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Abstract: The computation of cigenvalues of a matrix is still
of importance from both theoretical and practical points of view.
This is a significant problem for numerous industrial and scientific
situations, notably in dynamics of structures (e.g. Géradin, 1984),
physics (c.g. Rappaz, 1979), chemistry (e.g. Davidson, 1983), econ-
omy (c.g. Morishima, 1971; Newmann, 1946), mathematics (e.g.
Golub, 1989; Chatelin, 1983, 1984, 1988). The study of cigenvalue
problems remains a delicate task, which generally presents numeri-
cal difficulties in relation to its sensivity to roundoff errors that may
lead to mumerical unstabilities, particularly if the eigenvalues are
not well separated. In this paper, new subgradient-algorithms for
computation of extreme eigenvalues of a symmetric real matrix are
presented. Those algorithms are based on stability of Lagrangian
duality for non-convex optimization and on duality in the difference
of convex functions. Some experimental results which prove the ro-
bustness and cfficiency of our algorithms are provided.

Keywords: non-convex optimization, difference of convex func-
tions, sub-gradient algorithms, Lagrangian duality, eigenvalue prob-
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1. Introduction

In recent years, active research has been conducted regarding the following class
of the non-convex and non-differentiable optimization problem:

(PNC) : inf{g(x) — h(z) :z € X}

where g and h are convex, X = R",
The problem (PNC) is called the DC optimization problem and its partic-
ular structure makes significant developments in both qualitative and quantita-

tive studics possibles (e.g. Hiriart Urruty, 1989; Hiriart Urruty and Lemaréchal,
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388 A. YASSINE

As regards convex approaches to non-differentiable non-convex optimization
(as opposed to combinatorial approaches to global optimization), we present
here main results concerning DC optimization and algorithms for DC optimiza-
tion problems (DCA). The DC duality was first introduced by Toland (1979) in
the context of variational calculus in mechanics, and generalized by Pham Dinh
(1984, 1986, 1988) for convex maximization programming.

Owing to their relative simplicity of implementation, DCA’s permit to solve
large-scale real world DC optimization problems. Due to their local charac-
ter, they cannot guarantee the globality of computed solutions to general DC
optimizations problems. In general, DCA converges to a local solution, but we
observe quite often its convergence to a global one. A DC objective function has
infinitely many decompositions which may exert strong influence on the quality
(robustness, stability, rate of convergence and globality of solutions sought) of
DCA.

The determination of cigenvalues of a matrix is still of importance from both
theoretical and practical points of view. This is a significant problem for numner-
ous industrial and scientific applications, notably in dynamics of structures (e.g.
Géradin, 1984), physics (e.g. Rappaz, 1979), chemistry (c.g. Davidson, 1983),
economy (e.g. Morishima, 1971; Neumann, 1946), mathematics (c.g. Golub,
1989; Chatelin, 1983, 1984, 1988). The study of cigenvalue problems remains
a delicate task, which generally presents numerical difficulties in relation to its
sensivity to roundoff errors that may lead to nunerical unstabilities, particularly
if the eigenvalues are not well separated. Up to the present time, no direct finite
method for the computation of a general square matrix is available: only itera-
tive procedures, such as LR, QR algorithms, Jacobi, Rayleigh quotient, Inverse
iteration, Power method, projected Newton methods are used in the literature,

The purpose of this paper is to present new algorithms of sub-gradients,
based on the stability of Lagrangian duality in non-convex optimization and
on the duality in DC (Difference of two Convex functions) optimization, for
the computation of extreme cigenvalues of a symmetric real matrix. In Sec-
tion 2 the duality in DC optimization is presented in relation to sub-gradient
algorithms. The stability of Lagrangian duality in non-convex optimization is
examined in Section 3. In Sections 4 and 5 the computational procedures for the
determination of extreme cigenvalues of a symmetric real matrix are presented.
Section 6 presents comparative numerical experiments. Some final remarks and
conclusions are given in Scction 7.

2. DC Optimization

2.1. Preliminaries

Let X be the Euclidean space R™ and Y its dual space (Y = R"). Denote by
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consider the following optimization problem:
(P):a=inf{g(z) —h(z):x € X}, g,heTlo(X).

Since g and h can become infinite simultaneously, we assume that (+00) - (+00)
= +00 to avoid an indeterminacy problem.

The DC duality may be defined by using conjugate functions g* and h* such
that

(D):B=inf{h*(y)—g"(y) :y €Y}

where ¢*(y) = sup{< 2,y > —g(z) : » € X} is the conjugate function of
g € T'o(X) with values in T'g(Y). Problem (D) is the dual of (P) and a = f.

If « is finite then dom(g) C domn(h) and only the values of (g — h) € dom(g)
are involved in the search for global and local solutions to (P). This DC duality
was first studied by Toland (1979) in a more general framework.

2.2. Duality in DC Optimization

THEOREM 2.1 (Pham Dinh, 1986)
Let () and (A) be the solutions sets of problems (P) and (D), respectively.
Then:
1. Oh(x) C 9g(x) Va: € (p)
2. 0g*(y) C Oh*(y) Vy e (4)
3. U{09*(y) :y € (A)} C (p)  (an equality if h is sub-differentiable in (p))
4. U{Oh(z): 2 € (p)} C (A) (an equality if g* is sub-differentiable in (A))

DEFINITION 2.1 A point x* of X is a local minimum of (g — h) if g(=*) and
h(z2*) are finite and if g(x) —h(z) > g(x*)— h(z*) for each = in a neighbourhood
U of x*. Consequently, dom(g) NU C dom(h).

