
Control and Cybernetics

vol. 30 (2001) No. 1

Task allocation algorithms for maximizing reliability of
heterogeneous distributed computing systems

by

A. Mahmood

Department of Computer Science, University of Bahrain, Bahrain

Abstract: The rapid progress of microprocessor and commu­
nication technologies has made the distributed computing system
economically attractive for many computer applications. One of the
first problems encountered in the operation of a distributed system is
the problem of allocating the tasks among the processing nodes. The
task allocation problem is known to be computationally intractable
for large task sets. In this paper, we consider the task allocation
problem with the goal of maximizing reliability of heterogeneous
distributed systems. After presenting a quantitative task allocation
model, we present a least-cost branch-and-bound algorithm to find
optimal task allocations. We also present two heuristic algorithms
to obtain suboptimal allocations for realistic size large problems in
a reasonable amount of computational time. Simulation was used to
study the performance of the proposed algorithms for a large number
of problems. Also, performance of the proposed algorithms has been
compared with a well-known heuristics available in the literature.

Keywords: task allocation, distributed computing, reliability,
heuristics, branch-and-bound, A* algorithm.

1. Introduction

A single application program often requires many different types of compu­
tations that result in different needs for machine capabilities. Heterogeneous
computing secures the effective use of the diverse hardware and software com­
ponents in a heterogeneous suite of machines connected by a high-speed network
to meet the varied computational requirements of a given application (Tan and
Siegel, 1998). A task or a program to be run on such a system consists of a
set of modules, possibly defined by a partition strategy (Bokhari, 1988). ·Each
of the modules comprising a task will execute on one of the processors and
communicate with some other modules of the task using the system's intercon­
nection network. In a general purpose distributed system, modules of a task
must be assigned to processors in such a way that the system resources will
be utilized effectively and certain objective function optimized. This problem,
generally known as task allocation problem, has been shown to be NP-complete

116 A. MAHMOOD

for more than two processors (Coffman, 1978). Hence, task allocation problem
is computationally intractable for all but small systems.

The task allocation problem has been widely investigated by many research­
ers. Since performance is a dominant concern in most distributed applications,
task allocation models with a cost function based on performance measures
(such as communication and execution cost or task completion time) have re­
ceived more attention (Chu, Holloway et al., 1980; Shen and Tsai, 1985; Bowen,
Nokolous et al., 1992; Lee and Shin, 1997). These models are based on the
assumption that, for most of distributed applications, task completion time is
relatively very small as compared to inter-failure rate of communication links
and processors; hence, reliability issues have not been explicitly addressed in
these models.

On the other hand, very few models have considered reliability issue explic­
itly because these models are useful in relatively fewer situations. For example,
these models are useful for systems with long mission time spread over hours
or days (e.g. space flight long-term monitoring systems), systems that require
ultra-high reliability (e.g. commercial flight control system) and systems with a
large number of processors and modules (Shatz, Wang, and Goto, 1992).

Hariri and Raghavendra (1986) proposed the problem of task allocation for
reliability. They achieved high system reliability by introducing multiple copies
of modules. However, they did not give an explicit reliability expression in terms
of system parameters. Also, this model guarantees an optimal allocation only
when the processors and communication links have the same reliability and each
processor runs exactly one module. Bannister and Trivedi (1992) presented a
task allocation model for fault tolerant systems. In this model, fault tolerance is
achieved through the introduction of redundant copies of modules and optimiza­
tion is achieved by balancing the load over a homogeneous distributed system.
This model, however, neither gives an explicit system reliability measure nor
considers failure of communication link which, in many systems, is the least
reliable factor (Ma, 1982). Shatz, Wang, and Goto (1992) modeled the problem
of task allocation for maximizing system reliability and treated both proces­
sors and communication links to be unreliable. This model is based on a cost
function, which represents the unreliability caused by execution of modules on
processors of various reliability and the unreliability caused by the interprocessor
communication. They converted the task allocation problem into a state-space
search problem and applied the A* algorithm from artificial intelligence the­
ory (Nilsson, 1971) to obtain optimal allocations. Kartik and Murthy (1997)
proved that Shatz's algorithm may get trapped into local minima and presented
an improved version of Shatz's algorithm which gives optimal solutions in all
cases. A task allocation model for fault-tolerant multicomputer systems is pre­
sented in Kim, Lee, and Lee (1997). In this model, fault-tolerance is achieved
through the introduction of a backup copy for every process in the system and
optimization is achieved through load balancing over a multicomputer system.
A similar approach has been used in the Paralex system (Davoli et al., 1996),

Task allocation in distributed computing systems 117

in which fault-tolerance is achieved by introduction of passive replicas and load
is balanced dynamically by late binding of primary process.

