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Abstract: The notion of sharp minima, or strongly unique lo-
cal minima, emerged in the late 1970°s as an important tool in the
analysis of the perturbation behavior of certain classes of optimiza-
tion problems as well as in the convergence analysis of algorithins
designed to solve these problems. The work of Cromme and Polyak
is of particular importance in this developinent. In the late 1980's
Ferris coined the term weak shorp minemoe to describe the exten-
sion of the notion of sharp minima to include the possibility of a
non-unicpue solution set. This notion was later extensively studied
by many authors. Of particular note in this regard is the paper by
Burke and Ferris which gives an extensive exposition of the notion
and its impact on convex programming and convergence analysis in
finite dimensions. Iu this paper we build on the work of Burke and
Ferris. Specifically, we generalize their work to the normed linear
space setting, further dissect the normal cone inclusion characteri-
zation for weak sharp minima, study the asymplotic properties of
weak sharp minima in terms of associated recession functions, and
give new characlerizations for local weak sharp minima and bound-
edly weak sharp minima. This paper is the first of a two part work
on this subject. In Part 11, we study the links between the notions
of weak sharp minima, bounded linear regularity, linear regularity,
metric regularity, and error bounds in convex programming. Along
thie way, we obtain both new results and reproduce many existing
results from a fresh perspective.
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1. Introduction

Lel X be a normed lnear space, cousider nonemply closed convex sets e
ScX,andlet f: X — B be a lower semi-continuous convex function for which
Sndom(f) #® where R =RU {+o0} and

dom (f)={xz € X | f{x) < cc}.

The set § € X is said to be a set of weak sharp minsme for the function [ over
the set § with modulus o > 01f

flx) 2 [(3) + adist(z | §) (1)
for all # € S and x € S, where the distance function dist(- | §) is defined by

dist{x | §) = ‘:ng Il= - #.
E

and [|-|| denotes the norm on X. Note that since § ndom () # 0 we have

§ = argmin f C dom(f},
5
where
arg min f = {1‘ € 5| flx) = min _r{y}}.
5 wES

The notion of weak sharp minima is a generalization of the notion of sharp
minimwa due to Polyak (1979) to include the possibility of a non-unigue solulion
set.  Sharp minima are also referred to as strougly unigque local minima in
the independent work of Cromme (1978). Polyak’s work fovuses on the case
where X is finite-dimensional and 5 is a singleton (also see Polyak, 1987). The
terminology of weak sharp winime was introduced by Ferris (1988), wlhere it is
extensively developed. The primary wotivations for this study are the impact
this notion has on sensitivity analysis (Burke, Lewis and Overton, 2000, 2001,
Henrion awd Outrata, 2001, Jourani, 2000, Lewis and Pang, 1996, Ye, 1998, Ye
and Zhu, 1995, 1997, Ye, Zlw and Zlw, 1997) and on the convergence analysis
of a wide range of optimization algorithms (Burke and Ferris, 1993, 1995, Burke
and Moré, 1988, Cromme, 1978, Ferris, 1990, 1991, Li and Wang, 2002). For
example, many optimization algorithms exhibit finite termination al weak sharp
winima (Burke, Ferris, 1993, Ferrvis, 1990, Ferris, 1991).

The notion of weak sharp winima defined above (1) specifies first-order
growth of the objective function away from the set of oplimal solutions. Weak
sharp minima of higher order growih are also of iuterest in parametric opti-
mization, and lead to Holder continuity properties of the associated solution
mappings. Bonnans and loffe (1995) studied salficient conditions and charac-
terizations for weak sharp minima of ovder two in the case where X is finite-
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on X* % X, Rockafellar (1974). We denote the norm on X* by || - |
lzllo = sup{z, ),
, =EB

where B = {z € X | ||| £ 1} is the unit ball in X.

For a nonempty subset O of any normed linear space ¥, we denote the
norm (or strong) closure of € and weak closure of O by cl{C) and w-cl{C),
respectively, and we denote the indicator function of €' and the support function
of C by () and ¥L(-), respectively. Thus, in particular, ||z]|, = ¥3(z). We
denote the norm-topology interior of C by int (C'), and the boundary of C by
bdry(C) = C\int (C). When ¥ is finite-dimensional, i (C) denotes the interior
of C relative to the smallest affine sel containing €. The cone generated by C
is denoted by cone(C') = Uxso{AC].

For a closed set C in X, we define the projection of a point x € X onto the
set C, denoted P(z | €), as the set of all points in € that are closest to = as
measured by the norm |||

Pz |C)={yeC ||z -yl = inf{|lz - v | e C}}.

For nonempty sets C C X and 5 C X, we define the polar of C and the polar
of § to be the sets

C°={z" € X" |{z",2) < 1Va € C},
SPf={xeX|{z*z)<1¥2* € §},

respectively. Thus, in particular, B* € X* is the unit ball associated with the
dual norm ||-||,. For a nonempty closed convex set €' in X, and = € C, we define
the tangent cone to the set C at r, denoted by Ty (x), as follows

'1'.;»[:):;:!([_]0:3‘).

=0

The normal cone to € at ¢ is defined dually by the relation
Ne(z) = Te (2)°.

It is easy to see that
Ne(x)={z" € X"|{z*,y—z) <0, foranyyeC}.

Let f: X — R be a lower semi-continuous convex function. The function
S X" — R defined by

[7(&%) = sup((&®,x) — f())
FEX

is called the convex conjugate of f. The subdifferential of f at x and the
directional derivative of [ at x in the direction d are denoted by df(x) and



Wieeak sharp minima revisited 443

2. Fundamental results

In this section we show how the results given in Burke and Ferris (1993) readily
extend to the infinite dimensional case. In what follows we assume that X, S, 5,
and [ are as given in (1). Characterizations of the notion of weak sharp minima

are intimately tied to optimality conditions for the problem

P minimize f{x)
subject to x € 5.

The problem P can equivalently be stated as the unconstrained problem

Pp: minimize folz)
subject to x E X,

where fo: X = R is the essential objective function for the problem P and is
given by

folz) = [(x) +vs(z) = { f(z), ifzes,

+oo  otherwise.

(2)

Using this reduction one can suppress the dependence on the constraint set 5.
Indeed, in many applications one has § = dow (). However, in other appli-
cations understanding the interplay between f and the constraint region S is
erucial. Therefore, we focus on results thatl illustrate the separate contributions
of the objective function and the constraint region.