DEFINITION 2.2 A point 2* of X 1is a critical point of (g—h) if Oh(z*)Ndg(x*) #
0.

If #* is a local minimum of (g — h), then 9h(z*) C dg(x*). This necessary
condition is also sufficient for several non-differentiable DC problems (Pham
Dinh, 1984), in particular for a polyedral h (Hiriart Urruty, 1989).

The sub-gradient algorithms presented in the following enable us to obtain
a point a* such that dh(z*) C dg(x*). The local minimun property of (g — h)
for 2* is likely.

Let g (resp. A;) be the sct of points verifying the necessary conditions of
local optimality for (P) (resp. for (D)), i.c.

p1 = {v € X:0h(z) C 9g(x)}, Ai1={yeY:0¢"(y) COh*(y)}.
For every point z* in X (resp. y* in Y), the following problems:
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T(y*) = inf {g(z) — h(z) : z € g"(y")}

are defined. We denote by s(z*) (resp. 7(y*)) the set of solutions to S(z*)
(resp. to T'(y*)).

THEOREM 2.2 (Toland, 1979; Yassine, 1995, 1997)
x* € py iff y* € Ay s.t. 2 € dg*(y*)
y* € Ay iff z* € pr1 s.t. y* € Ah(z").

COROLLARY 2.1 Ifz* € p; (resp. y* € Ay), then:

i) s(z*) = 0h(z*) (resp. (y*) =9g*(y")).

i) h*(y) — g"(y) = g(z*) — h(z*) Vy € Oh(a"),
(resp. g(z) — h(z) = h*(y*) — ¢*(y*) Vax € 0g"(y"))-

These results constitute the basis of DCA to be studied in Section 2.3. In
general, DC A converges to a local solution. However, it would be interesting to
formulate sufficient conditions for local optimality.

2.3. Sub-gradient algorithms (DCA Algorithms)
2.3.1. Complete form

In the sub-gradient algorithm, two sequences {z*} and {y*} verifying Theorems
1 and 2, are constructed schematically as follows: Starting from any element 2:°
of X, the algorithm creates two sequences {z*} and {y*} defined by

y* € s(2¥), 2*er@yh)

THEOREM 2.3 (Toland, 1979, Yassine, 1995, 1997) Let us assume that the se-
quences {z*} and {y*} are well-defined. Then we have:
1. g(@*+1) — h(@*) < h*(3) — g° (4#) < gla*) — h(a*).
The equality  g(z**') — h(z*+1) = g(a*) — h(z*) is fulfilled iff z* €
9g*(y*) and y* € Oh(x*). Then, 2* € p1 and y* € A,.
2. If « is finite, then:
lim {g(z*) - h(e*)} = lim {R*(")-g"(s")} =" 2 0.
k=00 k=400
8. If a is finite and if the sequences {x*} and {y*} are bounded, then Vz* €
Q(z*) and (resp. Vy* € Q(y*)) there exists y* € Qy*) (resp. z* € Q(a*))
such that:
i) z* € gy and g(z*) — h(z*) =a* >
i) y* € Ay and h*(y*) - g*(y*) =
iii) | lim {g(z*) +9"(y")} = 9(=")
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From a pratical point of view, although this algorithm uses a DC decompo-
sition mentioned above, Problems (S(z*)) and (7'(z*)) remain DC optimization
programmes. Calculation of y* and 2**! is therefore still a difficult task. In
pratice, the sub-gradient algorithms are generally used on the simplified form
presented in what follows.

2.3.2. Simple form

Starting from an arbitrary point z° in X, we define two sequences {2*} and
{y*} by taking

y* € oh(z*), 21 e ag*(y¥)

In this case, all the assumptions of Theorem 2.3 are still satisfied. Morcover, one
could expect to obtain the propertics dh(z*) C dg(z*) and dg*(y*) C Oh*(y*),
but we only have dh(z*) N dg(x*) # 0 and dg* (y*) N AL* (y*) # 0.

DEFINITION 2.3 A function [ is strongly conver on X if there exists a real
p > 0 (called the coercivity coefficient) such that

i~
2

JPz+ (1 =XNy] < Af(x)+ (1= A)f(y) - pllz —y|?

YA€ [0,1]); Vz,yeX.

THEOREM 2.4 (Auslender, 1976) If f is strongly convex on X, then there exists
a real p > 0 such that

f@) > f@)+<y,2 —x> +plla’ —z|® Va,2’ € X; Vyedf(x).

The converse is true if f is sub-differentiable.

THEOREM 2.5 (Yassine, 1995, 1997) Let us assume that g and h are strongly
convex functions and the sequences {x*} and {y*} are well-defined. Then we
get the following properties:
1. g(z**1) — h(z**1) < A*(yF) = g* (1) — pulla**! — 2|12
< 9(a*) = h(z*) = (pn + pg) 1+ — z¥||?
where p, and p, are the respective coefficients of coercivity related to h
and g.
2. By — " (1Y) < gla*+) — h{a*HY) ~ pye [l — oH)2
<R () = g* (%) = (one + pg=)lly* 1 — ¥
where py- and py- are the respective coefficients related to h* and g*.

