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Abstract: The notion of small-time local attainability (STLA)
of a closed set with respect to a nonlinear control system is discussed
and a new sufficient STLA condition is proved.

Keywords: small-time local attainability of a set, nonlinear con-
trol systems

1. Introduction

The problem of small-time local attainability of a closed set with respect to a
control system is not reduced to the problem of small-time local attainability
at every point of the set. So, it needs a specific study. This problemn has been
partially studied using mainly zero order and first order approach (see the papers
Soravia, 1978, Bacciotti and Stefani, 1980, Veliov, 1994, Veliov, 1997, Clarke
amd Wolenski, 1996, etc.). We would like to mention also the paper Krastanov
and Quincampoix (2001), which is closely related to the considered problem.
A class of high-order variations to the altainable set is defined and a different
sufficient STLA condition is proved there.

To state the problem of small-time local attainability, let us consider the
following control system:

i(t) € F(x(t)), (1)

where F : R® = R" is a multifunction with compact and convex values. An
absolutely continuous function z(-), satisfying (1) for almost every ¢ from [0, 77,
is called a trajectory of (1) defined on Eﬂ.Tl. For a fixed point x and for T > 0,
the attainable set A(x,T') of (1) from x at time T > 0 is defined as the set of
all points that can be reached in time T from x by means of trajectories of (1).
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DEFINITION 1.1 Let S be a closed subset of R®. [t is said that § is small-time
locally attainable (STLA) with respect to the control system (1) 4 for any T > 0
there exists o neighbowrhood 0 of § such that for every point x €  there exisls
an admissible trajectory of the control system (1) starting from the point @ and
reaching the set § in time not greater than T, ie. Alz, )0 S £ @ for some

te0.7].

To present a general sufficiendt STLA condition of zero-order of a control
system with respect to a set, we follow the notations from the paper by Clarke
and Wolenski (1996): Let § be a compact subset of B™. We sel

S, = {y € R"| ds(y.5) < v},

where
ds(y) = inf{]ly - sll | ¢ € S}

If z is an arbitrary point from S, \ S, we set
ma):={y € §|lly - «|| = ds(a)},

i.e. w{x) is the set of all metric projections of the point & on the set 5.
Let us consider the control system (1) under the assumption that F is con-
tinuous of modulus w near S, i.e.

A(F(z), Fly)) < w(]lx — yl), for all z,y near S,

where A denotes the Hausdorfl metric and w : [0, 0¢) — [0, 2¢) is a nondecreasing
continuous function with w{0) = 0. Let y belong to the boundary 35 of the
set 5. A vector £ € R" is called a proximal normal to 5 at y provided there
exists r > 0 such that the point y + r£ has y as the closest point. The set of
all proximal normals at a point y is a cone. This cone is denoted by NE(y) (for
a detailed treatment of proximal analysis and some of its applications, see for
example the books by Clarke, 1983, and Clarke, Ledyaev, Stern and Wolenski,
1998). Using these notations, the results of the papers by Veliov (1994, 1997},
and Clarke and Wolenski (199G) can be formulated as follows:

TueorEM 1.1 Suppose that S is o norwemply and compact subset of B", and
F:R" = R" is a continvous multifunction of modulus w with compact conver
values. Suppose that there exisls § > 0 so that, whenever y € S and £ € NE(y),
there erists v € Fly) for which

(& v} < -8l (2)
Then 5 15 STLA with respecl to (1).
Unfortunately, if the inequality {2) is violated at some boundary point y of §

(for example, when all admissible velocities are “tangent” to the closed set § at
i), we can not apply Theorem 1.1, The following simple example demonstrates
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ExAMPLE 1.2 Let Ss = {(x,y) € R*| y < 0} and let us consider the following
control sysfem

f=u,
g =a 42t ®)

The set 53 is not compact. Moreover, at the origin all trajectories are tangent
to S2. Hence, we can not apply Theorem 1.1. If we assume that there exists a
constant M > 0 such that the values of the admissible controls belong to the
interval [—M, M], then it could be directly shown that the set S; is not STLA
with respect to the control system (8). But, when there are no bounds on the
values of the admissible controls, our main result implies that the set 5 is STLA
with respect to the control system (8) (see, also Jurdjevic and Kupka, 1985).
The proof is based again on construction of suitable variations: Let T € [0, 1].
(2, 0) be an arbitrary boundary point of §a, 2 = (2,97, » > 0, m > max(1, |z]).
t>0,200/m* < T, M = m*/t°. We define the following control function:

_ =M, ifsefo,t'fm);
uy(s) = { M, ifse [t.“fma, 21",’1&3]. {9]

It can be directly checked that the trajectory z(-) = (z(-), gel-)) start-
ing from the point z and corresponding to the control u(-) is well defined on
[0, 2% fm®), (2t fm?) = 0 and

) =gt (L 2B o (2, B,
n(28/m*) =y 2+(3m+ — |t = Ay |¥

+ L +h:2 i
m*  md :

Thus, we may represent =, (207 'm?) as follows:

2 2z 2z 3z 23 D2 i
2 — i gl e 3 ool St I
gy = ('], (Em 63 m ) ; (m2 g 21::2) bt (m:" mn? ) ' )lﬂ}

Taking into account our choice of m, we oblain that
|O(, 2)] < 1242, (11)

The expansion of the solution z, in the form (10) and the estimate (11} show
that A{-) is a variation of first order of the allainable set at the point z.
The vector (0, 1)7 is a normal to S; at the point (x,0) and
1
{re, Alx, 0)) = —=.

a2

T
(200 m®) = 2 = tA(z) + O(t%, 2), where A(z) = (u,-é) anel

Since (z,0) is an arbitrary boundary point of S, our main result implies that
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Now we can formulate the main result:

THEOREM 2.1 Suppose thal 5 is a nonemply closed subset of R, V is o reqular
subset of Uges, \sVy and § > 0. Lel us assume that whenever x € Sy, \ S,

y € w(z) and £ € N5(y) there exists A€ VN VI for which

(€ Aly)) < =4 ll- (13}

Then the control system (i) is STLA with respect to S.

Let ®{x) be the minimal time of steering to the set S from the point z by
means of a trajectory of the control system (1), i.e. &{z) := inf{t > 0, such
that z(0) = z, z(t) € § for some trajectory z(.) of the control system (1)}. The
map (-] is called time optimal map of reaching the set S. Theorem 2.1 implies
directly the following corollary:

COROLLARY 2.1 Suppose that the assumplions of Theorem 2.1, hold true. Then
there exists o constant C > 0 such tha!

O(x) < C.ds(x)"/® (14)
for every x from some neighbourhood U of S,

ProprosiTion 2.1 Suppose that there exist positive constants o, v, C, K and o
Sor which the following conditions hold true:

i/ 0(x) < Cds(z)V® for every = from §,.

i/ if z(.) is a trajectory of the control system (1) defined on [0,T] such that
HT) e 8, and if y is a pond from 8.\ 8 such that |y — z(0)]| < o, then there
erists o trajectory z,(.) of (1) such that

z(0) =y and |z,(t) = 2(0)]] € X[lzy(0) = 2(0)]| for every t € [0.T).

Then @ s 1/a- Halder continuous in 5,

REMARK 2.3 Under the assumplions of Theorem 2.1, condilion 1/ holds always
frue, Condition i/ is salisfied for conlrol syslems with Lipschitz conlinuous
right-hand side (see, for example the paper by Bianchini and Stefan:, 1990).

3. Proofs

Proof of Theorern 2.1, The regularity of V implies {according to Definition (2.2))
the existence of positive constants Ty, 3 > o, 8, L, M, N, C and P for which
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+2 (aft, ) + t*A(z) + O(t?, ),z — y) + ||z - ylI?
< (M.t%ds(z) +t°C + °N)* + 2 (A(y).z - y)
+2t%(A(z) = A(y),z — v) + 2 {a(t, z) + O(t° ,2), 2 — ) + ds(z)?
< M*Pdi(z) + £2°C? + N2 4 2MCi**+odg(z) + 2MNi*+8d 5 ()
+INCEH — 261°ds(z) + 2" Ldi(z) + 2Mt*d%(x) + 20° Nds(z) + d¥(z)
= di(z) [L + M2 + 2L + 2M1*] + 2°ds(x) [-6 + MCt"+
(AE-a) 2 gglf-a)pyy

E - 8

MN#+F=2 4 NiP-e] 4 g2oC? [1 +

We set

o om ()"

According to (15) and (21,

0<t:<Ty and 0<peylt:) <T. (22)

Then, by applying the inequalities (15)-(18) we obtain that

ds(z24(7,t2))" € di(z) [L+ M2 + 2TL + 2M1])
+2U2ds(z) [-6 + MCEE + MNEH#=2 4 N1#-2]

j2(8-a) pr2 (B-a)
I il Nl

E?ﬂ' CE
i o2 c

4y 28 a 8/a
- (87" ) (450

0fo : (F4F=a)fo
-6+ MC (“'3{”) +MN (‘5‘15':“])

9 bd%(z)
2¢?