Due to the equivalence of the problems P and Py, the most basic first-order
optimality condition for P has the forin

0 € dfplx). (3}

In order to decouple the roles of the objective function and constraint region,
one typically posits a regularity condition that vields the validity of the addition
formmla

dfo(z) = [ + ¥s)(x) = (=) + Ng (=), (4)
in which case the optimality condition (3) can be written as
0€df(z)+ Ns(z) (5)

without reference to the function fy. A standard regularity condition under
which the addition formula (4) holds is that there exists a point = € dom ()N S
at which either [ is continuous or x € int (§), Ekeland and Temam (1976},
Proposition 5.6, page 26.

In this study, we make use of a weak form of the addition formula, namely
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where the notation ¢l® (§) denotes the weak® closure of the set § € X*. Our
use of this weak form of the addition formula is another point of departure from
Burke and Ferris (1993), where the analysis depends on the addition formula
{4). The weak addition rule {G) arises naturally in applications (see Appendix
7.). Note that it holds trivially withoul the need for the weak® closure operation
il § =dom(f). Il X is reflexive, the weak® closure of a convex sel in X equals
its norm closure in X*. If @f(x) 15 weak® compact, as is the case when [ is
finite-valued in a neighborhood of , then taking the weak® closure on the right
hand side of (6) is superfluous. We now give a simple example where (6) is
satisfied but (4) is not.

EXAMPLE 2.1 Let K be the ice cream (or Lovenz) cone in B given by
K={re® |z +13:<a], 0<m},

and let [ be the support functioned for K. Lel 8§ be the subspoce orthogo-
nal to the veclor 2 = (0,1.0)7. Then fo = [+ o is the support fune-
tiomal for the set cl* {f( + 54 } =¢l I:.".' + SJ'] so thal dfy(0) = ¢l “': + S‘L} =
el (2f(0) + Ns (0)) while the sel df(0) + Ns(0) = K + 5+ is not closed. [t
should alse be noted that the set 30 K® 45 o sel of weak sharp minime for |
over S,

The goal is to provide a number of variational characterizations of the no-
tion of weak sharp minima. We consider both primal and dual charaeterizations.
Primal characterizations involve divectional derivatives and tangent cones while
dual characterizations involve subgradients and noral cones. The primal cliar-
aclerizations are more elementary in the sense Lhat they are derived direclly
from the definition, whereas the dual chiaracterizations require the application
of duality results and properties of the subdifferential caleulus. Understanding
the connections between primal and dual characterizations requires the applica-
tion of a nuuber of elementary duality correspondences. These correspondences
are given in Appendix A.

We now establish an elementary primal variational characterization of weak
sharp minima. This characterization is the basis for all of the characterizations
examined in this paper.

THEOREM 2.2 Let f, 5, and S be ws in (1), let fy be as in (2), and let o > 0.
Then the sel § 15 a sel of weak shorp manima for the funclion [ over the sel
S X with modulus « of and only if

Si(e:d) = adist{d | Ts(x)) Vre 8§ andd € Ts(x). (7}

Proof. Let us first assume that the set S is a set of weak sharp minima for the

function f over the set & C X with wodulus o. Let x € 5. The hypotlesis
guarantees that forall i > O0and d € X
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which implies that

fole +td) — folw)  dist(z +td | §) — dist(x | §)
{ = L

By taking the limit on both sides as ¢ | 0 and applying Part 6 of Theorem A.1
(Appendix A), we obiain

folz:d) > adist(d | Ts (x)) YreSandde X,

which implies (7).
Now assume that (7) holds and let y € § and 2 € 5. Then

foly) 2 folz) + folziy = 2) 2 folz) + adist(y — = | Ts (=)
= folx) + codist(y | x4 Ts (x)).

Therefore, by Part 4 of Theorem A.1,

Jolw) 2 folx) + asupdist(y | = + Tg(z))
rEs

= folz) + adist(y | ). o
The wain characterization theorem now follows,

THEOREM 2.3 Let f, S, and S be as in (1), and wssume that the addition
Sormula (6) holds for all x € §. Let o > 0 and consider the following statements:
I The set 8§ is a sel of weak sharp minina for the function [ over the sel
S C X wnth modulus .
2. The novmal cone molusion
aB (| Ns (x) C dfo(z) = eI (9f(x) + Ns (x))
halds for all 22 € 8.
J Forallre 8 und d € Ts (2),
[l d) > adist(d | Tz ().
4. The snclusion

aB® n( U NS {m}) c U i {Jf{'!} + Ng {:l!”

reS €S
holds,

(X a Hilbert spuce) For all x € 5 and d € Ts () VN3 (2),
S (wzd) > a]ld]].-
6. (X o Hilberd spuce) The inclusion
GB° € 9f () + [T (a) () Vs (=) ]
Teerlels fu!' all (0 = i < ¢ and ¢ € ‘;'
7. Forallye 5,
fpy— p) 2 adist(y | 5),

i
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Statements 1 through 4 are equivalent.  If in addition X is asswmed {o be o

Hilbert spuce, then these stalements are equivalent to cach of the stalements 5,
&, and 7.

REMARKS
1. Since for any convex set C C X one has Te (x) = X and Ne () = {0} for
every z € int (), one can replace the phrase “for all x € 8" by the phrase
“for all € bdry(S)" at the appropriate points in each of the statements
in the theorem.

. In Statement 2, the condition that «B° [Nz (z) C <I® (8/(z) + Ns (x))
is equivalent to the statement that aB® [ Ng (x) + Ns(x) C " (8f(z) +
N.(8)) for 2 € bdry(8) since Ns(z) C 8fp(x)™. Therefore, Statements
2 and 4 of Theorem 2.3 can be modified accordingly.

3. In Burke and Ferris (1993), Theorem 2.6, (a), the authors claim to have

established the equivalence of Statements 5 and 6 of Theoremw 2.3 for
e = & in the finite dimensional case. However, the proof given in Burke
and Ferris (1993) is incomplete, The difficulty ocours at the end of the
proof where it is incorrectly stated that for two convex sets O, O C R
oue has

¥o,(:) ¥ (z) V2 ER & C Oy
The correct equivalence is

95, () SUE,() VRN = G C ' (Ca),
which is insufficient to establish the result for o = &.

4, Oune can replace the set § by the set Sndom () to obtain a slightly refined

result.