COROLLARY 2.2 (convergence of the simple form,)
i g(r.':""'"l) —h(a‘:k+l) = h* (yk) —g'(?jk’) — yk € ('jh.(.’r.'k"'l) and r*t! =
k
2",
Tin Ehidn aman avis wnd  al v BLORN mOaraks
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2. h*(y¥) — g*(¥*) = 9(2*) — h(z*) <= a* € 9g*(y*) and y*~! =y~
Here, we get y* € Oh(2*) N dg(a*).

3. If a is finite and the sequences {z*} and {y*} are bounded, then Va* €
Qz*)  (resp. Vy* € Q(y*)) there exists y* € Qy*) (resp. a* € Qa*))
such that:

i) g(2*) = h(z*) = " (y*) - g"(*) — " (¥") - g @) = a* 2 a as
k — 400

ii) y* € Oh(x*) N dg(a*) and x* € Oh*(y*) N Ig*(y*).

iii) lim |25 2% =0 and lim [y*t - y¥ =0
iii) k_{TmHT = an k_l}f@”?) yll
when Q(z*) is the set of accumulation points of {z*}.

Proof. This result follows immediately from Theorems 2.4 and 2.5. |

3. Stability of the Lagrangian duality in non-convex opti-
mization

3.1. Problem statement

Let X be the Euclidean space R™ and Y be its dual space (i.e. Y = R"). In
this section, we consider the stability of the Lagrangian duality in non-convex
optimization problems of the form:

(P) :maz {f(z): ¢(z) <1}

where f € ['o(R"), and it is positively homogencous, non identically zero, and
¢ is any of the norms on X.
The problem (P) (called the primary problem) may be formulated as follows:

(P) : min{~f() : 36*(x) < 5)
The Lagrangian function related to problem (P) is defined by

L(:r:,)\):{ —f(ﬂ?)+%(¢2(ar)—1) ifA>0

—00 otherwise.
We define
(Pr) : g(A)
=inf{L(z,)) :z € R"} =inf {-f(z) + g—(d)g(m) —1):z e R"}.
The dual problem (D) related to (P) may be written down as follows:

(D) : B = sup {g(A) : A > 0}
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1. It provides significant additional information to characterize primary and
dual solutions. Consequently, we are able to obtain the primary solution
from the dual solution and vice-versa.

2. The study permits to use problem (Py) whose solution leads to that of
(P).

3.2. Study of problem (P)

We denote by (pa) (resp. P and D) the set of solutions of (Py) (resp. (P) and
(D).

PROPOSITION 3.1 1. dom(g) =)0, +o0|

—f(x A Ao
2 () {meRr g =L 2 Agemy 4
2 2 2
Proof.
1. If f is positively homogeneous and non identically zero, then
9(0) =inf{-f(z) : 2 € X} = —o0 (1)

Hence domn(g) CJ0, +ool.
If f is finite, then Vo € X, 3b > 0 such that f(2) < bg(x). We have

A 9 A 2
L@, ) = ~[(z) + 5 {8 = 1} > ~b.g(a) + 5 {#(z)? ~ 1}
and
i X = im é 2 =
¢(:rl)ll‘£1+oo L(?,’\) - q&(:n])——+oo 2¢'(T) e
Consequently, dom(g) =0, +o0.
2.2€ (P) = 0€ dL(x,\) = 0 —-0f(x) + M(x)0¢(z) = If(x) C

A(x)09(z).
Then

Vy € 0f(z), Vz € 0¢(z), 'y = Ap(x)x'z (2)
If f is positively homogeneous and ¢ is a norm on X, then vy € df(z), Vz €
06(x)

'y =fla), a‘z=g(a) (3)
Combinating (2) and (3), we get

f(z) = A(a)? (4)
Hencee ) N X f(@) \

N B . 2_. 2 4\ 2 2
9O = —5 = f@) + 5 $(a)? = =5 - T = 5 {1+ 9(2)%}

COROLLARY 3.1 Let x € (py), then we have

i) ¢(z) >1=-A>g(A)>—f(z)

i) o) <1=-A<g(A) <—f(x)

i) g(a) =1=-A=g(A)=—f(z) andz € P, A€ D.

m™ 1 e i1 1. ~ o . w - —



394 A. YASSINE

COROLLARY 3.2 For every A > 0, we get the following three properties which
are mutually exclusive:

i) (1) C {z € R™: 6(a) > 1)

ii) (pa) C {z € R™: ¢(z) < 1}

iii) (pa) C {z € R™: ¢(z) = 1}.

This corollary follows immediately from Proposition 3.1. |

REMARK 3.1 If (pa) is a singleton, then the above corollary is trivial.

k
—, where I is a negative constant depending

-
THEOREM 3.1 1. g(\) = T+ T

on f and ¢.

2. D= {A*} = {V-2k} is a singleton and we get
i) (pa) C{z € R": ¢(z) = 1}
i) a=f=g(X") = —f(a*) = -\

Proof. i
z)—1 2(z) -
1. dg(N) C r:o{&}, Lence Vg(A) = ¢'(A) = w =1 ﬂ)%l,
-A k
and then g(A) = - + X where k is a real to be determined.
2. and 3.
Let A* and =™ be the dual and primary solutions, respectively. Therefore:
- ke 2
g(A%) = Tl a v 0, whence k = " and finally A* = /-2k.
2 %) _
Futhermore, ¢'(\*) = - =0 = (=) =1 = f(z*) =

2
X%(z*) = A = g(\*) = —\*, and then
B=g\)=—=f(z")=a= =X, ¢(z*)=1and \* = V-2k.
|

3.3. Stability of Lagrangian duality when f and ¢ are two semi-
norms

Let us consider the primal problem (P) when f and ¢ are two semi-norms defined
on X = R" such that N(¢) C N(f). We want to prove that the previous results
are still consistent for this class of problems. If A = N(¢) and B = AL, then
X can be expressed as X = A @ B and the following propertics are established

¢(x + a) = ¢(z), flx+a)=f(x) VaeA

Consequently, (P) may be expressed as
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The semi-norms f and ¢ on X are norms on B, hence problem (Q) always pos-
sesses a solution. We denote by Q the set of solutions to (@), then P=Q + A
(i.c. if 2 is a solution to (Q), then 2™ = z + a is a solution to (P) Va € A). In
addition, we get

(P2): 93) = inf {~{(z) + 5(#%(z) ~1): 2 € R"}.