This paper investigates the task allocation problem; an essential phase of
distributed software design (Shatz and Wang, 1987), with the goal to maxi­
mize system reliability. The task allocation problem considered in this paper
is formally defined as "Given a distributed system of n heterogeneous proces­
sors (p1,p2, ... ,Pn) and a task T made up of m modules (t1, t2, ... , tm), assign
each of the m modules to one of the n processors so that the system reliabil­
ity is maximized subject to a set of constraints imposed by the application or
environment" . The main contribution of this paper is constituted by three al­
gorithms. The first algorithm, a least-cost branch-and-bound algorithm, finds
the optimal allocation of task to processors. This algorithm is suitable for small
size problems because its worst-case time complexity is exponential. The other
two algorithms are polynomial time algorithms to find suboptimal solutions and
are suitable for large size problems.

The rest of the paper is organized as follows. In the next section, we present
a task allocation model. In Section 3, we present our algorithms for optimal and
suboptimal task allocation. Section 4 presents simulation results and Section 5
concludes the paper.

2. Task allocation model

2.1. Assumptions

A distributed system is composed of a set of n heterogeneous processors (p 1 ,p2 ,

... , Pn) each having local memory and connected with each other through some
communication network. Each processor may have different processing speed,
memory size and failure rate. The communication links may have different
bandwidths and failure rates. We assume that the failure rates of components
(i.e. processors and links) are statistically independent and follow a Poisson dis­
tribution (i.e. the time of next failure has an exponential distribution). Similar
assumptions have been made by Shatz, Wang, and Goto (1992). The network
topology is assumed to be cycle free such as star) bus, hierarchical or connected
stars. This means that a unique path exists between any two processors. How­
ever, the algorithms presented in this paper can easily be extended for other
types of topologies.

The task to be assigned consists of m modules (h, t2, ... , tm)· A module may
communicate with other modules of the task. The intermodule communication
cost (IMC) between modules ti and tj is denoted by Cij and is measured in
number of words or packets exchanged between the modules. If a module t;
assigned to processor Pk communicates with module tj assigned to processor
PI (Pk =j:. pl) and Pk is not adjacent to PI then all the links and processors
between Pk and PI take part in the communication. We define system reliability
for a 'mission' as the time interval during which we require the system to be

--

118 A. MAHMOOD

reliable. During this time, a module may execute and communicate with some
other modules for more than once. We define the Accumulative Execution Time
(AET) of a module as the product of the number of times a module executes
during the mission and the average time units for each execution of the module.
Similarly, inter module communication cost of two modules is the product of
number of times they communicate with each other and average number of
words transferred during each communication. The notations used in the paper
are summarized in Table 1.

M Number of modules in the task
N Number of processors in the distributed system
T Set of modules to be assigned
ti ith module of task T
P The set of processors in the distributed system
Pk kth processor in P
X An m x n binary matrix corresponding to a task allocation
Xik An element of X; Xij = 1 if ti is assigned to Pk, otherwise Xij = 0
eik Accumulative execution time for task ti running on processor Pk

Cij Intermodule communication cost (IMC) between ti and ti

during the mission (measured in words or packets)
Ak The failure rate of processor Pk

ftkb The failure rate of link between Pk and Pb

Wkb Transmission rate of the link between Pk and Pb

(words or packets per unit of time) and Wkb = Wbk

Table 1. Notations

2.2. Formulation of the task allocation model

The task allocation problem can be represented as a constrained optimization
problem (Shatz, Wang, and Goto, 1992). In the optimization problem, an ob­
jective function should reflect all the important aspects of system reliability in
terms of a number of variables. Since it is difficult to include all the details in
a model, it should capture only the critical aspects of system design. The ob­
jective function should have a form that involves less real-time information and
yet performs coincident evaluation for a given allocation with minimum com­
putations (Mahmood, 1994). Therefore, two important features of an objective
function are evaluation accuracy and efficiency.