ﬁdsl:;t.‘} (F=—a)fo
Y (W)

3 Segit) 8 ‘15{5} |:l & (Edsf:n])gm_“”“ .‘lf. i (MS(&#])(H“’”" N

2¢? 2C?

40 2C? e 202 e

C
ar \**  Lér B =
2
< di(z) [1+M (OCE) +55 +2M(262)

§d3(z) &\ gr |\ F+h-clfa
o |~ Mc(zcz) M“"(zm)

L i
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Using again (23}, it can be proved inductively that

by, =L pbe,_, P be, dslz;) € gds(ajog) € ¢ ds(z) (24)
£i41 € A2, Pz, (ts,)) C A2, Tj41), where {25)
Tj] #1 == Py “a'} + P “J‘; } +..t Py “J',} {Eh]
5R{1+p+...;ﬁ]s;gl‘p'_""}’<1" (27)

{the last inequality holds true because of (15)).

According to (24), (25), (26) and (27), the existence of a positive integer &
such that x; & S for j = 1..... k=1 and z3 € 5 means that the set 5 can be
reached from the point x in a positive time Tp, which is less than T, i.e. we
are done. Let us asswne that xp € 5 for every positive iuteger k. According
to (25), every point zy, k= 1,2, 3, ... determines an admissible trajectory z.(-)
of (1) defined on [0, T;] and such that 2,(0) = z and 2z(T}) = =z, Clearly.
0 < Ti < T and {Ti}}=, is a monotonically increasing sequence of real numbers.
Let {Ti}pe, — T*. Clearly, 0 <« T* < T. According to Theorem 3.1.7 from
Clarke (1983) . there exists a subsequence {z,(.)};, and a trajectory z(-) of
(1) defined on [0, 7] such that z;,(t) = z(2) uniformly over [0, min{Ts .7 }].
Applying (24), we obtain that

dg(z(T*)) = J‘|:_|_:1:; ds(z(Ts,)) = J;lﬂ:,l,;,ds{z"r[ﬂ‘:]j = 0.

This and the inequalities 0 < T < T imply that the sl 5 can be reached from
the point = in a positive time T which is wol greater than T, i.e. we are done
in this case too. |

Proof of Proposition 2.1. Our prool follows the corresponding proof from the
paper by Bianchini and Stefani (1990), considering the case when § is a point
and the control system is determined by a differential equation.

We set

D= ﬁhrc"”“ ; (28)

Let = belong to the interior of the set S, and let U be a neighbourhood of x,
such that

n . T_ 1 T 5 —
vesn{yeR lly-ql < 55} n{ve R |y -l < o).

Let y; and y2 be arbitrary points from U. Suppose O(y;) < O(y2). Fix an
arbitrary £ from the interval (0, 8(y:) — B(y,)). Since 0 < B(y;) < O(y) + ¢,
there exists a trajectory zy(-) of (1) starting from y; that reaches § in some
time 7 with
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According to assumption i/ there exists a trajectory za(-) of (1) starting from
y2, defined on [0, 7] and such that for every t € [0, 7]

llz2(f) = 21 (&)l < €%*{lyz — wll.
Because ya € S,, we obtain that
T < O(1) < Crlle,
Our choice of U/, (28) and the inclusion z,(7) € S imply that
lds(za(r)ll € llza(r) = 21 (@) € " llwz =l € Dlpa —mall €+ (29)
S0, z2({r) € 5, and by asswmplion if
B(z(7)) € Cds(za(r))V/".
Thus, according to (29),
B(12) < 7+ O(2a(1)) € O(1) + € + Cds(za(r))"/*
< O(y) +C.DV y2 — )"/ +e.
Since B{y;) and B(y2) do not depend on ¢, we obtain that

1©(y2) = ()| < Cllya = wmll*/°,

where
C := c.pYe, [ |
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