Based on the previous remarks, problem (Py) may be formulated as follows :
; Ao A
(Py): g(A) =inf{-f(z) + 5(,{) (z):z € B} — 7

Since g(A) < —%, we can consider the set E={z € B: —f(z) + %qﬁ?(n:) <0},

which means that the last problem considered is equivalent to

(P): g() = inf {~[(z) + 56%(x) ;7 € B} ~ 5.

Since f is bounded everywhere, 3b > 0 such that f(z) < b¢(z). Hence (Py) can
be written down in the form:

(P): g3) = inf (~f(x) + 56%(z) s w € By}~ 5.

2
where Ey = {z € B : ¢(2) < T}’ A > 0}. Since ¢(x) is a norm on B, we
deduce that Eq is bounded and the previous stability results can be applied.

3.4. Resolution of problem (P)
The idea consists in solving the intermediate problem (Py) for a given A° |
0

which leads to a value of the constant k = A°{g(\%) + i—-}, since A* = =2k

is a solution to (D). Problem (Py-) is solved again to obtain a solution to (P).
We then get the following algorithmic scheme:

1. Choosc any A% > 0.

2. Solve -
(Pro) : 90°) = inf {L(z,2°) : & € R"} = inf {~f(z) + 5 (4*(@) ~ 1) :
re Rn}

0
3. Compute the constants k= A°{g(\%) + %}, A* = v-2k.

4. Solve .
(Px-) sinf {L(z,A*):x € R"} = inf {—f(z) + —2—(¢2(m) —-1):xzeR"}

The solution #* to (Py-) is also a solution to ( P).
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4. Extreme eigenvalues of a real symmetric matrix

4.1. Consider the following optimization problem
(P):mazx {f(z) = V< Az,2 > : ¢(2) = ||z| < 1} (DC1)

where A is a symmetric positive semi-definite matrix and |.|| is the Euclidean
1101111

It is obvious that the optimal value of (P) equals the square root of the max-
imum cigenvalue of A. Using the sub-gradient algorithm previously presented
in Section 3.4, (all the conditions are satisfied) and the intermediate problem
(Py) solved by means of the sub-gradient algorithm, on the simple form already
considered, we obtain the following expression:

= —
At V< AR ok >

where A and 1 are positive reals.
Considering an arbitrary clement 2° such that Az° # 0, the sequence {2%}
defined by () verifies the property AzF #0 Vk > 0.
A
V< Ax0 20 >
which contradicts our assurnption. This remark allows the algorithm related to
the search of eigenvalues to be written without considering points where f(z) is
not differentiable. This method may be used to compute the extreme cigenvalues
of any symmetric matrix. Indeed, let A be a real synunetric matrix of order n,
A1 < A2 < ... < Ay its cigenvalues, and p = [|A]ly = [|Alloe = max{3"]_, |4;j] :
i=1,.,n}, then:
Applying the above-mentioned method to the positive semi-definite matrix
A" = (A + pI), one obtains the value {(p + A,), which gives the value of Ay,
Since the matrix A” = (—=A + pI) is still positive semi-definite, one obtains
the value (p — Ay) which allows determination of A;.
The description of the sub-gradient algorithm may be suminarized as follows:
1. Choose any \° > 0
2. Solve (Pyo) : g(A°) = inf{—f(z) + A,_,—o(gbz('x) —1) : = € R} by the
sub-gradient algorithm with regularisation (see Section 2.3.):
Select 2% € R™ such that ¢(2°) = 1,k = 0, and construct the sequence
{2*} as follows:

.'I,'k+1

(%)

Indeed, the relation Az' = 0= (pul + )JAz® = 0 = A2z° =0,

Ak

e ]
G ——
At p f V< Azt k>

where A and 1 are positive reals.

pRtl —

A% g
This sequence converges to a limit z : g(A°%) = — f(z) + ?(Gb'(m) -1)

0
? Mavvvmbn tha sonctant b — lu(nf }0\ o i )‘—\ A\ — 9
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A*
4. Solve (Py«) s inf {—f(x) + ?(qﬁz(m) —1): 2 € R"} by the sub-gradient
algorithm with regularisation presented in Section 2.3. The solution 2*
of (Py~) is a solution of (P) and the maximum cigenvalue of A is o* =

f (@))%

4.2. Consider the following maximization problem
(P) :maz{f(z) = ||Az| : ¢(z) = ||z| < 1} (DC2)

where A is a positive semi-definite symmetric matrix and ||.| the Euclidean
LOIIL.