The accuracy of an objective function depends on two factors. The first fac­
tor is whether the form and the parameters of the objective function are proper.
That is, if the objective function indicates that an allocation is better than the
others, actual measurements should concur. The second factor is the accuracy of
the real-time data used in the evaluation. Therefore, while designing an objec­
tive function, one should consider whether it is feasible to acquire the required
data. Keeping in mind these considerations, we present a task allocation model
similar to that of Shatz, Wang, and Goto (1992) .

Task allocation in distributed computing systems 119

A successful completion of a task requires that the processors be operational
during the time that its modules are being executed and each link between
terminal processors of a path be operational during the active period of inter
module communication. The reliability of the processor Pk in time interval
t is exp(->.kt), where Ak is the failure rate of processor Pk· Under the task
assignment X, the reliability of Pk, denoted by Rk(T, X), for the execution of
the modules assigned to it during the mission is given by

m

Rk(T, X)= exp(->.k L Xikeik), (1)
i=l

where Xik = 1 if module ti is assigned to processor Pk during the mission,
otherwise Xik = 0; and eik is the accumulative execution time of module ti on
processor Pk· Equation (1) gives the total time spent on executing the modules
at Pk· Similarly, the reliability of a single-link path Lkb between processor Pk
and Pb is given by

m m

Rkb(T,X) = exp(-J.Lkb L LXikXjb(Cij/Wkb)), (2)
i=l j=l

where Cij is intermodule communication cost between modules ti and ti and
Wkb is the transmission rate of link Lkb· If the path Lst consists of links
h, l2 , .•. , lk, and J.Li and Wi are failure rate and transmission rate of link li
(1 ::::; i::::; k), respectively, then we define the term

w - J."l + J."2 + ... + J.Lk
st - J.Ll + J.L2 + ... + J.Lk .

(3)

W1 W2 Wk

We call the term W.t the adjusted transmission rate for the path Lst since it
reflects the fact that the behavior of the path depends on both the transmission
rates and the reliability of all the links in the path. Note that if all the links in
a path have the same transmission rate w then the adjusted transmission rate
of the path is w. Also, for a single-link path, the transmission rate and adjusted
transmission rate are identical, hence we can rewrite (2) as

m m

Rkb(T, X)= exp(-J.Lkb L LXikXjb(cii/Wkb)). (4)
i=l j=l

It should be noted here that if a multiple-link path Lkb consists of links h, l2, ...
. . . , ls and failure rate of each link in the path follows a Poisson distribution with
failure rates J.Ll, J.L2 , ... , J.Ls respectively, then the failure rate of Lkb also follows
a Poisson distribution and is given by J.Ll + J.L2 + ... J.Ls·

The reliability of the system during the mission when task T is assigned to it
by allocation X, denoted by R(T, X), is defined as a probability that T can run

-- --- ----- --

120 A. MAHMOOD

successfully on the system during the mission under task assignment X, and is
given by

R(T,X)

= Prob(T can run successfully under assignment X during the mission)
n n-1

[IT Rk(T,X)] [IT IT Rkb(T,x)] = exp(-COST(X)), (5)
k=l k=lb>k

where
n m n-1 m m

COST(X) = L L AkXikeik + L L L L /l>kbXikXjb(cii/Wkb)· (6)
k=li=l k=lb>ki=lj=l

The first term in (6) gives the unreliability caused by execution of modules on
processors of various reliabilities and the second term reflects the unreliability
caused by intermodule communication.

From (5) and (6), it is clear that to maximize the reliability of the system
R(T, X), we have to minimize COST(X). Therefore, we formally state the task
allocation problem as

minimize COST(X)
n m n-1 m m

= L L AkXikeik + L L L L /l>kbXikXjb(Cij/Wkb)
k=li=l

subject to
n

L Xik = 1 for all 1 ::; i ::; m
k=l

k=lb>ki=lj=l

Xik = 0 or 1 for all 1 :S i ::; m, 1 :S k :S n

and any other system constraints such as limited processing capacity, lim­
ited memory size, bounds for completion time of a module, assigning a
task to a particular set of processors, etc.