5. A local version of this theorem is considered in Section 5 to follow.

]

Proof. [1 = 2]: Let z € 5. By Theorem 2.2,
IE.{.'I;:_TI} = aclist(d | T (x)) Vde X. (8)

By Rockalellar (1974), Theorem 11, the function ¢, . is the lower semi-
continuous hull of the function fi(x;-). Since the function dist(- | Ts(x)) is
continuous, its epi-graph s a closed couvex sel containing the epi-graph of the
function fylz:-). Hence the relation (8) is equivalent to the relation

¥l (d) > adist(d | T5 (x) Vde X, (9)
By Part 6 of Theorem A.l, we have adist{d | Ts(z)) = ftﬂ?‘:unngt,;{d) =

-

i 5:,]&1]. Hence, by (6). inequality (9) is equivalent to the inequality

I:Irr;f(rﬁbﬁﬁixb{d} 2 ﬂl":ﬁﬂ'l"h’ﬁ(:]{{tj‘ {]“]

Therefore, the result follows from Part 8 of Theorem A1,

[2 +== 3]: By Part 8 of Theorem A.l. the inequality (9) is equivalent to the
inclusion in Part 2. In the proof of the implication [1 = 2], the inequality (9)
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which implies that

J(p+ —’i{y;pl} - f(p) Siaki—al.

Taking the limit as A ™, 0 yields the inequality
f'lziy - 2) > adist(y | 5).

[(X is a Hilbert space) 7 = 1]: Let z € § and set £ = P(z | §). Then, by the
subdifferential inequality, we obtain

§() 2 J(@) + f(52 - 2) 2 f(2) + adist(z | ). B

Although each of the characterizations for weak sharp minima is used at
different points in our development, the characterization given in Statement 2 is
the key to much of our work since it is the point of closest contact to applications
we consider. We now further dissect this characterization.

3. Dissecting the Inclusion aB°NNg(x) C cI*(0f(x) + N.(S))

The condition for weak sharp minima given in Statement 2 of Theorem 2.3 can
be decomposed into two independent conditions. These two conditions play
a fundamental role in the applications of the notion of weak sharp minima
considered in Part 11 of this work. The decomposition is derived from the fact
that the cone generated by the subdifferential of any lower semi-continuous
convex function f: X — R satisfies the inclusion

cone(@f(z)) C Nyev, (s (%) (12)
for every = € dom ([}, where for any v € R the set
levy(y) = {z € X | flz) £}

is the lower level set of [ of height . The inclusion (12) follows inmmediately
from the subdifferential inequality for f.

LEMMA 3.1 Let the basic assumptions of Theorem 2.3 hold. Given z € §, we
have

aB® NNz (z) C ol (2f(z) + Ns(z)) (13)
of and only of

conelel” (3f(z) + Ns(z))) = Ng(z) and (14)

aB® N [cone(cl® (8f(x) + Ns(x)))] € I* (8f(x) + Ns (). (15)

In addition, if the set 8f(x) + Ng(x) is weak® closed, then

R L I T L S Y foFES %y & AT PN
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Proof. Multiplyiug (13) by A > 0 and taking the limit as A 7 +o0 yields the
inclusion N (z) C cone(cl’ (8f(x) + Ns(x))). However, by (6) and (12),

cone(cl® (8f(x) + Ns (x))) = cone(fo()) C Niev,, sy (%) = N3 (2).

Therefore, (14) holds. The relation (13) is obtained by replacing Nz (z) by the
cone

cone(el” (8 f(x) + Ns(z)))

in (13).

Conversely, using (14) to replace cone(cl” (2f(x) + Ns(x))) by Nz(z) in
(15), we obtain (13).

The final statement of the lemma follows from the definition of the cone
generated by a set. |

Conditions (14) and (15) play a pivotal role in the applications of the notion
of weak sharp minima. For this reason, it is important to recognize that these
conditions are independent. That is, neither of these conditions implies the
other. It is easy to see that (15) does not imply (14). This is illustrated by the
following simple example.

EXAMPLE 3.2 Let f:R — R be given by f(z) = (max{0,z})?, and § = R.
Then § = (—o0,0]. In this example (15) is satisfied af £ = 0, but (14) is not.

On the other hand, a more sophisticated example is required to show that
(14) does not imply (15). Before presenting this example, we give a lemma that
provides both a necessary condition and a sufficient condition under which an
inclusion of the type (15) holds. These conditions make use of the notion of au
extreme point of a convex set.

DeFiiTioN 3.3 An extreme point of a closed conver subset of a linear spuce is
uny point in the conver set that connet be represented as the conver combinalion
of two ofher points i the sel,

LEMMA 3.4 Let C be o nonemply conver subset of the veal normed linewr space
X. Suppose C conlains the origim and let ExtfC) denole the set of extreme
poinds of C,
1. Suppose that there @ an o > 0 such thal
aB Ncone(C) C C.
If Eat(C)\ {0} # 0, then infr¢ grop o) lzll 2 .
2. IfC = co(0,Ch), where Cy € X 15 a nonemply conver sef with inf cc, ||z]|
>a>0, then aB Neone(C) C C.

Proaf 1. Suppose x € Ext(C)\ {0}. Since 0 € €, Ar € C whenever A > 1;
otherwise, = cannot be an extreme point of C. From apg € aBncone(C) C C,
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2. By the definition of the convex hull of a set and the convexity of Cy, for
z € co(0,Cq), there are non-negative scalars Ap and Az with Ay + A2 = 1, and
zg € Cp such that z = A} 0+ Ap xg, i.e. = € [0,xq] (the line segment joining 0
and zg). Therefore aB M cone(C) C C since ||z 2 «. ]

The following example shows that the condition (14) may hold while (15)
does not.

EXAMPLE 3.5 Let [ be the support function for the conves hull of the set

teos2nt
1= tsin2rt | [te0,1] 3,

{

and § = B, Then 3f(0) = co(T) and § = cone(T)°. Therefore, cone(df(0))
= cone(co(T)) = Ng(0) so that {14) is satisfied at = = 0. We claim that
Extfca(T))=T. Then by Part | of Lemna 3.4, (15) is not satisfied since
inf e (o llzll = 0. Suppose the claim does not hold. By [Rockafellar (1970).
Corollary 18.3.1], Exifco(T)) € T. It is easy o see that 0 € Ext(co(T)).
Suppose that there is a t € (0,1] such that z; € T\ Ext(co(T)), where 27 =
[t cos2ni, £sin 2at, §]T. Then co(T \ x7) = co(T) since Ext{eo(T)) C T\ z¢.
By Carathéodory's Theorem, the point z; can be represented as a conver come-
bination of § or fewer points from T \ x:

k {; cos 2xi;
zp=Y M | tisin2xt; |, (16)

i=1 t;

k
where 0<8; <1 with ;£0,0< X, <1, i=1..... k<4, and Z:A,=1.

i=1
Dividing both sides of the eguation in (16) by § ywelds the relation

% E
cos2ml | _ Z | cos2rxi;
sin2xf |~ = L 2%t |7

Here, m; = ilil'- 20,i=1,...,k Tuking the inner product on both sides with
[cos 27E,sin 21T gives

k
l= Zr;,—[ma?wt.-wu!wf+ sin 2rt; sin 2]

]

E
=" i cos 2x(t; - i).
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Now, st'm.'eezz;lﬂ.- =L g20fori=1,....k |eos2n(t,-0)| <1, -1 i<
b —t < 1, this equation can hold if and only if t; = { whenever 3, > 0. This
contradicts the origingl choice of t; # 1§, and the cluim is proved.