It is obvious that the optimal value of (P) cquals the maximun eigenvalue
of A. The intermediate problem (Py) is solved by the sub-gradient algorithim
with regularisation of Section 2.3. (the simple form is used), which leads to the
following formula:

1 A"A.Tk'
41 K
z = —)\ " [/L’l, + —” :131\7”1 (**)

where A and g arc positive reals.
One chooses arbitrary z° such that Az° # 0, then the sequence {2*} defined
by (#%) verifies the property Az¥ # 0 Vk > 0. Indeed, the assumption Azt =
t

0= (ul+——-)A2" = 0 = A2° = 0, which contradicts our assumption. This

AA
| Az
remark allows to write the algorithm used for the search of cigenvalues without
cousidering points where f is not differentiable.
According to Section 4.1., this method may be used to compute extreme
cigenvalues of any symietric matrix.
The elementary steps of the sub-gradient algorithm can be summarized as
follows:
1. Select any A° > 0
2. Solve (Pyo) : g(A°) = inf {—f(z) + %(d)z(m) —1) : 2 € R"} by the
sub-gradient algorithm with regularisation presented in Section 2.3. as
We sclect any 20 € R™ such that ¢(2°) = 1,k = 0,and construct the
sequence {zF} as follows:
1 Y At Az
= X M T
where A and i are positive reals.

/~+l

This sequence converges towards a limit 2 : g(A°%) = — f(x) + %O(¢2(T) -1)
)\O
3. Compute the constant k = A%(g(A\°) + 5 —), A'=v-=-2k

A* g ;
4. Solve (Py«) :inf{—f(z) + —2—(¢‘(T) —1):2 € R"} by the sub-gradicnt

lg’omhm wnh regularisation pws(‘ufod in 90( tion 2.3. The solution z* of

' = I . (S 2 Y ¥ | T * Pl kN
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The two DC algorithms presented above are applied to the Lagrangian func-
tion. We now consider DC algorithms directly related to the initial problem
(P):

4.3. Let us consider the following optimization problem:
(P) : maz {f(z) = /< Az,z > : ¢(z) = ||z|| £ 1}

where A denotes a positive semi-definite symmetric matrix and ||.|| is the Eu-
clidean norm.
It can be casly verified that (P) is equivalent to the following problem (@Q):

(@) : min{—v/< Az,z >+ xe(z) :z € R"}

where yg(z) stands for the indicatrix function related to the set E = {z € R™:
=]l <1}
The problem (@) may be written on the DC form:

(@) : min {{Ellzl* + x5()] - V< Az,2 > + Slle|)] : = € R"}

where 1 is an arbitrary positive real.
Application of the simple form of the sub-gradient algorithm given in Section
2.3. to solve (Q) leads to the following formula:

y*if [yt <1
peey k41 _ o 8
(Proj1): 7 Proje(y") ng_” otherwise
4

The sequence {z*} converges to 2* solution of (P) and the maximum eigen-
value of 4 is o* = [f(z*)]*.

where y* = [uz® +

4.4. Consider now the optimization problem:
(P) : maz {f(x) = || As]l : ¢(x) = |l2l| < 1}
Problem (P) is equivalent to problem (Q):
(Q) : min{~Allall +x5() : € R"}
which can be written in the following DC form:
(@) : min{[S 2 + xz(2)) - (|42l + £|z]*) : = € R"}

where p is an arbitrary positive real.
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The simple form of the sub-gradient algorithm (see Section 2.3.) used to
solve problem (@) leads to the following formula:

Al Az*
i » k+1 = ] k _—
(Proj2) : i Projg [pz” + ||A1:"]|]

The sequence {z*} converges to z* solution of (P) and the maximum eigenvalue
of Ais a* = f(z*).

4.5. The optimization problem:

1
(P) :maz{f(z) = 5 < Az, z >: ¢(z) = ||z]| £ 1}
(P) is equivalent to the following problem (Q):

(@) : min {[5 el + xp@)] - [5 < Az,z > +5 2]z € R")

where p is a given positive real number.
To solve (Q), we apply the simple form of the sub-gradient algorithm and
obtain the following relation:

(Proj3) : "t = Projp [(A + ul)z"]

The sequence {2*} converges to z* solution of (P) and the maximum eigen-
value of A is o* = ||Az*|. :

4.6. The optimization problem:
i
(P) »max{f(z) = §||A;r:||2 1 filz) =]z < 1}
(P) is equivalent to problem (Q):

(@) : min (5 lell? + x(@)] - [5142]> + Sllal? : o € R")

where p is a positive real.
The simple form of the sub-gradient algorithm applied to (@) leads to the
following expression:

(Proj4):  zFt! = Projg [(A*A + uI)z®]

The sequence {z*} converges to z* solution of (P) and the maximum eigenvalue
of Ais a* = || Az™|.
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5. Linpack technique for computing the smallest eigen-
value

Let A be a real symmetric matrix, A; its smallest eigenvalue and A a real positive
number strictly superior to —A; (in general, A = ||4]|,). Using Choleski method,
we write (A + AI) = R'R, where I denotes the unit matrix of order n and R
an upper triangular matrix. We wish to estimate the vector associated to the
smallest eigenvalue of A, which corresponds to evaluating the vector z* such
that:

IRz || = min {||Rz] : |1z = 1}

We find it not rcasonable to solve directly this minimization problem to
calculate zx. We compute an approximation of z* by using the so-called Linpack
technique proposed by Cline & al (1979). This method consists in determiniug
the vector w by solving the lincar system R'w = e with e = (+1, %1, ..., £1)".