Various system constraints can be incorporated into the model. For example,
two modules ti and t1 may be required to be executed on the same processor
to yield good response time (Lee and Shin, 1997). This can be expressed as
Xik = Xjk for 1 ::; k ::; n. If a task ti is required to be allocated to a specific
processor Pk due to some system consideration, such as availability of some
special hardware attached to a processor, it can be specified by letting the
parameter Xik = 1 (or eil equal to a large number for all 1 ::; l ::; n where
l f. k). The real-time requirement can be given by I:~1 Xikeik < Tk where
Tk is the required upper bound for processing the modules that reside on the
processor Pk· Similarly, the upper limit on the number of modules that can be
assigned to a processor Pk can be specified by L~l Xik ::; uk where uk is the
maximum number of modules that can be allocated to processor Pk·

Task allocation in distributed computing systems 121

3. Task allocation algorithms

The task allocation model described in the previous section results in a 0-1
quadratic programming problem. In this section we present three algorithms,
one to find optimal task allocations and other two to find suboptimal allocations.

Our first algorithm, based on the idea of Branch-and-Bound, generates a
state-space search tree and searches for an optimal solution in the tree. Before
explaining the algorithm, we define the following terms. We say that a task
assignment X is incomplete if not all the modules of a task are assigned under
assignment X. Otherwise, X is a complete assignment. A state is defined
by a list of n sets S1, S2, ... , Sn, where Sk contains the modules assigned to
processor Pk· The state-space search tree is built as follows:

1. Arrange the modules in non-decreasing order of C values, where Ci for a
module t; is given by

m

C; = mine;k + ""(c;i/ maxwkb)· (7)
kEP ~ hnP

j=l bi'k
The first term indicates the execution time of module ti on the fastest
processor and the second term reflects the minimum communication time
required by module t; and tj to exchange the messages among them if
they are allocated to two different processors connected by the fastest
link. The reason for ordering the modules with respect to this value is that
the modules that communicate heavily and require higher processing time
should be considered first for allocation. This point is further discussed
after Algorithm 1.

2. The root node has a state (0, 0, ... , 0) indicating that none of modules has
been assigned.

3. At each subsequent level, nodes are expanded by assigning next module in
the sorted list to every processor to generate n nodes of next level. This
procedure ends when all the m modules have been assigned. Fig. 1 shows
a state-space tree for two modules to be assigned to two processors.

Note that in a state-space search tree all the internal nodes correspond to
incomplete assignments and all leaf nodes correspond to complete assignments.
Our goal is to find a leaf node in the tree with an assignment X such that
COST(X) given by (6) is minimum. This process is often speeded up by using
a function to decide the next node to be expanded (Shatz, Wang, and Goto,
1992). At each expansion, the proposed algorithm expands a node with the
minimum value of a cost function, j, given by (Shatz, Wang, and Goto, 1992)

f(v) = g(v) + h(v), (8)

where g(v) is the path cost from root node to node v, and h(v) is an estimation
of the minimum cost path from node v to a leaf node. If node v corresponds to

122 A. MAHMOOD

Figure 1. A state-space search tree for two modules to be assigned to two processors

an incomplete assignment with t 1 , t 2 , •.. , t8 assigned, then g(v) is defined as

g(v) = COST(XZ)
n s n-1 s s

= L L AkXikeik + L L- L L /1-kbXikXjb(Cii/Wkb), (9)
k=li=l k=l b>k i=l j=l

which is a form of (6) when X is substituted by X~. This gives the path cost
from the root node to node v. We define h(v), for a node v corresponding to a
task assignment t1, t2, ... , ts as

m s

h(v) = [L ~i~ (>..keik + LL/1-kbXjb(Cij/Wkb))].
i=s+l bfkj=l

(10)

In (10), the first term reflects the unreliability caused by executing module ti
at processor Pk and the second term reflects the unreliability caused by the
intermodule communication between ti (as if ti were assigned to Pk) and any of
the already assigned modules.

To reduce the solution space, a node with incomplete solution is closed if it vi­
olates any of the system constraints or the cost of incomplete solution (i.e. g(v))
is greater than or equal to an upper bound (the upper bound is initially ob­
tained by Algorithm 2 discussed later). The order in which modules are assigned
(Step 2 of Algorithm 1) generally helps in early fathoming of live nodes which

Task allocation in distributed computing systems 123

could not lead to a better solution (Mahmood, 1994). When a feasible solution
with cost less than the upper bound is found, the upper bound is modified to the
cost of that allocation and the allocation is saved as an incumbent allocation.
The algorithm terminates when all the nodes are expanded.

