state" map. 

1
1. 

(L5u)(t) = 
8 

eA(t-z) Bu(z ) dz, 0 ~ s ~ t ~ T. ( 4) 

Condition (1) is equivalent to the statement that the coutrol-to-state operator 
L s is topologically bounded £ 2 in time. This is to say, for all T < oo 

or equivalently 

where 

L; E L(L2(s, T; H)---+ Lz(s, T; U)) 

(L ; f)(t) = B* iT eA'(z-t) f( z ) dz , 0 ~ s ~ t ; 

and (L; f)(t) = 0, s > t. 

One can easily verify that the following operators are also bounded 

[I+ L* R* RLs]- 1 E L(L2(s, T ; U)); 

(5) 

(6) 

(7) 
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The effect of the deterministic noise is represented by the element 

:F(t) = 1t eA(t-s) F(s) ds 

and from standard semigroup theory, Pazy (1986), with F E £ 1 (0, T; H); :F E 
C( [O, T] ; H). 

In order to provide an expression for the optimal synthesis it is convenient 
to introduce evolution operator <I>(t, s) defined by 

<I>(., s)x = [J + LsL* R* Rr 1eA(.-s)x E L2(s, T; H) for x E H (9) 

The evolution operator allows us to define the "Riccati operator" P(t) given 
by the formula Balakrishnan (1975) , Lasiecka and Triggiani (1991), Flandoli, 
Lasiecka and Triggiani (1988), Lasiecka and Triggiani (2001), 

P(t)::::: iT eA"(s-t) R* R<I>(s, t) ds . (10) 

From (8), (9) we infer that P(·) E £(H, C([O, T], H)). Moreover, it is standard to 
show that P(t) is selfadjoint and positive on H, Flandoli, Lasiecka and Triggiani 
(1988). We define next the "adjoint state" p(t) = ftT eA"(s-t )R*Ry0(s)ds E 

C([O, T]; H). Finally, we define the variable 

r(t)::::: p(t)- P(t)y0 (t) E £ 2 (0, T; H). 

Since by (7) B*p = L* R* Ry0 , we infer by the virtue of (6) that 

B*[P(t)y0 (t) + r(t)] E U; a.e in t. 

(11) 

By using the above notation one obtains, Lasiecka and Triggiani (2001), vol 
I, sect. 6.2.3, the explicit formulas for t he optimal control. These are collected 
in the Lemma below: 

LEMMA 1 With reference to the contml JJmblern stated ·in (3), and aTbilnu·y 
in·itial conddion Yo E H and F E £ 1 (0, T; H), then;; ex·ists a 'tmiq·ue opt·imal 
paiT denoted by (u0 , y 0) with the follow·iny pmpert·ies: 

(i) ·u0 = -[J + L* R* RL]- 1 L* R* R[eA(.)y0 + F] E L2(0 , T; U) 
(ii) y 0 = [J + LL* R* R]- 1 [eAClyo + :F] E Lz(O , T ; H) 

(i·i·i) ·u0 (t) = -B*[P(t)y0 (t) +r(t)]; a. e ·in t E (0, T), wheTe P(t), T(t) ar-e yiven 
in (10), (11). 

REMARK 1 In the case T = oo the fo ·rrrmlas ·in Lemma 1 still hold ·unde1· the 
additional assumption of exponent·ial stabil-ity of eAt. 

One of the main goals in optimal control t heory is to provide an independent 
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the most delicate point where regularity of PDE dynamics has a very strong 
bearing on the wellposedness of Riccati Equations. 

While full characterization of optimal solution is obtainable (as we have seen 
above) under minimal assumption, it is the wellposedness of Riccati Equation 
(RE) which requires additional hypotheses. In fact, without these it is known, 
Triggiani (1997), Barbu, Lasiecka and Triggiani (2000), Weiss and Zwart (1998), 
tha t the classical wellposedness of RE may fail. The main technical issue is the 
wellposedness of the gain operator B * P (introducing a nonlinear term in the 
equation) on some dense domain in H. 

2.3. Differential Riccati Equation s subject to a singular estimate 

h1 thi s section we shall assume additional condition imposed on A and B which 
is referred to as "singular estimate". 

HYPOTHESIS 1 [Singular estimate] TheTe exists a constant 0 < 1 < 1 s·uch 
that 

REMARK 2 This estimate is tr·iv·ially satisfied ·if B : U --+ H 'is bounded. Also, 
fm· analytic semigmups eA t and Telat·ively bounded contml opemtor::> B : U --+ 

'D(A *"Y )' the above sing·ulm· estimate follows jTom the analytic es timate, see Pazy 
(1986), IA'eAt iC(H) ::; ~ ~ 0 < t ::; 1. 

Our focus in this paper is on a cl ass of non-analytic semigroups eAt and 
unbounded operators B which would still exhibit singular estimate. As we shall 
see later, there is a la rge class of dynamical systems which enjoy the above 
property. 

We also note that Hypothesis 1 docs not necessarily imply that the control 
operator is admissible (in the terminology of system theory - see Russell , 1978) . 
In fact, in many situations of interest the control-to-state map denoted by L is 
not necessarily continuous when viewed as a map £ 2 (0, T; U) --+ C([O, T]; H). 
The lack of this continuity is one of a major technical difficulties in the theory. 

Nevertheless, the validity of singular estimate provides, as we shall see below, 
full wellposedness of the Riccati theory. This includes critical sta tement that 
the gain operator B * P(t) is in fact a bo·unded operator U--+ H . 