The sign of cach component of vector e is choosen in such a way that the
norm of w is large enough. Several approaches leading to determine the vector
e in these conditions have been proposed in the literature (Moré & Sorenson,
1983; Cline & al, 1979). After calculating w, the equation Rw = w is solved,
leading to z* = -”%“- The Linpack technique may be summarized as follows:

1. Choose a real A > —A;.

2. Decompose (A + M) = R'R.

3. Determine vector e and solve Rfw = e.

4. Solve v = w and z* = T

In order to compute the approximate maximun eigenvalue of A, we apply
the Linpack technique on —A.

6. Numerical results for some examples

In this section, we present comparative numerical results related to the algo-
rithis previously defined for computation of the maximun eigenvalue (of a
symimnetric matrix).

(1): A s a full, symmetric, positive semi-definite, "Hilbert” matrix:

1

j=r——  Wi=lu,n
LT a

(2): Ais a hollow tridiagonal symmetric matrix
Ai=2 Vi=1l,.,n; Aup=-1 Vi=l,.,n-1
Ai—li =-1 Vi= 2, o 1 and A,"-_.' =( otherwise,

Cases (3), (4) and (5): A is a full, positive semi-definite symmetric
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The computations were run on a SUN work station (SPARC station SLC).
Information on the CPU time related to different techniques used are given,
together with the matrix size, in tables 1 to 5:

DC1, DC2, Projl, Proj2, Proj3 and Proj4 denote the different DC sub-
gradient algoritlins used.

Power is the iterative Power method (Chatelin, 1988) and Liniter corre-
sponds to calenlation of the approximate value of a* by the Linpack technique
(Mor¢ & Sorenson, 1983; Cline & al, 1979) followed by the use of the iterative
Power method.

Size DC1 IDC2 |Projl [Proj2 |Proj3 [Projd [Power |Liniter
50 02 (02 ] 03| 03] 03| 03 0.4 0.4
100 0.5 | 0.6 1 1 1 1 1 1.5
150 1| L2 L8 21 18] 1.8 2 4.5
200 21 23 4 4 3.5 3.5 6 8.5
250 2.6 3 ] 0 ] ] 9 14
300 3.0 | 4.5 7| 7.5 G| 5.5 14 20
350 4.5 6 9 10| 85| 7.5 20 28
400 G 8 13 13 11 10 29 37
450 8 10 15 17 14 12 44 49
500 10| 13 20 21 17 16 58 62
1000 48 73 | 105 117 95 91 256 274

Table 1. CPU time (in seconds) corresponding to different methods used for
the Hilbert matrix (case 1)

7. Accuracy of the method

In Tables 6 to 10, the computed values of the maximum cigenvalue o* related to
the different algorithms used in our calculations are presented. The last column
concerns the exact value of a*. It may be noted that Projl and Proj3 (resp.
Proj2 and Proj4) lead to the same approximate values of a* as DC1 (resp.
DC2).



402 A. YASSINE

Size DC1 [DC2 [Projl |Proj2 [Proj3 [Proj4 [Power [Liniter

50 3 6 3 6 3 G 6 12
100 12 | 24 13 26 13 26 30 50
150 28 | 55 31 60 29 61 82 114
200 50 | 98 55 | 106 54 | 106 145 203
250 77 | 153 86 | 166 85 | 152 | 228 318

300 111 1221 | 122 | 240 | 119 | 232 | 329 455
350 156 | 301 | 166 | 325 | 165 | 316 | 443 618
400 203 (393 | 218 | 425 | 214 | 412 | 585 806
450 258 (496 | 278 | 546 | 268 | 523 | 741 | 1020
500 316 [ 613 | 342 [ 672 | 335 | 665 [ 940 | 1285
1000 | 1364 [2687 | 1468 | 3094 [ 1428 | 2860 | 4230 | 5479

Table 2. CPU time (in scconds) related to different methods used for case 2

Size DC1 |DC2 |Projl |Proj2 |Proj3 |Projd |Power |Liniter

50 4 G 5 7 6 G b} 5
100 12 | 18 13 19 13 19 g 19
150 23 | 35 30 30 29 36 47 75
200 54 | 105 54 | 106 52 | 105 148 185
250 84 | 156 84 | 150 81 | 150 | 185 254

300 121 | 236 | 121 | 236 | 116 | 236 | 305 393
350 156 | 305 | 157 | 305 | 157 | 307 | 448 580
400 204 | 398 | 204 [ 398 [ 204 | 400 | 480 614
450 258 | 505 | 259 | 505 | 258 [ 505 | 748 925
500 318 [ 623 | 320 | 625 | 318 | 622 | 924 | 1232
1000 | 1382 [2714 | 1408 | 2875 | 1324 | 2884 | 3818 | 4785

Table 3. CPU time (in seconds) for a random positive semi-definite symmetric
matrix (case 3)
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Size DC1 |DC2 [Projl [Proj2 [Proj3 [Proj4 [Power [Liniter
50 4 6 4 6 4 6 8 9
100 10 | 16 13 23 13 21 7 13
150 29 | o7 30 o7 30 o7 17 32
200 o1 | 102 51 | 101 53 | 100 75 102
250 79 | 160 80 | 157 85 | 158 | 115 172
300 115 | 231 | 118 | 226 | 127 | 236 | 173 245
350 156 | 318 | 160 | 310 | 167 | 311 | 248 356
400 204 | 412 | 210 | 401 | 217 | 401 | 372 468
450 260 | 510 | 267 | 510 | 274 | 509 | 446 o84
500 318 [ 630 | 324 | 626 | 336 | 628 | €12 708
1000 | 1384 [2820 | 1406 | 2840 | 1434 | 2812 | 2450 | 2872

Table 4. CPU time (in seconds) for case 4.