The proposed algorithm generates optimal allocations for both constrained
and unconstrained problems. This can be shown as follows. All the internal
nodes in a state-space search tree that enumerates all possible allocations rep­
resent incomplete allocations. The proposed algorithm kills an internal node
only if it violates any of the system constraints or value of the cost function for
an incomplete allocation is less than the upper bound. Under no other condi­
tion, an internal node is excluded from further expansion/search. Since the cost
function is a non- decreasing function as we move down the tree, any partial al­
location that either violates a system constraint or value of the cost function for
incomplete allocation is greater than the upper bound cannot lead to a better
feasible solution. Therefore, the algorithm will find an optimal allocation.

Algorithm 1

1. Use Algorithm 2 to obtain an initial allocation X and calculate COST(X)
using (6). Save allocation X as an incumbent solution and set upper-bound
= COST(X)

2. Order modules in T in non-decreasing values of Ci
3. Put root node r = (0, 0, ... , 0) on a list called LIVE and set f(r) = 0.
4. While (LIVE list is not empty) do

Find a node v in the list LIVE with a minimum f value.
If v is a leaf node and COST(X) < upper-bound then

Save state associated with node v as incumbent solution and modify the
upper bound to the cost of that assignment.
Move node v from list LIVE to another list called DEAD.

Else
Expand node v by assigning the next module in the list to each of the
n processors to generate n successor nodes of node v. Move all the invalid
nodes to list DEAD.
Move all nodes with f value greater than upper-bound to DEAD and all
the remaining nodes to LIVE.

End (While)
5. Return the incumbent solution. {It is the optimal solution}

Note that the worst case time complexity of the algorithm is exponential.
Also, the function f (v) is quite complicated and involves a large number of
computations. Thus, the algorithm is suitable only for relatively small systems.
Therefore, there is a need for efficient heuristics to find suboptimal allocations
in a reasonable computational time.

124 A. MAHMOOD

To devise heuristic algorithms, we first examine the cost function given
by (6). The first term reflects the unreliability caused by the execution of
modules on processors of varying reliability and the second term gives the un­
reliability caused by the intermodule communication. If the intermodule com­
munication is relatively low, then reducing the unreliability caused by the in­
termodule communication becomes a major concern. On the other hand, if the
system is homogenous, then first term becomes constant and the execution cost
becomes dominant. However, in general, both execution and communication
should be considered.

The next two algorithms are based on a simple heuristic that to reduce
the system unreliability, the module with maximum intermodule communica­
tion cost and accumulative execution time should be assigned to the most reli­
able processor. To reduce the unreliability caused by intermodule communica­
tion, tightly coupled modules (modules heavily communicating with each other)
should be assigned to the same processor or to neighboring processors with most
reliable links.

To incorporate the above heuristic, Algorithm 2 assigns the modules one
by one such that each time a module is assigned, the system unreliability is
minimized. At Step 2, a module with maximum value of Ci is assigned to the
most reliable processor. The modules that must also be assigned to the same
processors due to a system constraint are so assigned (Step 3.1). Step 3.2 finds a
module, which has not been assigned yet and is tightly coupled with the already
assigned modules and assigns it to a processor such that the system unreliability
is minimized. The complete algorithm is given below. The time complexity of
the algorithm is O(nm2)

Algorithm 2

1. Initialize A= 0, Sk = 0 (fork= 1 ton) {A is a list of modules which have
been assigned and Sk is a list of modules assigned to processor Pk}

2. Find a task ti E T with a maximum value of Ci and assign it to processor Pk

such that eikAk is a minimum over all the processors and no system constraint
is violated. Set T = T- ti; A= A+ ti; Sk = Sk + ti

3. While (NOT T empty) do
3.1. If there are some modules in T that must also be assigned to processor Pk

at which the last module is assigned, then assign all of them to Pk and
remove them from T, add them to A and Sk

3.2. Remove a task ti ET such that value of (7) is maximum
3.3. Assign ti to processor Pk such that eikAk + :EalljEA :Eb# XjbCij/Lkb/Wkb

is a minimum over all the processors and allocation of tk to processor Pk

does not violate any of the system constraints. Assign ti to processor Pk

and set T = T- ti; A= A+ ti; S + k = Sk + ti
End (While)