4. Asymptotic properties of weak sharp minima

The notion of weak sharp minima defined in (1) is a global property. This prop-
erty implies that the function f and the sets S and § possess certain asymptotic
properties. These properties are revealed by considering the recession function
of f and the recession cones of the sets § and 5. Recall from Rockafellar {1966)
that the recession cone of a nonempty closed convex subset O of the normed
linear space X is the set

C*={y|lz+yeC VYzeC}. (17)

A number of equivalent representations of the recession cone can be found in
Rockafellar (1966), Theorem 2A. Of particular interest to us is the representa-
tion given by Rockafellar (1966), Theorem 2A, Part (d),

C™ = [bar (C)]°, (18)

where bar (C) is the barrier cone of C. The barrier cone of C is by definition
the essential domain of the support function for C: bar (C) = dom (4}). These
relationships imply that ©™ is a nonemply closed convex cone whenever C' is
nonempty. On the other hand, simple examples show that the convex cone
bar (') is not always closed.

The recession function of a proper lower semi-continuous convex function
g: X — R is the unique convex function g>: X — R satisfying

epi(g™) = (epig)™. (19)
By Rockafellar (1966}, Corollary 3D, we have that

9% = Phonier) = Vo tdom(s™)) (20)
Thus, in particular,

8> (0) = eI (dom (g7))- (21)

Our goal is to show that if § is a set of weak sharp minima for f relative to
S, then 8% is a set of weak sharp minima for f* relative to §%, For this we
require a number of basic facts about the recession lunctions f§°, ™, and the
recession cones $°°, and §%. These are stated and proved in Appendix B.

The recession results of Appendix B are used in conjunction with Statement
4 in Theorem 2.3 to characterize when 5% is a set of weak sharp minima for
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THEOREM 4.1 The set 5> is a set of weak sharp minima for [ relative to
5% with modulus o > 0 if and only if

aB® N (5=)° C ol (dom (/7)) = c* (3F=(0) + (S)°). (22)

Proof. By (B.1), the set 5% is a sel of weak sharp minima for /> relative to
5 with modulus « > 0 if and only if set 5 is a set of weak sharp minima for
f&° with modulus a > 0. Statement 4 of Theorem 2.3 says that §° is a set of
weak sharp minima for f§® with modulus o > 0 if and only if

oB’ ﬂ( U Ns- Ev}) c |J s (23)
yede= yES=
But by (B.4), (B.5), and [B.3), the inclusion (23) is equivalent to (22). [ |

The main result of this section follows.

THEOREM 4.2 Assume that the space X is reflexive and that the addition for-
mula (6) holds af every point of S. If 5 is a set of weak sharp minima for f
relative to § with modulus o, then

aB° N(§%)° c oI’ ( |J(@f(=) + Ns {x]l}l) C el* (dom (f3)). (24)
zef

In particular, this implies that 8% is a set of weak sharp minima for [ relative
to 5 with modulus a.

Proof. If § is a set of weak sharp minima for f relative to § with modulus a
and the addition formula (6) holds on 5, then Statement 4 of Theorem 2.3 tells
us that

aB° ) ( U N;{m))c L o* (@f(x)+Ns ()= | ] 8folz) Cdom (f3).
e ze§ €8
Taking the weak® closure on both sides of this expression yields

o (B N (U Ns(=))) car* (U 27@)+Ns () ) car* (dom (53)),
zel e s

where we have made use of the straightforward identity

o (| o (0f(z) + Ns (2))) =" ( |J @f(x) + Ns (2))).
reh =Ef
We now claim that
o (a8 (U Ns(2))) = ab e (| Ns ().
eS8 el

Since the left-hand side is clearly contained in the right-hand side (B® is weak®
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the weak and weak® topologies coincide. By (B.8) in Lemina B.3, the weak and
strong closures of the set |J, s Ng () coincide. Let T€aB°(Nel” (U, 25 N5 (2))
and let {z*} C U,c5Ns(x) be such that T is the strong Limit of {z*}. In
particular, this implies that ||«*|| — ||Z]] < a. Set

=sup{-r|l]5'r£], *r:rkEﬂrE“}.

Then 7 — 1 since ||z*|| — ||Z]| < a, therefore {rz*} C aB° (I, c5 N5 (z))
with 2% — #. Consequently,

Fed (trB“ﬂ(U N_g{;c})) Cel (aB"n( U Ng{x])}.

rES TES

Finally, by {B.8), we have

o ( U ~s {x}) = (§=)°,

:ES

whereby (24) is established. B

REMARKS
1. The question remains open whether or not Theorem 4.2 holds in general
Banach spaces.
2. In Deng (1997}, Gowda (1996), Hu and Wang (1989), recession analysis
is used to study global ervor bounds.

5. Local weak sharp minima

Local versions of the notion of weak sharp minima can be obtained in a number
of ways. However, one must be careful when extending the various character-
izations of weak sharp minima given in Theorem 2.3 to the local setting. We
study a particularly useful localization of these ideas, which is related to the
notion of metric regularity to be discussed in Part II.

DEFINITION 5.1 Let 8 C X and let f: X — R where R = RU {+::c} The set
S := arg min {f(z) | x € S} is said to be a sel of weak sharp minima ot & € §
Sor [ over the set § with modulus o > 0 if there exists e > 0 such that

fz) = f(2) + adist(z | §) (23)

forallz € SO (2 +¢B). The set 5 is suid lo be a set of local weak sharp minima
for f over S if it is a sel of weak sharp minima ot & € 8 for [ over the set §
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The most troublesome wrinkle in this definition is that the set S is no longer
a subset of the set 5N (Z + ¢B). This has important consequences for the types
of characterization theoreins one can obtain. In particular, local versions of the
results of Theorem 2.3 do not all carry over to this new setting. In our next
result, we give an indication of what is possible.

