Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper studies, in the context of Banach spaces, the problem of three boundary conditions for both second order differential inclusions and second order ordinary differential equations. The results are obtained in several new settings of Sobolev-type spaces involving Bochner and Pettis integrals. Some classes of second order multivalued evolution equations associated with m-accretive operators are also considered. Applications to some control problems are provided with the help of narrow convergence for Young measures.
Czasopismo
Rocznik
Tom
Strony
659--693
Opis fizyczny
Bibliogr. 53 poz.,
Twórcy
autor
- Department de Mathematiques, Universite de Jijel, Algeria
autor
- Department de Mathernatiques, Case 051 Universite Montpellier II, F-34095 Montpellier Cedex 5, France
autor
- Department de Mathernatiques, Case 051 Universite Montpellier II, F-34095 Montpellier Cedex 5, France
Bibliografia
- AMRANI, A. and CASTAING, C. (1997) Weak compactness in Pettis integration.Bull. Pol. Acad. Sci. Math ., 45 (2), 1:39~150.
- AMRANI, A., CASTAING, C., and VALADIER, M. (1992) Methodes de troncatureappliquees a des problemes de convergence faibleou forte dans L1. Arch.Rational Mech. Anal., 117, 167~191.
- AMRANI, A., CASTAING, C., and VALADIER, M. (1998) Convergence in Pettisnorm under extreme point condition. Vietnam J. of Math., 26 ( 4), 323-335.
- ATTOUCH, H., CABOT, A., and REDONT, P. (2000~2001) Shock solutions via epigraphical regularizations of a second order in time differential inclusion.Preprint, Universite de Montpellier II.
- AzzAM, D. L. and BOUNKHEL, M. (2001) Existence of the second order nonconvex sweeping process with perturbations. Technical report, PublicacionesTecnicas, Centro de Modelarnien to Maternatico, Universidad de Chile, UMR -NRS
- BALDER, E. J. (1986) On seminonnality of integral functionals and their integrands.SIAM J. Control and Optimization, 24, 95- 121.
- BALDER, E. J. (1995) Lectures on Young measures. Cahiers demathematiquesde la decision, 9517, CEREMADE, Universite Paris-Dauphine.
- BALDER, E. J. (2000a) Lectures on Young measure theory and its applicationsin economics. Rend. Istit. Mat. Univ. Trieste, 31, suppl. , 1- 69. Workshopdi Teoria della Misura et Analisi Reale, Grado, 1997.
- BALDER, E. J. (2000b) New fundamentals of Young measure convergence. In Calculus of Variations and Optimal Control (Haifa 1998), Boca Raton,FL. Chapman & Hall, 24- 48.
- BENABDELLAH, H. (2000) Existence of solutions to the nonconvex sweeping process. J. Differential Equations, 164 (2), 286- 295.
- BENABDELLAH, H., CASTAI NG, C., SALVADOR!, A., and SYAM, A. (1996) Nonconvex sweeping process. J. Appl. Anal., 2 (2), 217- 240.
- CASTAING, C. (1969) Quelques applications du theoreme de Banach- Dieuclonneal'integration. Preprint 67, Universite de Montpellier II.
- CASTAING, C. (1972) Quelquesresultats de cornpacite lies a l'integration. In :Actes du Colloque d'Analyse Foncliunnelle de Bordeaux (Univ. Bordeaux,1971), Bull. Sue. Math. France, Mem. 31- 32. Soc. Math. France, Paris,73-81.
- CASTAING , C. (1980) Topologie de Ia convergence uniforme sur les parties uniformement integrables de L1 et theoremes de compacite dans certains espaces du type Kuthe-Orlicz. Seminaired Analyse Convexe 10 , Universitede Montpellier II.
- CASTAING , c. (1984) Represeutation integrale des multifonctions separement … additives et separernent continues. Seminaired Analyse Convexe 18,Universite de Montpellier II.
- CASTAING, C. (1996) Weak compactness and convergence in Bochner and Pettis integration. Vietnam J. Math., 24 (3) , 241-286.
- CASTAING, C. and CLAUZURE , P. (1982) Semicontinuite des fonctionnelles integrales. Acta Math. Vietnam., 7, 139- 170 (first published in Seminaired'AnalyseConvexe 11, 1981, 15. 1- 15.45, Montpellier, France) .
- CASTAING, C., RAYNAUD DE FITTE, P., and VALADIER, M. (2002) Young measures on topological spaces. With applications in control theory and probability theory. Preprint.
- CASTAING, C. and SAADOUNE, M. (2000) Dunford- Pettis- type theorems and convergence in set valued integration. J. Nonlinear• and Convex Analysis,1 (1), 37- 71.
- CASTAING, C. and VALADIER, M. (1969) Equations dilferentielles multivoquesdans les espaces localementconvexes. Revue Francaise de Recherche Operationnelle, 3, 3- 16.
- CASTAING, C. and VALADIER, M. (1977) Convex Analysis and Measurable Mullifunctions.LNM 580, Springer Verlag, Berlin.
- CELLINA, A. (1980) On the differential inclusion … … [-1, +1]. Atti Accad. Naz.Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 69 (1-•2), 1- 6 (1981) .
- COLOMBO, G. and GONCHAROV, V. V. (1999) The sweeping processes without convexity. Set-Valued Anal., 7 (4), 357-374.
- EL AMRI, K. and HESS, C. (2000) On the Pettis integral of closed valued multifunctions. Set- Valaed Anal., 8 ( 4), 329-360.
- GEITZ, R. (1981) Pettis integration. Proc. Amer. Math. Soc., 82, 81- 86.
- GOMAA, A. M. M. (2000) Set- Valued Punctions and Set- Valued Differential Equations. PhD thesis, Faculty of Sciences, Cairo University.
- GROTHENDIECK, A. (1964) Espaces Vectoriels Topologques. Publ. Soc. Mat.Sao Paulo, Sao Paulo. 3rd ed.
- GUPTA , C. P. (1992) Solvability of a three-point nonlinear boundary value problem for a secon order ordinary differential equation. J. Math. Anal.Appl., 168 (2), 540- 551.
- HARTMAN, P. (1964) Ordinary differential equations. John Wiley & Sons Inc.,New York.
- HUFF, R. (1986) Remarks on Pettis integration. Proc. Amer. Math. Soc ., 96,402- 404.
- IBRAHIM, A. G. AND GOMAA, A. M. (2000) Existence theorems for a functional multivalued three-point boundary value problem of second order.J. Egyptian Math. Soc., 8 (2), 155- 168.
- JALBY, V. (1992) Mesures de Young sur un espaces ouslinien completementregulier. Applications aux suites de fonctions de Lk ou E n'est pas necessairement reflexif.
- KOMLOS, J. (1967) A generalization of a problem of Steinhaus. Acta Math.Acad. Sci. Hungar., 18, 217-229.
- MARANO, S. A. (1992) Existence theorems for a multivalued boundary value problem. Bull. Austral. Math. Soc., 45 (2), 249-260.
- MARANO, S. A. (1994) A remark on a second-order three-point boundary value problem. J. Math. Anal. Appl., 183 (3), 518- 522.
- MARUYAMA, T. (2001) A generalization of the weak convergence theorem in Sobolev spaces with application to differential inclusions in a Banachspace. Proc. Japan Acad. Ser. A Math. Sci., 77 (1), 5- 10.
- MONTEIRO MARQUES, M. D. P. (1993) Differential inclusions in Nonsmooth Mechanical Problerns, Shocks and Dry Friction. Progress in Nonlinear DifferentialEquations and their Applications, 9. Birkhauser, Basel.
- MOREAU, J .-J. (1977) Evolution problem associated with moving convex set ina Hilbert space. J. Differential Equations, 26, 347- 374.
- MusiAL, K. (1987) Vitali and Lebesgue theorems for Pettis integral in locally convex spaces. Atti Sem .. Mat Fis. Modena, 25, 159- 166.
- MUSIAL, K . (1991) Topics in the theory of Pettis integration. Rendi contidell'istuto di matematica dell Universita di Trieste, 23, 176- 262. School onMeasure Theory and Real Analysis, Grado.
- PEDREGAL, P. (1997) Parametrized measures and variational principles. Progressin Nonlinear Differential Equations and their Applications, 30. Birkhauser,Basel
- PIANIGIANI, G. (1990) Differential inclusions. The Baire category method. In:Methods of nonconvex analysis (Varenna, 1989). Springer, Berlin, 104-136.
- PICCININI, L. and VALADIER, M. (1995) Uniform integrability and Young measures.J. Math. Anal. Appl., 195 (2), 428- 439.
- POLIQUIN, R. A., ROCKAFELLAR, R. T., aud THIBAULT, L. (2000) Localdifferentiability of distance functions. Trans. Amer. Math. Soc., 352 (11),5231- 5249.
- RICCERI, 0. N. and RICCERI, B. (1990) An existeuce theorem for inclusions of the type …………… and application to a multivalued boundary value problem. Appl. Anal., 38 (4), 259--270.
- ROUBICEK, T. (1997) Relaxation in Optimization Theory and Variational Calculus. De Gruyter Series in Nonlinear Analysis and Applications, 4. Walterde Gruyter, Berlin.
- TRIMAULT, L. (1999) Sweeping process with regular and IIomegubrsets. Technical report, Universite Montpellier II.
- TOLSTONOGOV, A. A. (2002) Properties of the set of extreme solution for aclass of nonlinear second-order evolution inclusions. Set- Valued Anal., 10(1), 53- 77.
- ULGER, A. (1991) Weak compactness in L1 (… , X). Proc. Amer. Math. Soc.,103, 143- 149.
- VALADIER, M. (1990a) Application des mesures de Young aux suites uniformement integrables dans un Banach separable. Seminaired Analyse Convexe, Universite de Montpellier II.
- VALADIER, M. (1990b) Young measures. In: Cellina, A., ed., Methods of Nonconvex Analysis, LNM 1446, Berlin. Springer Verlag, 152-158.
- VALADIER, M. (1994) A course on Young measures. Rendicontide Istituto di matematico del l'Universida di Trieste, 26, suppl, 349- 394. Workshop di Teoria della Misura et Analisi Reale, Grado, 1993.
- VRAIBIE, I. I. (1987) Compactness Methods for Nonlinear Evolutions. Longman Scientific & Technical, Harlow. With a foreword by A. Pazy
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0001-1764
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.