4. Return the allocation Sk, k = 1 ton.

Task allocation in distributed computing systems 125

Note that Step 3 of the above algorithm does not consider any intermodule
communication cost. To improve on this, Algorithm 3 (below) generates n as­
signments by assigning the first module on each of the n different processors
and then selects the best one from them as a solution. The time complexity of
the algorithm is O(n2m 2)

Algorithm 3

1. Initialize m in = A_max_number, A = 0, Sk = 0 (for k = 1 to n) {A is a list
of modules which have been assigned and Sk is a list of modules assigned to
processor Pk}

2. For k = 1 to n do
2.1. Find a task ti ET with a maximum value of Ci and assign it to proces­

sor Pk·
Set T = T - ti; A = A + ti; S k = S k + ti

2.2. Apply step 3 of Algorithm 2
2.3. {Let Xk be the allocation obtained by Step 2.1 and 2.2.}

If COST(Xk) < min then
min = COST(Xk); BEST= Xk

End {for}
3. Return BEST

4. Simulation results

Heuristics do not always generate optimal solutions and it is difficult to study
them analytically for the average and worst-case behavior (Wah, 1984). There­
fore, evaluation of a heuristic is generally done by simulation and by comparing
its solutions with the solutions obtained by other heuristics or with optimal
solutions for small tractable problems (Ghosh, Murthy, and Moffett, 1992).
Therefore, we carried out a simulation study to establish the validity and effi­
ciency of our algorithms. We implemented our algorithms along with the Shatz's
algorithm and performed a total of 294 simulation runs for both small systems
containing 3-5 processors and large systems containing 12-20 processors. The
number of modules was varied from 4 to 8 for small systems and from 10 to 35
for large systems.

We used test data similar to the one used by Shatz, Wang, and Goto (1992).
The failure rate of a processor is in the range of 0.00005-0.00010 and the failure
rate of communication link is in the range of 0.00015-0.00030. The AET of a
module is in the range of 15-25 and the IMC is in the range of 0-C, where
C varies from 15 to 24 for different systems. The system configurations were
generated randomly and the only system constraint applied is the processing
time limit, which was varied from 30 to 120 for different system configurations.
We also generated about 10% of the total cases in which there were relatively

126 A. MAHMOOD

small number of tightly coupled modules or the execution cost was dominant as
compared to the communication cost.

For small systems, we performed 240 simulation runs for different system
configurations to evaluate the efficiency of the heuristics. To measure the error
of a heuristic algorithm A, we used the relative percentage error r(A), given by

r(A) = R(o~~o~tf(A) x 100, (11)

where R(opt) is the system reliability of the optimal allocation obtained by
Algorithm 1, and R(A) is the system reliability of the assignment generated by
heuristic A.

Table 2 summarizes the performance of Algorithm 1. The data shown for
each system configuration is an average over all the simulation runs for the par­
ticular configuration. The simulation results show that Algorithm 1 generated

No. of nodes in No. of nodes
n M complete search tree generated by %

Algorithm 1
3 4 64 12 52.9%
3 6 1093 308 28.2%
3 8 9841 1227 12.5%
3 12 797161 1228 0.2%
4 6 5461 1333 24.4%
4 8 87381 9301 10.6%
5 6 19531 2511 12.9%
5 8 488281 20081 4.1%

Table 2. Number of nodes generated by Algorithm 1

relatively small percentage of nodes to obtain optimal solutions. The simulation
results showing the effectiveness of the heuristic algorithms are summarized in
Table 3 and Fig. 2, using formats similar to those in Lo (1983). The reliability of
assignments generated by Algorithm 3 has a relative error 1.8% as compared to
3.9% and 3.1% for Algorithm 2 and Shatz's algorithm respectively. Algorithm 3
found optimal allocations for 21.3% cases whereas Algorithm 2 and Shatz's al­
gorithm found for 10.8% and 13.3% cases respectively. On average, Shatz's
algorithm produced better allocation as compared to Algorithm 2. However, it
was observed that Algorithm 2 outperformed Shatz's algorithm in those system
configurations in which there were relatively fewer tightly coupled modules or
execution cost was dominant as compared to communication cost. The results
also show that Algorithm 2 generated assignments with relative error quite close

Alg. Avg r r-0 ,. < 1 r<2 r<3 r<4 ,. < 5 r<6 r < 10 worst r
2 3.9 10.8% 20.4% 32.9% 49.5% 63.3% 75.4% 87.1% 95.4% 14.5
3 1.8 21.3% 43.0% 66.3% 86.7% 93.0% 96.8% 98.9% lOO% 7.3

Sha t z 3.1 13.3% 31.6% 50.4% 67.1% 79.4% 84.4% 91.9% 96.1% 11.2

Table 3. Distribution of error r for different algorithms (small systems)

Task allocation in distributed computing systems 127

90 &;

~
~

70

60

~50
~40

30

20

10

0
r=O O<r<l l<>=r<2 2<>=r<3 3<>=r<4 4<>=r<5 r>=S

Figure 2. Number of cases for different values of p (Algorithm 2)

to the optimal values, therefore, its use in Algorithm 1 to obtain an upper-bound
is a reasonable choice to reduce the solution search space.

For large systems (12-20 processors), the number of nodes expected to be
generated by Algorithm 1 were very large. Therefore, we obtained solution for
Algorithms 2, 3 and Shatz's and computed relative percentage error as

(A) = R(A)- R(Shatz) OO
r R(A) x 1 , (12)

where R(Shatz) is the system reliability of the allocation obtained by Shatz's
algorithm and R(A) is the system reliability of the assignment generated by
algorithm A. Note that a negative value implies that the assignment generated
by Shatz's algorithm is better than the one of algorithm A.

The results are summarized in Table 4 and Fig. 3. These results indicate
the same tendency as the small system simulations. Algorithm 3 is the most
effective of all the three heuristics we compared. There were only 9.3% cases for
which Shatz's algorithm produced better results as compared to Algorithm 3.
Shatz's algorithm outperformed Algorithm 2 for most of the cases. However,
similar to small system simulation results, Algorithm 2 produced better assign­
ments when there were relatively fewer strongly coupled modules, or execution

Alg. r < -2 r < -1 r < 0 r - 0 r < 1 r<2 r<3 r<4 r<5 r > 5
2 18.5% 40.7% 64.8% 64.8% 81.5% 88.9% 88.9% 92.6% 94.5% lOO%
3 3.7% 5.6% 9.3% 11.2% 26.0% 37.1% 51.9% 63.0% 83.4% 100%

Table 4. Distribution of error r for different algorithms (large systems)

128 A. MAHMOOD

30

..,
gAJg.3

"'
.... ;::

;:; ;:; ... IIJAig.4
0

25

00 "' ISJShatz
~ ~

"'
~ ~ ~

20

00

lO

"' ~ ::j ~ ~ ::j
~

~
....

00 ...;
;!

"' ~ E
~ "' ~ E "'

~ ~ ~ E
~ ""

~ "'
,..:

~
.,;

~ ~
~ ~ ~~ ~;:)~ ~ ~ E E ~

0

r={) O<c<l l<=r<2 2<=r<3 3<=r<4 4<=r<S S<=r<6 6<=r<!O

Figure 3. Number of cases for different ranges of r (small system)

cost was dominant as compared to communication cost. We also observed in
our simulation study that the proposed algorithms generated the same module
allocations for more than 70% of test runs. This percentage was even higher
when failure rates of various links and/or processors were chosen to have dif­
ferent values. The explanation of this observation is that all the algorithms
allocate modules based on the relative reliability of processors and links. If the
failure rate of links have comparable values, the modules may be spread out to
different processors; otherwise heavily communicating modules are allocated to
the same processor. Similarly, more modules are allocated to those processors
which are relatively more reliable.

5. Conclusions

In this paper, we considered the task allocation problem in distributed com­
puting systems with the goal of maximizing system reliability. Here, first we
presented a task allocation model similar to that of Shatz. The model is based
on a cost function, which represents the unreliability caused by execution of
modules on processors and the intermodule communication. Therefore, min­
imizing the cost function is equivalent to maximizing system reliability. We
presented three algorithms: one to obtain optimal value and other two to ob­
tain suboptimal value of cost function in a reasonable amount of computational
time. Algorithm 1 can easily be tailored for network topologies other than con­
sidered in this paper by defining appropriate cost function and expressions for
g(v) and h(v). Algorithm 2 and Algorithm 3 can also be used for other network
topologies by defining an appropriate cost function and other related terms.

Task allocation in distributed computing systems 129

We demonstrated the efficiency and effectiveness of our algorithms through
a simulation study in which we compared simulation results of our heuristics
with those of the algorithm of Shatz. Algorithm 1 obtained optimal value by
searching only a small percentage of the total search space. The results show
that Algorithm 3 outperforms Shatz's algorithm in almost all the cases whereas
Algorithm 2 outperforms Shatz's algorithm in almost all those cases in which
there were relatively fewer strongly coupled modules or execution cost was rel­
atively dominant as compared to the communication cost.

References

BANNISTER, J .A. and TRIVEDI, K.S. (1992) Task allocation in fault-tolerant
distributed systems. Acta Informatica, 20, 261-288.

BoKHARI, S.H. (1988) Partitioning problems in parallel, pipelined and dis­
tributed computing. IEEE Trans. Computers, 37, 48-57.

BOWEN, N.S . , NIKOLOUS, C.N. and GHAFOOR, A. (1992) On the assignment
problem of arbitrary process systems to heterogeneous distributed com­
puter systems. IEEE Trans. Computers, 41, 257-383.

CHU, W.W., HOLLOWAY, L.J. and EFE, K. (1980) Task allocation in dis­
tributed data processing. IEEE Computer Mag., 13, 57-691.

COFFMAN, E.G. (1976) Computer and Job Scheduling Theory. Wiley, New
York.

DAVOLI, R ., GIACHINI, L.A., BABAOGLU, 0., AMOROSO, A. and ALVISI, L.
(1996) Parallel computing in networks ofworkstations with Paralex. IEEE
Trans. Parallel and Dist. Systems, 7, 371-384.

GHOSH, D., MURTHY, I. and MOFFETT, A. (1992) File allocation problem:
comparison of models with worst and average communication delays. Op­
erations Research, 40, 1074- 1085.

HARIRI, S. and RAGHAVENDRA, C.S. (1986) Distributed functions allocation
for reliability and delay optimization. Proc. IEEE/AGM 1986 Fall Joint
Computer Conference, 344-352.

KARTIK, S. and MURTHY, C.R. (1997) Task allocation algorithms for maximiz­
ing reliability of distributed computing systems. IEEE Trans. Computers,
46, 719-724.

KIM, J., LEE, H. and LEE, S. (1997) Replicated process allocation for load
distribution in fault-tolerant multicomputers. IEEE Trans. Computers,
46, 499-505.

LEE, C.-H. and SHIN, K .G. (1997) Optimal task assignment in homogeneous
networks. IEEE Trans. Parallel and Dist. Systems, 8, 119- 129.

Lo, M.V. (1983) Task assignment in distributed systems. PhD Dissertation,
Univ. of Illionois at Urbana-Champaign.

MA, P .-Y.R. (1982) Task allocation model for distributed computing systems.
IEEE Trans. Computers, 31, 41-47.

MAHMOOD, A . (1994) Adaptive File Allocation in Distributed Systems: A Cy­
bernetics Approach. PhD Thesis, University of London.

---- ---- -------------------.------------------------------

130 A. MAHMOOD

NILSSON, N.J. (1971) Problem Solving Methods in Artificial Intelligence.
McGraw-Hill.

SHATZ, S.M. and WANG, J.-P . (1987) An introduction to distributed software
engineering. IEEE Camp. Mag., 20, 23-31.

SHATZ, S.M., WANG, J .P. and GOTO, M. (1992) Task allocation for maximiz­
ing reliability of distributed computer systems. IEEE Trans. Computers,
41, 1156-1168.

SHEN, C. C. and TSAI, W .H. (1985) A graph matching approach to optimal task
assignment in distributed computing systems using a minimax criterion.
IEEE Trans. Computers, 34, 197-203.

TAN, M. and SIEGAL, H.J. (1998) A stochastic model for heterogeneous com­
puting and its application in data relocation scheme development. IEEE
Trans. on Parallel and Distributed Systems, 9, 1088-1101.

WAH, B .W. (1984) File placement on distributed computer systems. IEEE
Computer, 23-32.