THEOREM 5.2 Let S and § be nonemply closed convex subsets of X with S C 8
and let € 8. Assume that f: X — R is lower semi-conlinuous and conver
with dom (f) # @ and tha! the eddition formula (6) holds in a neighborhood of
., Let e > O and consider the following stalements:
(A) The set § is a set of weak sharp minima at £ € § for the function [ over
the set 5 wnth modulus o > 0.
(B) There is an ¢ > 0 sucl that
aB’ NNz (z) Cel® (8f(x)+ Ns(z)) YzeSnint(z+eB). (26)
We have the following velutionships between these stalements:
I. Stutement (A) implies slatement (B),
2 If X i3 assumed to be a Hilbert space, then slalements (4) und (B) are
equiralent.
X I X s finate dimensional, then statements (A) and (B) ave equivalent but
Jor possibly different values of .

REMARK In Theorem 2.3 we focus on the condition appearing in Part 3 of
Theorem 2.3. However, any of the other conditions in Theorem 2.3 can be
refined in a similar way.

Proof 1. Let ¢ > 0 be chesen so that the addition formula (6) holds on & + ¢B

and (25) holds for all z € SN (2 + €B). Letz € Snint (& + ¢B). Then, given
deX withd #0,and 0 < t < <UD we have
folz +td) - folz) ,  dist(z +td | §) - dist(z | S)
t = t :

since folx) = fo(z). By taking the limit on both sides as ¢ | 0 and applying
Part 6 of Theorem A.1, we obtain the inequality

folws d) > dist(d | Ts ().

The result now follows as in the proof of Theorem 2.3,
2. By Part 8 of Theorem A.1, the hypotheses imply that

flzy—z) 2 adist{y—z | Tz(x)) YzeSnit(z+¢B) and y € S.
Mext observe that for y € S Nint (2 + €B) we have

1P 1 5) -2l < 1P 1 9) - P | )]
< ly -l
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so P(y | §) € Snint (& + €B). Therefore, for all y € §Nint (£ + ¢B)

f'(P(y | §)iy— P(y | §)) 2 adist(y | P(y | §)+ Ts (P(y | §)))
=allPy|8) -y
= adist(y | 5).

The subdifferential inequality now implies that for all y € S Nint (z + <B)

Jw) = f(Py | 8) + f(Ply| 8):y— Ply | 8))
> f(x) + adist(y | S).

Hence, by the lower semi-continuity of f and the continuity of the distance
function, this inequality must hold for y € SN (2 + B).

3. Due to the equivalence of norms, the inequality (1) as well as the inclusion
(26) holding for one norm implies that it must hold for all norms for possibly
different values of a. u

Part 3 of Theorem 5.2 yields the following characterization for the set § to
be a set of local weak sharp minima for f over § in the finite dimensional case.

CoroLLARY 5.3 Lel X be fintte dimensional, and assume that the addition
formula (6) hold at every point of 8. Then 8 is a set of local weak sharp
minima for [ over 8 if and only if for every r > 0 for which rBN S # O there
erists ae(r) > 0 such thal

u{r]B“F‘I( U Ng{:r]l){: U d(@r(@) + Ns (). (27)

reSneB € SnrB

In adidition, the condition (27) is equivalent to the condition

alr)B° NNs(z) C cl(2f(z) + Ns(z)) Yze SnsB (28)

Proof. The fact that (27) is equivalent to (28) follows immediately from Part
10 of Theorem A.1 by setting D = a(r)B° and € = §nrB.

Let ro = dist(0 | §). Since S is closed, SNrB £ @ for all r > rg. Let us first
suppose that S is a set of local weak sharp minima for [ over §. Choose @ > 0
and for each x € § define

a(x) = min{sup {a | aB® N Ng (z) C cl(Bf(2) + Ns(x))}.a}.

Since statement (A) in Theorem 5.2 holds for every © € S, Part 1 of Theorem
5.2 implies that &(x) > 0 for all z € 8. Define afr) = inf {d(z) |z € SnrB}
for all v > rp. Let r > ro. If ar) > 0, then (28) holds, which in turn implies
(27). Ou the other hand, if a(r) = 0, then, since the set § N +B is compact,
there is a sequence {z*} € SN +B and an # € SN 7B such that z* — 7 and
a(x*) — 0. Since statement (A) in Theorem 5.2 Lolds at &, Part 1 of Theorem
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every x € @+ ¢B, @(x) > a > 0. This contradicts the fact that =¥ — & with
a(z*) = 0. Hence, a(r) > 0.

Now suppose that (27), or equivalently, {28) Lholds. Let & € § and v > ||£]|.
Set ¢ = (r—||Z]|)/2. Then (28) and Part 3 of Theorem 5.2 imply that statement
(A) in Theorem 5.2 holds with this choice of ¢ > 0 and o = a(r). Since & € S
was chiosen arbitrarily, the reverse implication is established. ]

6. DBoundedly weak sharp minima

The condition (27) given in Corollary 5.3 is inleresting in its own right in the
infinite dimensional case. We show that this condition always holds if § is
asswmed to be a set of boundedly weak sharp manima.

DEFINITION 6.1 Lel 5 C X and let J: X — R wherne B = RU {400}, The set
S = argmin {f(x) | x € 8} 15 saad lo a set of boundedly weak sharp minima for
I over the sel S if for cvery v > 0 for which SO rB # 0 there is an o, > 0 such
that

flz} = (&) + o dist{x | S) (29)
Jor all x € SO B, where 2 is any element of S.
This definition could have been stated with the sets rB replaced by bounded

subsets K of X, Indeed, this is the ovigin of the term. However, such a re-
statement does not increase the generality of the delinition,

LEMMA 6.2 The sel 5 15 a sel of boundedly weal: sharp minime for [ over the
sel 5 if und ondy if for every bounded sel K C X there is an ag > 0 such thal

flz) = fl8E) +ax dist(z | 5) YreSnK, (30
where & is any element of S,

Proof. The forward implication follows by choosing » > 0 so that K C rB, while
the reverse implication follows by taking K = +B. ]

It is clear that the notion of weak sharp minima implies that of boundedly
weak sharp minima, which, in turn, implies that of local weak sharp minima.
We now relate the notion of boundedly weak sharp minima to condition (27)
given in Corollary 5.3.

THEOREM 6,3_ Consider the following stalements:
fu) The sel § 15 a sel of hmmdfdfy weak sharp minima for [ over the sel S.
(b) For everyr > 0 for which S NeB £ 0 there s an afr) > 0 such that

amBn( |J Ns@)c | @ @@ +Ns().  @31)
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(¢) For everyr > 0 for which SO B # 0 there is an afr) > 0 such that
a(r)B° N Ng (z) C el (@f(x) + Ns(x)) fJorallze Sn+B.  (32)
{u) The condilion
conefcl” {ﬂ_.l'l_{m'} + Ng (x))) = Na(x) ; (33)
holds for all x € 8 and for every v > 0 for which SN vB # @ there is an
wlr) = 0 such that
a(r)B° N feone(cl® (3f(x) + Ns(x)))] C cl* (f(x) + Ns (x))
YzeSnrB (34)
Statement (a) implies slatement (b), wnd stalements (4), (), and {d) are equiv-
alent, Tn addilion, if X is either a Hidberl space or finile dimensional, then

stafement () implies statement (a).

Proof. By Part 10 of Theorem A.1, the statement {b) is equivalent to statement
(e}, and, by Lenuna 3.1, statement (c) is equivalent to statement (d). Thus, we
uced only show that statement (a) implies statewent (),

Assume that § is a set of boundedly weak sharp minima for [ over the set
S and let r > 0 be such that SN rB # 0. Let cpgq > 0 be as in Definition 6.1
s0 Lhat

flz) 2 f(2) + appa dist(x | §) forallz € SN(r+1)B and & € 5.

Let £ € Sn+B and define ofr) = 0,45, By Part 1 of Theorem 5.2 with ¢ = 1.
we have

afr)B° NNz (3) C I’ (2f(2) + Ns (2))

which establisles (32).

Now we prove the “converse” under the assumption that X is either a Hilbert
space or X is finite dimensional. That is, we show that statement (¢} implies
statement (a). Suppose that SN B # 0. Since (32) holds on § N (5r)B, Parts
2 and 3 of Theorem 5.2 with € = 2r imply that there is some o, > 0 such that

flx) > f(&) + a,dist(x | §) Yze Sn(i+(2r)B), (33)

for all € S since f(x) = [f(Z) whenever #.5 € 5. When x € SN rB, let
e SnrB, it follows from the triangle incqualily property of a norm that, for

F€{u€S||z—u|=dstz]|S5},
we have
ll= = || = dist{z | §) £ [|= - 7| £ 2r.
This shows that
flz) = f(2) + o dist(z | §) forallz € SNrB,

amd the prool is complete. |

- o B . 8w . - aw
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CoroLLARY 6.4 Let X be finile dimensional. Then the sef 5'_:'.5 w sel of bournd-
edly weak sharp minima for [ over the sel § if and ondy if 5 15 a sel of local
weak sharp minima for [ over §

We now examine the difference between the notions of weak sharp minima
and boundedly weak sharp minima. Our approach to this is to compare (31)
with Part 4 of Theorem 2.3. It may happen that in the case of boundedly weak
sharp minima one has a(r) — 0 as r — oo in which case the set § is not a set
of weak sharp minima for [ over § (see Example 6.6 below). Conditions under
which afr) 4 0 as r = 00 are related to the notion of an esymplotic constraint
gqualification, see Auslender and Crowseix (1988), Mangasarian (1983). A simple
condition assuring that a(r) is bounded away from zero is given in the following
theorem.

THEOREM 6.5 Suppose that X 15 a reflexive Banach space and that the formula
(6) holds al every point of 8. If § admits o decomposition of the form

§=85"+D, (36)

where D is a bounded closed conver subsel of X, then S is a sel of weak sharp
minima for [ over S if and only if § is « set of boundedly weak shorp minima
Jor [ over 8. In addition, if X 15 assumed to be finite dimensional, then the
decomposition (36) holds if either (a) 0 € ri(domf3), in which cuse §= is a
subspace, or (b) 8 is a polyhediul set.

Proof. 1f § is a set of weak sharp minima for [ over §, then trivially S is a
set of boundedly weak sharp minima for [ over 5. Conversely, let us suppose
that 5 is a set of boundedly weak sharp minima for f over S, Then, for any
" € (5%)° there exists d = I such that

U3(a") = ¥im (2°) + (%) = U3 (a%) = (", ),

since X is reflexive. Hence, by Part 1 of Theorem A.1, (§%)° C UyepNalx).
But then, by Lemma B.3,

L Na (=) < (5%)° ¢ | Nsle),

res aEl
whereby
(8= = | Na (=) = | ] Ns().

zed e

Let > 0 be such that D C »B, and let a = afr) > 0 be chosen to satisfy the
inclusion (31). Then,

aB® ﬁ ( U Ng I:;c]} = nB’° n( U Ng{:c}}
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cab*(( U Ns)
zeSnrB
c U d@sz)+ Ns(x))

reSnrB

c U cl(@f(x) + Ns ().
red

Therefore, by Part 4 of Theorem 2.3, § is a set of weak sharp minima for f
over S.

The fact that (36) holds with §* a subspace when 0 € ri (dom ( f3)) is proved
in Auslender, Cominetti and Crouzeix (1993), Theorem 2.3. The fact that (36)
holds when § is polyhedral is an immediate consequence of Rockafellar {1970),
Corollary 19.1.1. g

REMARK. The condition 0 € ri{dom (f7)) is carefully examined in Auslender,
Cominetti and Crouzeix (1993}, where a number of important consequences of
this hypothesis are presented. A special case of Theorem 6.5, where X is finite
dimensional and 0 € ri(dom{f3)). was proved in Deng (1998), Corollary 5.
Additional examples in optimization where S exhibits the decomposition (36),
can be found in Klatte {1998).

In the finite dimensional case, Theorems 6.3 and 6.5 and Corollary 6.4 indi-
cate that the ability to jump from local to global weak sharp minima is related
to the asymptotic geometry of the sets § and S. This geometry was examined in
Section 4. In the following example it is shown that § being a set of boundedly
weak sharp minima for f does not imply that §% is a set of weak sharp minima

for f=.

ExAMPLE 6.6 Consider f{xy,x2) = [b{z)]4, where bx) = J25 + 25 — 27 — 1.
Let 8 be a set of oplimal solutions of f. It is easily to see hat f™(z) =
a7+ a3 = axy, and 8 = Ry x {0}. The set 5% is not e sel of weak shwrp
meinima for [ since Nz=(0) = R_ xR and 8f%(0) = (=1,0)+B. By Proposi-
lion 4.2, 8 is not o sel of weak sharp minima for [, However, b(z) < 0 salisfies
the Slater condition. Hence S is a sel of boundedly weak sharp minimo for f.