Size DC1 [DC2 [Projl |Proj2 [Proj3 |Proj4 |Power [Liniter
50 3 6 3 6 3 6 9 12
100 14 | 27 14 27 14 27 37 o8
150 31 | 60 31 61 30 60 82 115
200 42 | 65 50 81 53 81 150 179
250 86 | 170 88 | 175 8 | 171 | 241 298
300 124 |1 252 | 130 | 252 | 123 | 251 | 360 457
350 163 | 270 | 177 | 335 | 169 | 334 | 445 609
400 219 | 440 | 228 | 457 | 221 | 446 | 604 816
450 279 | 540 | 296 | 556 | 281 | 554 | 789 [ 1065
500 346 | 668 | 361 [ 696 | 346 | 693 | 957 [ 1268
1000 | 1392 [2868 [ 1565 | 3212 | 1476 | 3103 | 3861 | 4453

Table 5. CPU time (in seconds) for case 5.
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Size DC1 DC2 Power Liniter ot
50 2.0762967 2.0762967 2.0762967 [2.0762967 [2.0762967
100 2.1826961 [2.1826961 [2.1820G961 [2.1826961 [2.1826961
150 2.2378812 [2.2378812 [2.2378812 [2.2378812 [2.2378812
200 2.2742670 [2.2742670 R.2742670 [2.2742670 [2.2742670
250 2.3010352 [2.3010352 [2.3010352 [2.3010352 [2.3010352
300 2.3220199 [2.3220199 [2.3220199 [2.3220199 [2.3220199
350 2.3391705 [2.3391705 [2.3391705 2.3391705 [2.3391705
400 2.3536004 [2.3536064 12.35306064 [2.3536004 [2.3536064
450 2.3660270 [2.3660270 [2.3660270 [2.3660270 [2.3660270
500 2.3768965 [2.3768905 [2.3768965 [2.37689G5 [2.3768965
1000 | 2.4258645 [2.4258045 [2.4258585 [2.42580G45 [2.4258645

Table 6. Computed values of o* for the algorithms used in our calculations.

The last column concerns the exact value of o* (case 1).

Size DC1 DC2 Power Liniter a*
50 3.9958160 [3.9962050 B.9848430 [3.9962067 [3.9962067
100 3.9963850 [3.9983211 B.9945270 [3.9991150 3.9990326
150 3.9964000 [3.9983267 [3.9945670 [3.9997980 [3.9995672
200 3.9964840 [3.9983267 [3.9945670 [3.9999710 [3.9997557
250 3.9964840 [3.9983207 [3.9945670 [3.9999990 [3.9998433
300 3.9964840 [3.9983267 [3.9945670 [3.9999995 [3.9998911
350 3.9964840 [3.9983270 [3.9945670 {3.9999999 [3.9999199
400 3.9964840 [3.9983270 [3.9945670 1.0000000 }3.9999386
450 3.9964840 [3.9983270 [3.9945670 .0000000 [3.9999515
500 3.9964840 [3.9983270 [3.9945670 {.0000000 [3.9999607
1000 | 3.9996800 [3.9997460 [3.9964980 K.0000000 [3.9999902

Table 7. Computed values of o* for the algoritlims used in our caleulations.

The last ecolumn concerns the exact valie of o (case 2).
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Size DC1 DC2 Power Liniter o
50 24.500000 [24.500000 [24.500000 [24.500000 [24.500
100 49.000007 19.000007 49.000005 $#9.000007 49.000
150 74.500004 {75.500004 [74.500016 {74.500009 [74.500
200 99.499985 (99.500008 [99.500349 [99.500010 [99.500
250 124.50002 [124.50002 (124.50015 [124.50002 (124.50
300 149.49994 (149.50001 |149.49997 (149.50002 {149.50
350 174.49993 [174.49998 |174.50177 [174.50009 [174.50
400 199.49992 (199.49998 199.50642 (199.49999 [199.50
450 222.99290 [222.99994 [222.99940 [223.00025 [223.00
500 249.49978 [249.49986 [249.50048 [249.50005 [249.50
1000 | 499.99870 $99.99890 [500.00568 (500.00481 [500.00

Table 8. Computed values of a* for the algorithms used in our calculations.
The last column concerns the exact value of o* (case 3).

Size DC1 DC2 Power Liniter o
50 10.979992 [10.979983 [10.980057 [10.980008 |10.98
100 11.900003 [11.900003 [11.900450 [11.900003 [11.90
150 12.959972 {12.959936 [12.960091 {12.960016 [12.96
200 13.979965 [13.979950 [13.979931 [13.979996 [13.98
250 14.979750 [14.979998 |14.980236 (14.980005 [14.98
300 15.978305 [15.979891 |15.979961 (15.980051 [15.98
350 16.959991 [16.959994 [16.960505 [16.959994 [16.96
400 17.977001 [17.979740 [17.980043 |17.979900 (17.98
450 18.977501 (18.979830 |18.978129 (18.980017 [18.98
500 19.959985 [19.959987 [19.959858 [19.959959 [19.96
1000 | 24.979873 [24.979920 [24.976581 [24.979850 [24.98