THEOREM 1 (Lasiecka, 1998, 2001) Cons·ideT the contml problem govemed by 
the dynamics descTibed in (2) , and the funcl'ional cost given in (3) with T < oo . 
The contml opemtoT B ·is s·ubject to Hypothes·is 1. Mor·eoveT, we assume that 
F E L2(0, T; H). Then, joT any init·ial condd·ion Yo E H, the1·e exis ts a ·un·ique 
optimal pa·iT (u0 , y 0 ) E £ 2 (0, T ; U x H) w'ith the follow·ing pmpe'f'iies: 
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(i'i) [regularity of the gains and optimal synthesis] There exist a selfad­
joint positive opemtoT P(t) E .C (H) with the pmpedy 

B* P(.) E .C(H-+ C( [O, T]; U)); 

Pt(.) E .C('D(A) -+ C([O, T]; 'D(A*)')) 
and an element r E C( [O, T]; H) (depending on F) wdh the proper-ty 

B*r E C([O, T]; U) 
such that: 'u0 (t) = -B* P(t)y0(t)- B*T(t) ; t 2: 0. 

(iii) [feedback evolution] The operator AP(t ) =A- BB* P(t) : 'D(AP(t)) C 
H -+ D (A*)' gene'mtes a stmngly cuntin'uous evolution on H. 

(iv) [Riccati equation] The UJJI:'TaloT P(t) 'ts a unique (wdh'in the class of 
selfadjo'int positive operators S'ubject to the Tegular,ity in part (ii)) sol-ution 
of the following uperatm' Differ-ential Riccati Equation (DRE): 

(Pt(t)x, Y)H =(A* P(t)x, y)H + (P(t)Ax, Y)H + (R* Rx, Y)H 

- (B* P(t)x, B * P(t)y)u; JoT:~:, y E D(A). (12) 
(v) [Equation for " T"] Wdh Ap(t) defined in pa'l't (iii) the element T(t) 

sat'isfies the d'if]er-ential equation 
Tt(t) = -Ajo(t)r(t)- P(t)F: on [D(A)]'; T(T) = 0. (13) 

REMARK 3 The res'ult of Theorem 1 was fi'rst shown in Avalos and Las'iecka 
( 1996) in a special case of structural acoustic 'tnteract,ion 'W-ith elast'ic equation 
on the interface modeled by plate eq'uations with K elv'in Voight danwing. 

REMARK 4 It should be noted that the bounded ness of the gain ope-mlor B* P( t) 
is a very special feai 'a're which 'ts nut generally e:rpected. It is a conseq'aence of 
sing'alar estimate ass'umption, Indeed, 'tn general, one does not huve (unle::;::; B 
is bo'unded) the bomtdedne::;s of the gains, even for the sirnplest scalar hyperbol'ic 
equations, Lasiecka and Triggiani ( 1991 ). 

2.4. A lgebraic Riccati Equations subject to singular estimate 

In order to obtain solvability of Infinite Horizon Problem, i.e. when T = oo, one 
must assume that the Finite Cost Condition holds. FCC condition asserts an 
existence of at least one control 'U such that J('u, y) < oo. Thus, in what follows 
we shall assume 

HYPOTHESIS 2 [Finite cost condit ion (FCC) cond ition] For' any 'tnd'ial 
condition Yo E H there exists u E L2(0, oo; U) such that J('u, y('u)) < oo, wher'e 
y('U) is the tmjecio'ry given by (2) with cuntml 'U and OT'tg'inal'ing at Yo, 

The result stated below provides t he wellposedness for Riccati Equations in 
the infinite horizon case. 

THEOREM 2 (Lasiecka, 1998, 2001, Lasiecka and Triggiani, 2001) Consider the 
control pmblern governed by the dynarn'ics described 'in (2), and the functional 
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Mon;uver-, we assume that FCC condit-ion in Hypoth esis 2 is in place and F E 

L2(0, oo; H). Then, for any in·itial condd·ion Yo E H , there exists a ·unique 
07Jl·iuwl pai1· ('u0 , y 0

) E L2 (0, oo; U x H) wdh the following properties: 

(i) (regularity of the optimal pair] ·u0 E C([O, oo); U); y 0 E C([O, oo); H). 
(li) [regu larity of the gains and optimal synthesis] There ex·ist a selfad­

jo·int posd·ive opeTator· P E L(H) w-ith the propeTty 
B*P E L(H __, U); 

and an ele·ment T E C([O,oo); H) (depending on F) with the property 
B*T E C([O, oo); U) 

such that: 'lt0 (t) = -B* P(t)y0(t)- B*T(t); t ~ 0. 
(iii) [feedback semigroup] The opem.to1· Ar = A - BE* P : D(Ap) C H __, 

D (A*)' genem.tes a stmngly contin·uous sern·igro·up on H. 
(iv) [A lgebraic Riccati Equation] The opemtor· P is a solution of the fol­

lowing opemtor Alge/Jm·ic Riccat·i Equation (ARE): 
(A* Px, y)H +(PAx, Y)H + (R* Rx, Y)H- (B* Px, B* Py)u 

joT x, y E D(A) (14) 
(v) [Equation for "T" ] With Ar defined in puTt (iii) the element T(t) satisfies 

the dijfe1·e·rLt·ial equat·ion 
Tt(t) = -Aj>r(t)- PF; on [D(A)]' ; lirn r(T) = 0 (15) 

T--. oc 

REMARK 5 As ·us·ual, the uniqueness of ARE is yuu:ranteed /Jy ·imposing an ap­
]ITO]J1"iate "delectability condition". In this case the f eedback semiy·roup eApt ·is 
exponentially stable on H. Th·is, in t·um, is gMmnteed by the 'ltn'dorm stability 
of eAt. As we shall see later, the examples provided heTe fall ·into this cateyo·ry. 

REMARK 6 As in the case of DRE, the boundedness of the gain opemto1' B* P 
·is mtlte1· except·ional and ·res·ults from the irnpos·ition of the singular estimate. In 
the yeneml case one sho·uld not expect B* P to be bo·unded, b·ut at rnost densely 
defined, Flandol-i, Las·ieclw. and Tr-iygian·i ( 1988). In addition, the quadmtic 
tenn in (14) involves tyvically a s·udable extension of B* P mtheT than B* P 
itself, Ba1·/Ju, Lasiecka and T1··igy·ian·i (2000 ), Trigyiani (1997). 

Next two sections deal with the applicabi lity of abstract theory to specific 
PDE systems with boundary and point coutrols. 

3. Boundary control problems for thermoelastic plates 

This section is devoted to an analysis of cont rol problem govem ed by a ther­
moelastic system with boundary or point controls. 

3.1. PDE model 

We consider the following dynaruics described by thermoelastic plates with ro-
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Let D c R2 be a smooth, bounded domain with a boundary f. In D x (0, T) 
we consider a vibrating plate subject to effects of thermoelasticity. The variable 
w denotes the vertical displacement of t he plate, while B denotes temperature. 
The dynamics of the plate is affected by boundary control u acting on the 
boundary f . The corresponding coupled PDE system is 

Wtt- pllWtt + 6.
2
w = 6.8 } · . n (0 T) 

Bt - 6.8 + llwt = 0 m H x ' 

with the boundary conditions on r x (0, T) 

w = 6.w = 0; B = u (16) 

We consider this model on the state space given by 

H =: Hw x He, Hw =: (H2 (r! ) n HJ(r!)) x HJ(r!) , He=: Lz(r!) 

so the initial conditions are given by y(O) = (w(O) , Wt(O), 8(0)) E H. With 
equation (16) we associate the functional cost given by 

J('IL ,w,B) =loT k [JRw( .;t~tt,,~) )1
2 

+ IReB(t,x)1
2
]d:cdL 

+loT lr l·u(t,:c)l2dxdt (17) 

where Rw E .C(H2 (D) x HJ(r!) __, Lz(D)) and RIJ E .C(Lz(D) __, Lz(r!)) 
Optimal control problem to be considered is the following: 

Boundary Control Problem: Minimize J(u , w, B) given by (17) subject 
to the dynamics described by (16). 

We note that when in eq. (16) the parameter p = 0, the corresponding 
system is analytic , Liu and Renardy (1995), Lasiecka and Triggiani (1998a), 
(1998b ). Thus, in this case the well posed ness of standard Riccati theory follows 
from the "analytic LQR" theory, Bensoussan, Da Prato, Delfour and Mitter 
(1993), Lasiecka and Triggiani (2001). As mentioned before, our interest is in 
studying the non-analytic case which corresponds to p > 0. Indeed, if p > 0 
the thermoelastic system is predominantly hyperbolic, i.e. it can be written as 
a compact perturbation of a group, Lasiecka and Triggiani (2000). Thus, the 
main goal here is to show that the control problem defi ed above is regular, by 
which we mean that Hypothesis 1 is satisfied . This, in turn, allows to deduce 
that the optimal control problem admits regular optimal synthesis including the 
wellposedness of Riccati equat ion in both finite and infinite horizon case. 

3.2. Semigroup formulation 

We find convenient to recast the PDE problem (16) in a semigroup framework. 
In order to achieve this we introduce several operators: 
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A: Lz(O) __, L2 (0); A= .6. 2
, 

V(A) = {u E H 4 (0) n HJ(O); .6.u = 0 on r} 

D: Lz(f) __, Lz(O); .6.Dg = 0 in n, Dg = g on r 

M :=I +iAD 

It is well known that AD, A and M are selfadjoint, positive operators 011 

L2(0). Moreover, standard elliptic theory, Lions and Magenes (1972), gives 
DE .C(Lz(f) __, H 112 (0)). 

Notice that since wlr = .6.wlr = 0 and [B-Du]lr = 0,- for smooth solutions 
of system (16) we have that B - Du E D(AD), consequently .6.8 = .6.(8 -
Du) = -AD(B- D·u) and .6.w = -ADw, .6. 2w = .6.2w = Aw. Thus, with the 
above notation the semigroup representation for our PDE system (16) becomes, 
Lasiecka and Triggiani (2000): 

Mwtt + Aw + ADB = ADDu 

Bt + ADB - ADWt = ADDu (18) 

where the equalities are understood in the dual topology of D(AD)'. 
We introduce next A: H __, H, B: L2 (r) __, V(A*)' given by 

A:= ( -M
0
- 1 A ~ -M~ 1 AD ) (19) 

0 AD -AD 

D(A) = {(w, v, B) E H; M- 1 AwE H{J(O), v E D(AD), BE D(AD)} 

Bu := ( M-1 ~DD·u ) . (20) 
ADDu 

It is known, Liu and Renardy (1995), Lasiecka and Triggiani (2000), that A 
is a generator of a C0 semigroup on H. Moreover, this semigroup contains a 
hyperbolic component, hence is non-analytic, Lasiecka and Triggiani (2000). 

With the above notation our plate problem can be rewritten as a first order 
system: 

Yt = Ay + Bu on H ; y := [w, Wt, B]; u E Lz(O, T; U); U = Lz(r). 

3.3. Main result 

Now we are in a position to state the main result of this section: 

THEOREM 3 Contr·ol system desC'ribed by ( 16) sat-isfies ass·umpt·ions requ-ired by 
Theorem 1. In particular, "s-ingular estimate" of Hypothesis 1 holds with 1 = 
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The proof of Theorem 3 is relegated to the next subsectiou. 
It has been shown recently, Avalos and Lasiecka (1997), (1998), that ther­

moelastic semigroups are exponentially stable. This is to say I eA t lc(H) :S ce-wt, 
w > 0, t 2: 0. Since exponentially stable systems automatically satisfy the FCC 
Condition in Hypothesis 2, we obtain the following Corollary: 

COROLLARY 1 All the statements of Theor·ems 1 and 2 apply to Bu'Undary Con­
trol Pmblem wdh A, B specified in {19), {20). 

REMARK 7 D·ifferent (than hinged) bo·andary condit·iuns associated with {16) 
can be cusidered as well. These incl·ude clamped u·r free hunwgenu'Us bu'Undar·y 
conditions - see Lasiecka und TTiggiani {2000). The analys·is presented below 
is nut C'rit·ically affected by the sh"uct·ur-e of the bu'Unda·1·y cunddiuns ·in1pused fur 
the plate. Similar-ly, bu·undary condit·iuns assuC'iated with the heat eq'Ualiun can 
be of a Ne·anw.nn type. In fact , th·is latter case ·is eusier· to handle. 

REMARK 8 One co'Uld also consider· the followi ng point cuntml problem associ­
ated with this plate. 

Wtt - pf:::..Wtt + /:::,. 2w = !:::,.(} ·in [2 

Bt- !:::..() + !:::..wt = 8xo 'U, inn, 

w = !:::..w = B = 0 on r 
(21) 

wheTe xo is a designated point in n. The cornspunding fan ctiunal cost can be 
taken as 

Point control problem: Minimize 

J(w, B, u) =loT [IRw ( .:t?:) ) 1:'" + IReB(t)li,(rl) + lu(tW] dt (22) 

with Rw E L(Hw), Re E £(L2(D)) and ·u, w satisfy·ing (21). 
All the final statements of Theorems 1, 2 and 3 apply to this model as well. 

In fact, the aTg'Uments are simpler· that in the case of bo'Undar·y contr-ol consider-ed 
·in Theor·ern 3. 

The remaining part of this section is devoteu to the proof of Theorem 3. 
In what follows we shall adopt the following notation: i·uls,o = luiH•(O), where 
H 8 (D) = [H0(D)]' , s < 0 

3.4. Proof of Theorem 3 

We begin by verifying that our stanuing assumption A - 1 B E £( U --; H) is 
satisfied with U = L2 (r) and H defined above. Indeed , by direct computations: 

A - 1 B = ( ~- l E £(L2(r) --;H). (23) 
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Thus, the operators A , B qualify for application of abstract theory. In particular , 
the operator eAtB is well defined H ....... D(A*)' . Indeed, it suffices to write 
eAtB = AeAtA- 1B E £(U ----t"D(A*)'). 

The key role in the proof is played by the singular estimate for the kernel 
eAt B, which establishes the meaning of this operator as acting U ....... H. 

LEMMA 2 (Singular estimate) With A, B given in {19), (20) the following 
estimate take::; place: 1::/f. > 0 

I At I c 
e B c.(U-.H) ~ t3/4+<; O <t~l. 

Pmof. Step 1- setting up integral equations: Denote W = [w, wt]. Then 

( W(f) ) = eAtB·u. 
B( t) 

is equivalent to: 

(24) 

This abstract equation can be rewritteu equivalently as a perturhation of damp­
ed Kirchhoff plate: 

{ 
Mw,t + Aw + Aowt = Bt . 

Bt + AoB - Aowt = 0 

We introduce another operator A1 : Hw _..... Hw giveu Ly 

Al := ( -MO-lA -M~lAo ) . 

Operator A1 with D(AI) = {(w, v) E Hw; M-1 AwE HJ(O.), v E D(A 0 )} is a 
standard generator of damped Kirchhoff plate. Indeed, we have 

Wt(t) = A 1 W(t) + ( B,~t) ) . 

Thus, by the variation of parameters formula we oLtain 

W(t) = eA'tW(O) +lot eA,(t- s) ( M-?at( s) ) ds (25) 

(}(t) = f'- Avlf.J(O) + t P-Av(t-s) A n,lf , ( oltlo 
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These two integral equations are the main object of the analysis. 
Step 2 - analysis of W equation. Integrating equation (25) by parts 

yields 

W(t) = eAltW(O) + eAI(t-s) ( 0 ) It 
M- 1e(s) 

0 

_ t i_eA1(t-s) ( 0 ) ds 
} 0 ds M- 1e(s) 

(27) 

For B(s) E L2(0) 

we obtain 

(28) 

Hence 

(29) 

The elliptic theory gives 
• M- 1 E .C(£2 (0)-+ H 2 (0) n HJ(O)) n .C(H- 1(0)-+ HJ(O)) 
• M- 1 AnM- 1 E .C(H- 1(0)-+ HJ(O)) 

and noticing cancellation of terms in (29) we arrive at the estimate: 

(30) 

Step 3 - analysis of e equat ion. Integrating by parts of the second 
term in (26) yields 

B(t) = e-Avte(O)- Wt(t) + e-Avtwt(O) -it e-Av(t-s)wtt(s)ds. (31) 

On the other hand by recalling the original version of the plate equation in (24) 
we obtain: 
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Inserting the above relation into (31) and estimating the terms gives 

IB(t)lo,n ~ le-Avt ADD'Uio,n + le-AvtM-1 ADD·ulo,n + lwt(t)lo,ll 

+I t e-Av(t-s) M- 1 ADB(s)dsl Jo o,n 

+I rt e-Av(t-s) M-1 Aw(s)dsl 
Jo o,n 

(32) 

Since the semigroup e-Avt is analytic and the Dirichlet map satisfies, Lasiecka 
and Triggiani (2001), 

we infer 

I -Aut I < C . e ADD .C(L2(I')->L2(n)) - t3/4+<' 0 < t ~ 1. (33) 

Moreover, the analyticity of e-Avt along with the fact that D(A~) "'H§e(D.), 
~ < B ~ ~' also imply that T1(f) ::=: j~ e-Av(t-s) f(s)ds satisfies, Lasiecka and 
Triggiani (2001), Bensoussan, Da Prato, Delfour and Mitter (1993): 

(34) 

Since A= Ab 

M- 1 A E £(HJ(D.)--. H- 1(0.))). (35) 

Collecting (32) , (33), (34), (35) we obtain: 

IB(t)lo,n ~ c[lwt(t)lo,n +lot IB(s)lo, nds + lw1 Loo (O,t;HJ(S1)) + t~~l~,] ; 
0 < t ~ 1. (36) 

Gronwall's inequality applied to the above inequality gives 

[ 
I'Ui u ] IB(t)lo,n ~ C lwt(t) lo ,n + lwiLoo(O,t;HJ(n)) + t3/4+< , 0 < t ~ 1. (37) 

Step 4 - decoupling Wand e given , respectively, by (30 ) and (37). 
From (30) 

IW(t)I Hw ~ C [IB(t)l -1,11 +lot lwt(s)lo,nds 

+ fi'IIJI . ,~ . " ' '~" + l·ul n t ~r1J ('{Q\ 
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The H-1 norm of 8 can be easily estimated from (26) as follows: 

(39) 

where in the last estimate we have used the basic semigroup estimate only. 
Combining (38) and (39) allows us to decouple the W variable 

( 40) 

Taking t :::; 2~ we obtain 

( 41) 

which then combined with (37) yields 

IB(t)l < C I'Uiu 
0,!.1 - t3/4+<' 

1 
0 < t:::; 2C. ( 42) 

The above argument can be now bootstrapped in order t o obtain the estimate 
for any 1/2C :::; t :::; T < oo. Prof of Lemma 2 is thus complete. • 

In order to assert validity of Theorem 3 it suffices to combine the result of 
Lemma 2 with the fact that eAt is exponentially stable , Avalos and Lasiecka 
(1997, 1998). • 

4. Point and boundary control problems m the acoustiC­
structure interact ions 

In this section we shall study an optimal control problem arising in an abstract 
model of structural acoustic interactions. In these applications the goal of con­
trol is to reduce noise entering an acoustic environment. 

4.1. Description of the model 

The model under consideration consists of wave equation interacting on an in­
terface with a dynamic plate equation. This is a typical configuration arising in 
structural acoustic interactions, Morse and lngard (1968), Beale (1976), Littman 
and Liu (1998). 

Let n be a bounded domain in R", n = 2, 3 with a boundary r which consist 
of two parts fo,f1. We a.ssurne that r = fo u f 1, fo is flat and fo n f1 = 0. 
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In practical applications n will describe an acoustic chamber while f;, ·i = 

0, 1 denote the walls of the chamber, r 1 is referred as "hard wall" and ro 
is a flexible wall where the interaction with structural medium takes place. 
The acoustic medium in the chamber is described by the wave equation in the 
variable z (where the quantity p1z1 is acoustic pressure). 

Ztt = c2 !:::. z - do( x)zt + f 
8 

-;- .z +d1z=O 
Ul/ 

8 
-;- z +Do Z t = Wt 
Ul/ 

in r2 X (0 , T) 

on rl X (0, T) 

on ro X (0, T). 

Here c2 is the speed of sound as usual, f E L2 ((0, T ) x rl) is an extemal noise , 
do(:r) 2 0 inn, dl 2 0. 

The operator Do : L2(r0 ) _, L2 (r0 ) is positive and densely defined on 
Lz(ro) and subject to additional assumptions specified later. The operator Do 
represents boundary damping on fo while do represents internal damping. In 
practical applications the internal damping modeled by d0z1 is due to viscosity 
of an environmeut, e.g. resistance of air in applications to acoustic problellls. 
The boundary damping Do z1. ac ting on a portion of the boundary r is typi­
cal for the so called "absorbing boundary conditions". The darnpiug effect on 
the boundary may result from the effects of friction applied to an edge of a 
spatial domain or may be caused by structural properties of the material the 
bouudary is build from. A common method for creating such damping iuvolves 
a lamination process or the so called "constrained layer" tec:lmiques where the 
matrix forming the wall consists of several layers of different materials with 
different elastic properties. A well known form of struct ural cl amping is Kelvin 
Voight clamping in which case the operator D correspouds to Laplace's Beltrami 
operator. 

Our goal is to consider the controlled model describing coupled interaction 
between the acoustic medium and the wall structure, i. e. between wave and 
plate equation . To this end we introduce pla te equatiou along with appropriate 
coupling. The coupling between plate and the wave represents iu this example 
the back pressure on the wall. 

Let A denote an elastic operator , which is positive and selfadjoint on L2(r0 ) . 

We consider the following abst ract model for the plate with st ructural damping 

where fJ lZ t denotes back pressure on the wall and pA 0 w1 denotes structural 
damping. It is known that for o: between 1/2 aud 1 the above equation with 
Pl = 0 genera tes au analyt ic semigroup ou 'D(A112 ) x L2(f0 ) , Russell (1986) , 
Chen and T~iggi ani (1989). A canonical reali zation of A which is of interest to 
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The ultimate PDE model considered in this paper (we take p1 = 0) can be 
written as: 

Ztt = c2 /:::,.z - dozt + f m r! X (0, T) (43a) 

8 r1 x (o, T) ( 43l>) 8v z + dl z = 0 on 

8 
f 0 x (O ,T) (43c) 

8v z + Do Zt = Wt on 

Wtt + Aw + pAo:wt + ztl ro = B-u on fo x (0, T). (43d) 

Here the operator B is a control operator acting upon actuator 'U(t). The control 
operators are typically unbounded, such as typically arise in the context of 
modeling smart materials. 

In concrete applications to structural acoustic, the last equation in ( 43) 
models plate equation with A l>eing fourth order elliptic operator. The con­
trol operator B represents point controls realized via smart actuators such as 
piezocerarnic or piezoelectric patches. In such instances B is just a derivative of 
the "delta" function supported either at some interior points of r (dim fo = 1) 
or on some closed curves in f o if dim f 0 = 2, Dimitriadis, Fuller and Rogers 
(1991). 

In this paper we shall , however, consider more general classes of operators 
A, B, which are defined by the following set of Hypotheses. 

HYPOTHESIS 3 A: D(A) C L2(fo) -+ L2(fo) 'is a pos'it'ive, selfadjoint opemtor-. 

HYPOTHESIS 4 Ther-e exists a positive constant T, 0 < T < 1/2, s'Uch that 

A-rB E L(U, L2 (f0 ) ); eq·uivalently, B contin'Uo'Us : U-+ [D(A'')]' ; (44) 

where U is a Hilber-t space. 

The following hypothesis is made regarding the boundary operator D0 . 

HYPOTHESIS 5 Do : Lz(fo) :J D(D) -+ Lz (fo) is a posit·ive, selfadjoint oper-a­
tor, and ther-e exists a constant r-0 , 0 ::; To ::; 1/4, and posit·ive constants 81 , 82 

s'Uch that 

REMARK 9 If A models late equation (the case of interest to us) , then with 
To= 1/4 we have that Do(A 114

) is topologically equivalent to H 1(f0 ) norm. In 
such case, the operator D corresponds to boundary structural damping modeled 
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The control problem considered is the following: 
Control Problem: Minimize 

J(u,z,w) 

= hT[J"VzJ6,o + Jztl6,n + JA112wJ6,ro + Jwtl6,ro + Ju(t) JtJdt (46) 

subject to the dynamics of (43). 
A cost functional of interest in applications in structural acoustic problems is 

a performance index which minimizes the pressure Zt in an acoustic environment 
and also leads to reduction of vibrations on the wall. For this problem the 
functional cost takes the form 

( 
J(u, z, w) = Jo [pJ ztl6,n + JL::.wJ6,ro + Jwt16,ro + Ju(t)JtJdt. 

REMARK 10 One could also cons·ider· other models joT plates, ·indud·ing these 
where the analyticity is generated by thermal effects, Lasieclw {2000). Specific 
example can be given by cons·ider·ing the same system (43) with the fou'T'ih equa­
t-ion replaced by thermoelast·ic system in the vaTiables w' B defined on r 0 X ( 0, CXl). 

Wtt + L::. 2 w - L::.B + PZt = Bu 

Bt-L::.B+L::.wt=O. (47) 

With the above system we associate bo·undary conditions either clamped w = 

;vw = 0, hinged w = L::.w = 0 or free, Lasiecka and Tr .. igg·iani {1998b). The 
assoc·iated contr·ol pmblem can be joT'Trmlated as follows: 

Control Problem: Minirn·ize 

J('u,z,w) 

= loT [J"VzJ6,n + Jztl6,n + JL::.wJ6,ro + J·wtl6,ro + JB(t)J6,ro + Ju( t) JtJdt (48) 

subject to equations (43 a- c) and (47). 

Our goal is to show that structural acoustic interactions described above 
fit into the abstract framework of Section 2. As a consequence, the results of 
Theorems 1 and 2 will apply to these problems as well. 

4.2. Semigroup formulation 

The following operators will be used in describing the PDE model given in ( 43) 
- see Bucci, Lasiecka and Triggiani (2002). 

Operators acting on n. (i) Let AN : L2(D) ::> D(AN) ---+ L2(D) be the 
non-negative, self-adjoint operator defined by 

A 1- - _2 A h n ( A \ - f ! . ~ u2 ( n \ . ( a h ' J h \ I ( A ()\ 
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(ii) Let N be the Neumann map from L2 (fo) to Lz(fl), defined by 

It is well known, Lions and Magenes (1972), that N continuous: Lz(fo) ---+ 

H 312(0.) c D(A~f4- '), f > 0. Moreover, by the Green 's second theorem, the 
following trace results hold true: 

N* ANh = { hlro on fo,, 
0 on rl (50) 

where the validity of (50) may be extended to all hE H 1(0.) = D(A~2 ). 
Second order abstract model. By using t he Green operators introduced 

above, the coupled PDE problem (43) can be rewritten as the following abstract 
second order system- see Bucci, Lasiecka and Triggiani (2002): 

Ztt + ANz +ANN DoN* ANzt + dozt- ANNvt = f 
Vtt + Av + pA0 Vt + N* ANZt = B·u, 

the first equation to be read on [D (AN )]' , the second one on [D(A)]'. 
Function spaces and operators. We define the following spaces 

- ( 1/2) ( . Hz= V AN X Lz 0.) , 

On Hz we define (unbounded) operator Az :Hz ---+Hz given by 

Similarly, on Hv we define Au : Hv ---+ Hv 

(51a) 

(51b) 

(52) 

(53) 

Coupling. Finally, we introduce the densely defined (unbounded, un­
closeable) trace operator C: Hz :::l D(C)---+ Hv defined y 

C [ Z l ] ·= [ 0 ] = ( 0 0 ) [ Z1 ] 
zz · N* AN zz 0 N * AN zz ' 

(54) 

with the domain 
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so that D(A~2 ) X D(A~2 ) c D(C) . Its adjoint c· : Hu ---+ D(A~2 ) X 

[D(A~4+< )]', in the sense that (Cyl ,Y2)Hv = (y1,C*y2)H,; Y1 E 'D(C) , Y2 E H" 
is given by 

c· [ v1 ] [ o ] _ ( o o ) [ v1 ] 
'V2 ANNV2 - 0 ANN 'U2 ' 

(55) 

where ANN: Lz(fo)---+ [D(A~4+<)]'. 
First-order abstract model. Finally, from (52), (53), (54), (55) we define 

the operator A acting on the space H =Hz x Hv 

A ·.-- ( -ACz C* ) H D(A) H Av : :::::l ---+ ' (56) 

with the domain 

D(A) = {[zl,zz ,vl , vz] E H: z2 E D(A~2 ), v2 E D(A112), 

A1
-"'v1 + pv2 E D(A"') , z1 + NDoN*ANzz- Novz E D(A N) }. (57) 

By applying Lumrner Phillips Theorem, Pazy (1986), it is shown, Bucci, Lasiecka 
and Triggiani (2002), that A generates a strongly continuous sernigroup of con­
tractions on H. 

Control operator. Finally, we define the operator B: U---+ [D(A*)]' , dual 
with respect to H, as a pivot space by: 

B = [o,o,o,sr. (58) 

It is readily verified that 

so that B E L(U; [D(A*)]') . Here we have used Hypothesis 4 to deduce that 
A-18 = Ar-lA-rB is bounded from U into L2(fo) , as T < 1/2. 

Finally, returning to the second-order abstract model (51) , we see that these 
equations can be rewritten as the following first-order abstract equation in the 
variable y(t) = [z(t), Zt(t), v(t), Vt(t)]: 

Yt = Ay + Bu + F in [D(A*)]', y(O) =Yo (59) 

where A, B are defined in (56), (58), respectively, and F = [0, 0, 0, f]r. 

4.3. The finite horizon control problem 

In order to apply the abstract results of Section 2, the key property to be 
verified is the singular estimate. As we shall see below, in the case of structural 
acoustic problem, this property is not always guaranteed by the analyticity of the 
sernigroup generated by the plate equation. In fact, if the analyticity of the plate 



772 I. LASIECKA 

the additional regulariz.ing effect is needed iu order to offset the unboundedness 
of B. It turns out that a critical role in this is played by the boundary damping 
D. The above discussion motivates the following assumption. 

HYPOTHESIS 6 We shall ass·ume the following rdaf'ion between the pamrneters 
represent·ing damping in the system: 

('i) either ro + % 2: r 
('ii) or a- 2T 2: 1/6 and H 113(r0 ) = D(Ai2). 

REMARK 11 In a canonical case of a plate eq·uat·ion, when A is the fouTth order· 
d·iffer·ential ell-iptic opemtor, the condit·ion H 113 (r o) = D( A 12) ·is always satis­
fied. This follows fr'Om the more general pmperty H 48 (r 0 ) = D(A8

) ; 0 ~ f) < 
1/8. Moreover, in that case the first puTt of Hypothesis 6 is always fulfilled wdh 
a 2: 1/2 and ro = 1/4. Thus, any st'f"uctumlly damped plate (a 2: 1/2) with 
boundar·y str"uct·uml damping Do repTesented by the Laplace's Beltrami openltO'/' 
(ro = 1/4) will always fulfill the r·equir·ements of the first puTt of the hypothes·is. 

Regar-ding the second part of the hypothesis, this is always true for a str'O'ngly 
(Kelvin Voight) damped plate equations when a = 1. In th·is latter· case we do 
not need any additional overdamping on the ·inteTface r o. This means that one 
can take Do= 0. 

The following singular estimate has been established in Bucci, Lasiecka and 
Triggiani (2002). 

THEOREM 4 (B·ucci, Lasiecka and Tr"iggiani, 2002) We assume Hypotheses 3-5. 
In add·it·ion we assume the first part of Hypothesis 6. Then, the contml system 
desC'ribed by (59) satisfies the "singular estimate". 

c 
I eAt Bul < - 0 < t _< 1 

- f'Y' 

wdh the val·ue of 'Y given by 

1 
T <-a - 2 

1 .,. > -Q. 
2 

If the second part of Hypothesis is in foTce, then the singular estimate holds 
also with Do = 0 and the value of 'Y is given by 'Y = ;:; < 1/2. 

The proof of Theorem 4 given in Bucci, Lasiecka and Triggiani (2002) is 
technical and lengthy. It relies critically on two main ingredients: (i) character­
ization of fractional powers of elastic operators, Chen and Triggiani (1990), and 
(ii) sharp regularity of traces to wave equation with Neumann data, Lasiecka 
and Triggiani (1991 ). In the special case when a = 1 (Kelvin Voight damping) 
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REMARK 12 We note that ·in the case when the opemtoT B ·is ·unbumtded, T > 0, 
the Hyputhes·is 6 for·ces cer·tain amo·unt of global damping in the system. Th e 
rule of the darnving is to offset the ·unboundedness Tes·ulting from the cont·ml 
upemtor. We huve two SO'U'I'Ces of damping pr·esent in the model: str"uctuml 
damping yielding analyt·icity of the "p late" component (meas·ured by the pamm­
eter 1/2 :S a :S 1) and boundaTy stmcl'uml damping d·ue to the presence of the 
opemto·r Do, meas·u·red by the pammeter 0 :S To :S 1/4 . The following inte·r­
pTetation of Hypothesis 6 can be g·iven: the moTe analytic-ity in the system (i.e. 
the higher val-ue of a), the less boundary damving is needed (smaller val·ue of 
ro) ·in or-der to control s·ingularity at the origin. In the extr·eme case, ·when the 
plate eq·uation has str·ong analyt·icity propeTties, postulated in pad (i·i) of the 
Hypothesis 6, there is no need for boundaTy damving at all. In fa ct, the extreme 
case of a= 1, tTeated ·in Avalos and Lasiecka (1996) leads to singular estimate 
wdh D = 0 and 1 = 1/2 - E. The Tesult TJTesented in the second paTt of the 
theorem extends the est·imate in Avalos and Lasiecka ( 1997) to a larger mnge 
of pamrnel.eTs a and also pmv·ides more pr·ecise ·infoTmation on the s·ingulaTity. 

By applying the abstract result from Theorem 1 along with the singular 
es timate from Theorem 4 we infer the following final result 

THEOREM 5 Unde·r the hypotheses of Theu·rem 4 and with refe·rence to finite 
hu·rizon cuntTol problem consisting of (43) wdh funct ·iunal cost (46) , all the 
statements of abstmct Theor·ern 1 apply with A, B specified ·in Section 4.2. 

REMARK 13 For· the contml problem gove·rned by the st·ructm-ul acuust·ic ·intemc­
tion w·ith thennoelasticdy, see Remark 10, the validity of singular· esti·rnate with 
To = 1/4 and 1 = 2r was shown in Las·iecka {2000) . Th·us, the sa·rne statement 
as ·in TheoTern 5 is val-id for· th·is dynamics with the cost given in (48). 

4.4. The infinite horizon control problem 

If the time T is infinite, the analysis of structural model is more complex. 
Indeed, one needs to be concerned with the validity of Finite Cost Condition. 
This is typically guaranteed by some sort of stabilization result valid for the 
system under considerations. Unfortunately, in the case of structural acoustic 
problem, the coupled system is stable but not mrifonnly stable, Avalos and 
Lasiecka (1998) . Thus, in order to enforce uniform stability, the corresponding 
model must be more complex. It is natural to impose some viscous damping 
in the interior of D. This corresponds to taking do > 0 in the first equation . 
In fact, this strategy works well, when there is no need for strong structural 
damping on the interface fo. More precisely, the following result is known: 
Avalos (1996) 
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THEOREM 6 Consider (4 3) wdh f = 0, ·u = 0, Do = 0 (or To < 1/8), and 
do > 0, d1 > 0. Then, the cm·r-espond·ing system is exponentially stable on H , 
i.e. th eTe exists w > 0 s·uch. that 

leAtl < Ce-wt. 
.C.(H)- ' t 2: 0 . 

As we already know from the results of previous section, in order to assert 
singular estimate for the sernigroup, depending on the value of a , we may need 
strong structural damping on the interface (i.e. the unbounded operator Do). 
One would (naively) surmise that such damping should only enhance the sta­
bility of the system. However , this is not the case as revealed in Bucci, Lasiecka 
and Triggiani (2002). In fact, despite strong viscous damping in n with do > 0, 
the system ( 43) is not 'Un·ijonnly stable, whenever ro 2: 1/8. Thus, there is a 
trade-off between regularity and stability, as the result of which the overall con­
trol problem is much more subtle. A na tural perception that "more damping" 
implies stronger decay rates is obviously false (in fact this is known among engi­
neers as an overdamping phenomenou) . In mathematical terms this is explained 
by noticing that the presence of strongly unbounded operator Do introduces an 
element of continuous spectrum and 0 E acss(A), i. e. the point 0 belougs to the 
essential spectrum of A. This is a new phenomenon not present iu structural 
acoustic models without the strong damping on the interface. In view of the 
above, we are faced with the following dilemma. How to stabilize the system 
while preserving regularity guaranteed by the singula r estimate? 

The solution proposed below is based on the following idea: we counteract 
the instability of the system by introd ucing an additional static feedback control. 
The role of the static damping is to relllove t he cont'in'UO·us spectrum from tlte 
spectrum of the generator. This leads to the following model: 

Ztt = c2.6z - do( :c )zt + f lll n x (o,T) (60a) 

a 
f 1x(O,T) (60b) avz + dl z = 0 O ll 

a 
fox(O , T) (60c) avz + Dozt + fJDoz = Wt Oll 

Wt.t + Aw + A 0 wt + atz [r 0 = Bu on fa X (0, T). (60d ) 

The parameter (J 2: 0 represents static damping on the interface f o. If (J > 0, 
it was shown in Bucci, Lasiecka and Triggiani (2002) , Bucci and Lasiecka (2002) 
that the resulting system is exponentially stable also with a strong structural 
damping Dz1• Precise forrnulation of this resul t is given below. Since we wish 
to consider cases when the clamping do is active only on a subportion of n we 
require t he following geometric hypothesis. 

HYPOTH ESIS 7 We ass·ume that e'i theT 
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• n 'is convex and there exists Xo E R11 S'U Ch that (:t - xo) . v ::; 0 un r 1 and 
do(x) ~do> 0 in U(fo) = {x En, d'ist(fo , n)::; 8} juT surne 8 > 0. 

THEOREM 7 (B'ucci and Las'iecka, 2002) Cuns'ider {60) with f = 0, 'U = 0 and 
d1 > 0, f3 > 0 and do S'ubject to Hypothes'is 7. Then, the corresponding system, 
is exponentially stable on H , i.e. 

REMARK 14 rr the pammeter To < 1/4, one can take f3 = 0. 

REMARK 15 The static darrwing f3 Do can be replaced by a more geneml opem­
tur, say D1, which obeys the same estimates (see Hypothesis 5.) as Do . 

The addition of static damping f3 D 0 z has no effect on the validi ty of singular 
estimate. In fact, it was also shown in Bucci, Lasiecka and Triggiani (2002) that 
singular es timate of Theorem 4 still holds with f3 > 0. Thus, all the assumptions 
of the abstract Theorem 2 are satisfi ed ami we conclude with our final result : 

THEOREM 8 With '!"e.ference to sysle'rn (60) S'ubjecl to Hypoth es'is 3-5, 7 and 
funci'iun al co.~ t given by (46), all the statements of a.bstmct Theon:-m 2 'l"enta.'in 
val-id with A, B introd'uced 'in Sect'ion 4.2 /rut wdh Az replaced by 
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