This example, in conjunction with Theoren 4.2, leads one to conjecture
that the two assumptions (a) S is a set of boundedly weak sharp winima for
[, (b) 5% is a set of weak sharp minima for [, taken together might imply
that § is a set of weak sharp minima for f. The following example shows that
the aforementioned assumptions (a) and (b) do not imply § is a set of weak
sharp minima. Thus, the weakest additional conditions under which a set of
boundedly weak sharp winima becomes a set of weak sharp minima are still
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EXaMpPLE 6.7 Let b(x) be given in Example 6.6, and g(z) = I[\.-"IE, + 23+ 1) +
Db(x) = 23 =22, =1. Let h{z) = max{b(x), g(x)}. Since / :I;El +12§+J.1+1 =1,

Wx) = ylze) if blx) < 0, and blz) < glx) of Wx) = 0. For uny real number
£ > =1, let folz) = [h(x) —t)4, and 5, = argmin,cg: fi(z). Since W(0) -t =
—1=t <0, the system h(x) -t < 0 salisfies the Slater condition, [t follows that
5y is a sel of boundedly weak shaerp minime for fi when ¢ > =1. We will show
that Sy is a set of weak sharp mindma for fi when £ 20, and Sy is not a sel of
weak shorp mindma for fi when =1 <1 <0,

Fort=0,ifx= {:. xa) 15 such that g{z) = I, then bix) < t. This means
that 5, = S, wiliere S; is the solution set lo the mequalily system glz) < L
Since g™(1,0) = =2, we know from Deng (1297), Theorem 2.3, thal tllst.{.: |
S. < 1/2g(z) = 1)+ for all £ € B2, 1t follows that disi{x | 5;) = dist(z | S;]
lfi[y{.m —t]4 < 1/2[h{x) — )5 = 1/2fi(z) for all z € B2, ie., 8 is a set of
weak sharp mingma for fi. By Rockafellar (1970), Theorem 9.4,

(@) = max{b™(x), ™ (x), 0} = max{yy, _, o,(®) ¥{_s) alx)},

where this function is mdependent of £, and the cones 5% ure the sume for all
t > —1. Hence, by Theorem §.2, 8 is a sel of weok sharp minima for [ for
t> =1,

Let =1 <t < 0, and consider x = (xq,22) such that bz) = t. In this cose
we have

'|.|"~"'=1’ +;‘% =r+1+t,  and (37)
23 =20 (1 4+ ) + (1 + )% (38)

It follows that £y = —(1 +t)/2, and £y = =(1 +4)/2 if and only if zo = 0. If
xa # 0, we have t = {x) > glx) since

Vel 4ol +m+1=2n+1+8)+1> 1

As a consequence, we have

o [ colob(z),00(2)} if w2 =0, and zy = ~(1+ )2,
hfz) = {3&{3} wlherwise,

Therefore, for x with h{z) =t and x2 # 0, the idendily (37) implies thal

(e _{w{u}_{(.'“*”. 2 )T} (39)

n+l1+t o +i+1

Since h{x) < t salisfies the Slater condition, Ng(z) = come{@h(x)} =
cone{Vh{x)}. On the other hand, by (39) und (38),

HETRS A2 — [l e t}z + 23:'{1 i ,"l] + {'1 5K !]2

i N fw Wa i ol
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Henee, there is no positive a such ool
aB® N Ng (x) C co[dh(z),0} Yz € 5,

As o resull, by Part 3 of Theorem 2.3, for =1 < L < 0, 5, is nol ¢ sel of
weak shary minima for fi. However, as noted above S5 15 a sel of weak sharp
unima for [

REMARK. The functions i{x) and g(x) used in Examples 6.6 and 6.7 were taken
from Li and Klatte (1999), where they were used to construct connter-examples
in the study of global error bounds for systems of convex inequalities under Lhe
Slater constraint qualification.

7. A reduction theorem in the Lipschitzian case

lu a number of applications, the underlying function [ in (1) is known o possess
cerlain Lipschitzian properties. In this case one can relate various notions of
wenk sharpness 1o a corresponding notion of weak sharpness for the function
I+ K dist(- | 8§) for some value of K = 0. This reduction from a constrained to
an unconstrained problem can often simplily the analysis. We use this reduction
Lechuieue in our diseussion of nondifferentialile systems of convex inequalities
in Part 1L

THEOREM T.1 Let [, S, and 5 be as in Theorem 2.3.

1. 0f [ s globally Lapschsiz conlinwous on X wille Lipschilz constand L, then
S is a set of weak sharp minima for [ over 8§ with modulus o if and only
if § is a sel of weak sharp minima for the function [ + (o + L) dist(- | §)
with mvoddulus o

2. If [ is locully Lipschilz on X, then S is a sel of local weak shorp windma
Jor [ over S if and only if for every & € S thereisane > 0, a > 0, and
L >0 such that

Jlx) + Ldist(x | 5) = fl@) + adist{x | S]I for all £ € & + B

3 0f [ is Lipschitz continuous on bounded subsets of X, then § is a set of
bowndedly weak sharp minana fur [ over S of rmd ondy if for every bounded
subset K of X for which K NS # B there is an L >0 and o > 0 such that

flx) + LdIﬁLI:J: | 8) = f(z) + adist{x | 8) forallzeSNK.

Proof. We only prove Part 2 of this theorem since the pattern of proof is identical
for all three. Clearly, if for every & € § there is an ¢ > 0, o > 0, and L > 0 such
that

Jlx) + EtlisL{.': | §} = fl@)+adist{z | 5) for all & € & + B,

then § is a set of local weak sharp minima for f over S, so we only prove the
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and f is Lipschitz continuous on & + JeB with Lipschitz constant L > 1. Let
T Er+eB Given ) < & < ¢, there is an x5 € 5 such that

e —zs)| S dist{z | S)+6 S e+ 6 < 2.
This implies that
lzs — 2| = lz — =)l + ||z — 2] < 3e.
Therefore, since the distance function is Lipschitz with Lipschite constant 1,

dist(z | §) £ ||z = x5 + dist(zs | 5)

< dist(z | §) +a™ [ f(xs) = J(2)] + &

< dist(z | §) + [ f(x) + L]z — =] - f(Z)] + 6

< dist(z | S}+a'1[f{.L}+L{deI.I[:L|S]I+15 f(z)] + 46
< (1 + a~'L)[dist(z | §) + 8] + o~ [f(z) = f(2))],

or equivalently,
[(x) 4 (o + L)[dist(z | §) + 8] > f(&) + adist(z | §).

Since x and § were chosen arbitrarily from Z + ¢B and (0, ¢), respectively, this
establishes the result. [ |

A Duality correspondences

THEOREM A.1 [Duality Hesuils] Let C be o nonempty closed conver subsel of
X and let £ and F be nonemply conver subsets of X*.
1. (Aubin and Ekeland, 1984, Proposition {, page 168) For allx € C,
Ne(x)={z € X" : (z.,2) = ¢5(2)}-
2. (Luenberger, 1968, Theorem 1, page 136) For ally € X,
dist(y | €) = max [(=,9) ~ 2(2)].
3 IfC is a closed or,uwe;-mme, then, for all y € X,
‘Iisi'{y | C)= "r'l)a.ﬂnc“l:y}-
4. Forallye X,
dist{y | C) = S:gdisﬂy | z 4+ Te (x)).

{Burke, 1991, Proposition 3.1) The function dist(- | C) is lower semicon-
tinuons and conver with

dom (dist(- | C)) = X

'S-‘I

il
ddist(y | C) = argmax [(z,v) — ¥5(2)]
lz]l. =1
!E“ﬂNCEJ fyeC
Ll BOL Y AT s T S e
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We now establish Part 10, This resull is essentially proved in Burke and
Ferris (1993), Lemma 2.1, but the statement given here is slightly different.
We show that the proofl given in Burke and Feris (1993}, Lenuna 2.1, works
in this setting. Clearly (A.1} implies (A.2) so we need only show the reverse
implication. For this, suppose x € C and w € D[Nz () # 0. By hypothesis,
there exists y € € such that w € 9fg(y). Hence, for any z € §, we Lave

folz) 2 Joly) + (w,z -y},
or, equivalently,
0> (wz—y) YzeS.
Therefore, w € Ng (y) so that w € Ng (&) 0 N3 (y) which implies that
(0,9} = {w,2). o

However, w € dfo(y) so fo(z) — fo(y) = (w,z2 -y}, for all z € X. Since y,
x €8, foly) = folx) so that (A3) gives folz) — fola) 2 (w2 — &), for all 2, or
equivalently, w € & folx). [ |

B Properties of recession functions

LEMMA B.1 Let fy be the essentinl objective function defined in (2). If § =
arg min fy 15 nonempty, then

foo = T 4 P, (B.1)
el (dom (f3)) = el” (dom ( f*) + (5%)°). (B.2)
215°(0) = 1" (277(0) + Ng= (D)), (B.3)
(5=) = |J Ne= (), (B.4)
yES=
afy = |J assw. (B.5)
yes=

el
5% = argmin f§° = arg win { f*(y) | y € 5%} = [cone(dom ([3))]°.(B.6)

Proof. We first show (B.1). By Rockaflellar {1966), Theorem 3B, Part (b), we
have (y. i) € epi f5° if and ouly il there exists x € dom{ fy) = dowm (f) NS such
that

S+ A+ dle+ M) € fla)+dela)+Ap<oc YAZ0,
or equivalently,

y € 5% and there exists & € dom () N § such that
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But then, again by Rockafellar (1966). Theorem 3B, Part (b), this is equivalent
to the statement that y € 8 and [™(y) € p. which, in tuln, is equivalent to
(s 1) € epi(f™ + ¢s).
Relation (B.2) follows from the lact that

.I;Ir-r:l'{dmn{ IG}} = -r"t

= Jr"-"i- + 1 ge

= .r‘r_.:‘!' {ens( 7] -+ :lr'-:s"ﬁ'ln
= "l}:;l'{-lnmf_r"li:-'i“‘l"i‘

where the final equality follows from one of the many clementary properties of
support lunctions listed in Aubin and Ekeland (1984), page 31. Relation (13.3)
follows by combining (B.2) with (21) and the fact that (§)° = Ng= (0) since
5 is a closed convex cone. Relation (B.4) follows from the fact that $ is a
closed convex cone and so

Nz (y) € (§%)° = N3 (0) for every y € 8.
Relation (1B.5) lollows from (20), which inplies that
A (y) C el” (ddom (f3)) = &f57(0) for every y € dom (2f5°).
Finally, by Brondsted and Rockalellar {1965).
zedflz) = xedf(z)

Therefore, S = df5(0), sinu* S5 = argming g f. Consequently, 0 € dom (f3)
and so, by (20), ff*(y) = L:v{.;...{; }}{ g) = 0 for all x € X. Hence, by Rock-

afellar (1966), Theorem 313, Parts (a) and (d}, and (B.1}), we have

= {y | [5°(y) < 0} = arg min f§*
= arg min { f™( y} | v € §%} = [cone(dom (f3))]°.

where the final equivalence comes from the fact that
{z: | fo~(u) = u‘f,.(dm{ iy () < u} = [cone(dom ( f3))]°. =

RrEMARK, Note that the formula (B.3) always holds, This is an important
instance in which the addition formula (6) must always hold.

THEOREM B.2 Assume that X is a Banach space, and let f: X — R be a lower
semi-conlinuous conver function that is not everywhere +oc. Then the weak
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Proof. The Brendsted-Rockafellar theorem, Brendsted and Rockafellar (1965],
implies that dom (2f) is dense in dom (f) in the norm topology. Hence the
strong closure of dom (@ f) equals the strong closure of dom {f). Since dom (f)
is convex, we have that the weak and strong closures of dom { f) coincide. There-
fore,

cl{dom (8f)) € w-cl (dom (2f)) C w-cl{dom ([))
= cl{dom ()} = cl{dom (3f)). ]

The following technical lemma is used to relate the results of Theorems 2.3
and 4.1.

LemMa B3 Let C e a nonempty closed convex subset of normed linear space
X. Then

U Ne () = dom () C dom (v} ) = bar (C]), (B.7)
rel
ard
w-cl( |J Ne (@) ) =cl (| Ne(x) ) = dpar(©) c o (| Ne(=))
TEC TEC TEC
C cl* (bar (C}) = (C™=)°. (B.8)
In particular, we oblain
(U ¥e@) 2c. (B.9)
el

If X is assumed to be reflevive, we obloin equality throughout (B.8) as well as
m (B.8). If it is further assumed that X is finite-dimensional, then

ri (bar (C)) € | Ne (). (B.10)
rEC

Proof. Since . = Ne, we obtain from Brondsted and Rockafellar (1965) that
z € No(z) <= z € d(z).

The relation {B.7) immediately follows. Since . is proper lower semi-continu-
ous and convex Aubin and Ekeland {1984), p. 27, and X" is a Banach space, the
first equivalence in (B.8) follows fromn Theorem B.2 and (B.7). To obtain the
second equivalence in {B.8), one combines (B.T) with Brondsted and Rockafellar
(1965}, Theorem 2. The inclusions in (B.8) are obvious. The third equivalence in
(B.8) follows from (18). The relation (B.9) follows by taking the polar in (B.8).
The final inclusion (B.10) is an inmediate consequence of Rockalellar (1970),
Theorem 23.4. E
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