Table 9. Computed values of o* for the algorithms used in our calculations.
The last column concerns the exact value of o* (case 4).
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Size DC1 DC2 Power Liniter | o'
50 12.449974 [12.450153 [12.450053 [12.450001 [12.45
100 14.949786 [14.949998 [14.950497 [14.949999 |14.95
150 17.449664 [17.450004 [17.450358 |L7.450008 [17.45
200 19.900002 {19.900002 [19.900071 |19.900003 [19.90
250 22.449171 [22.449996 [22.450415 [22.450008 [22.45
300 24.898710 [24.899984 [24.900003 [24.899994 [24.90
350 27.399991 [27.399991 [27.401263 [27.399999 [27.40
400 29.949990 [29.950005 [29.951348 [29.950001 [29.95
450 32.299007 [32.299888 132.299760 [32.300006 [32.30
500 34.899620 [34.900004 [34.8996G11 [34.900007 [34.90
1000 | 52.499540 [52.499620 [52.499580 [2.500042 [52.50

Table 10. Computed values of o* for the algorithms used in our calculations.
The last column concerns the exact value of a* (case 5).
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For the matrix of size 500, the graphs of the function g(A) = _TA -+ ;, are
plotted in Figs. 1 through 5.
0 : : : :
0 5 10 15 20
&5
H-10
g(x) = -x/2 + k/x
k =-2.8248185
1-15
Ax = 2.3768965
120

A 2.8248185

Figure 1. Graph of the function g(\) = &= ;Y A™ = 2.3768965 (case 1)
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0 }
+ -5
+ -10
’ g(x) = -x/2 +k/x
k =-7.9998428
o -15 A,* —: 39999607
+/-20

8 e
Figure 2. Graph of the function g(A) = —% - 7")9[;8 e

A* = 3.9999607 (case 2)
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0 'l : 1

q 550 500 750 1E3
1 -250
1 -500
g(x) =-x/2 + k/x
k =-31125.125
1 2750 A* = 249.5
|13
|

A 31123.125
2 A

Figure 3. Grapl of the function g(A) = — A* = 249.5 (case 3)
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g(x) =-x/2 + k/x
k = -199.2008
1 -150 Ak =19.96
1 -200

199.2008
A

Figure 4. Graph of the function g(A) = —% - A* = 19.96 (case 4)
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0 50 100 150 200

+- 100
g(x) = -x/2 + k/x

k =-609.005
1] -150 Ax = 34.9

4 -200

Figure 5. Graph of the function g(\) = —;j— - 609)'\000

A* = 34.90 (casc 5)
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8.

Discussion and concluding remarks

According to the results, the following remarks can be made:

1,

o

The numerical results obtained for all the examples reported previously
confirm the stability, the robustness and the superiority of the sub-gradient
algorithms (particularly DC1), when compared to other classical methods.

. In sub-gradient algorithms DC1 and DC2, the choice of regularisation pa-

rameters A and p is delicate and significant. Indeed, changes of values of
A and p do not affect the value of the computed solution, but influence
significantly the performance of the algorithmn in time. The different nu-
merical tests performed led us to conclude that the best values of A and
p are those in the 1-10 range. For rather small (resp. rather large) values
of A and p, the convergence becomes slow. It should also be pointed out
that, in some cases (for example the case n°2), the algorithm remains
insensitive to variations of A and p : the results remain the same for any
positive value of A and .

. For the other sub-gradient algorithms (Projl, Proj2, Proj3 and Proj4),

the best values of i are found be in the 0-1 range.

. The number of iterations before convergence was not reported for the

algorithms used in our calculations because the complexity of the iterative
procedure differs from one method to another. In the author’s opinion,
the significant features concern performance in time and accuracy of the
method under consideration, which corresponds to the global CPU time
and the computed approximate value of «.

. The use of the Linpack technique for the iterate power method leads to

increase of the global CPU time but improves the accuracy.

. When using the projected Newton method and the Rayleigh quotient al-

gorithim, it cannot be defined, a priori, what is the best-adapted norm for
calculation of the extreme eigenvalues.

. Results concerning the use of the projected Newton and the Rayleigh

quotient algorithms (involving or not the Linpack technique) for the cal-
culation of the maximum eigenvalue are not presented in the paper since
these methods generally lead to determination of an cigenvalue which is
not necessarily the maximum value. Three examples related to this prob-
lem are presented in the Appendix.
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Appendix

On the use of projected Newton and Rayleigh quotient algorithms for the search
of the maximal eigenvalue of a matrix A.

EXAMPLE 8.1 (Golub and Van Loan, 1989)

100 1 1 1
1 99 1 1
=l 3 7 384
E 1. 31 3

Let o(A) be the spectrum of the matrix A. Hence:
o(A) = {0.37982076, 2.579377773, 98.38412988, 100.65667158}

Applying the above-mentioned methods, we obtain the eigenvalue Ay =
2.579377773, starting from the initial point (0 = (3, 1,1, )%,

EXAMPLE 8.2 (Golub and Van Loan, 1989)

1.1 1 4 1 1
12 3 4 5 6
A— |13 6 10 15 21
1 4 10 20 35 56
1 5 15 35 70 126
|1 6 21 56 126 252 |

o(A) = {0.00300439,0.06429432, 0.48933883, 2.04357378, 15.55347327,

332.84631541}
Starting from z(®) = (é-, é, é, é, %, %)f‘, the Rayleigh quotient algorithm con-
verges to As = 15.55347327 and the projected Newton method converges to
Ag = 2.04357378.

ExAMPLE 8.3 (Chatelin, 1988)
Let us consider the n-symmetric tridiagonal matriz A given by:









