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Abstract: The computation of eigenvalues of a matrix is still 
of importance from both theoretical aml practical points of view. 
This is a significant problem for numerous industrial and scientific 
situations, notably in dynamics of structures (e.g. G()radin, 1984), 
physics (e.g. Rappaz, 1979), chemistry (e.g. Davidson , 1983), econ­
omy (e.g. Morishima, 1971; Neumann, 1946), mathematics (e.g. 
Golub, 1989; Chatelin, 1983, 1984, 1988). The study of eigenvalue 
problems remains a delicate task, which generally presents numeri­
cal difficulties in relation to its scnsivity to roundoff errors that may 
lead to numerical unstabilitics, particularly if the eigenvalues arc 
not well separated. In this paper, new subgradicnt-algorithms for 
computation of extreme eigenvalues of a symmetric real matrix arc 
presented. Those algorithms arc based on stability of Lagrangian 
duality for non-convex optimization and on duality in the difference 
of convex functions. Some experimental results which prove the ro­
bustness and efficiency of our algorithms arc provided. 

Keywords: non-convex optirnizatio11, difference of convex fullC:­
tions, sub-gradient algorithms, Lagrangian duality, eigenvalue prob­
lems 

1. Introduction 

In recent years, active research has been conducted regarding the following class 
of the non-convex and non-differentiable optimization problem: 

(PNC) : in f {g(x )- h(.?;) : x EX} 

where g and h arc convex, X = R" . 
The problem (P N C) is called the DC optimization prol>lem and its partic­

ular structure makes significant developments in l>oth qualitative and quantita­
tive studies possibles (e.g. Hiriart Urruty, 1989; Hiriart Urruty and Lcman§chal, 
1 ()()(\, v~roro ; nA 1 ()()r; 1 ()()7\ 



388 A. YASSINE 

As regards convex approaches to non-differentiable non-convex optimization 
(as opposed to combinatorial approaches to global optimization), we present 
here main results concerning DC optimization and algori thms for DC optimiza­
tion problems (DCA). The DC duality was first introduced by Toland (1979) in 
the context of variational calculus in mechanics, and generalized by Pharn Dinh 
(1984, 1986, 1988) for convex maximization programming. 

Owing to their relative simplicity of implementation, DCA's permit to solve 
large-scale real world DC optimization problems. Due to their local charac­
ter, they cannot guarantee the globality of computed solutions to general DC 
optimizations problems. In general, DCA converges to a local solut ion, but we 
observe quite often its convergence to a global one. A DC objective function has 
infinitely many decompositions which may exert strong influence on the quality 
(robustness, stability, rate of convergence and globality of solutions sought) of 
DCA. 

The determination of eigenvalues of a mat rix is still of importance from both 
theoretical and practical points of view. This is a significant problem for numer­
ous industrial and scientific applications, notably in dynamics of structures (e.g. 
Geradin, 1984), physics (e.g. Rappaz, 1979), chemistry (e.g. Davidson, 1983), 
economy (e.g. Morishima, 1971; Neumann, 194G), mathematics (e.g. Golub, 
1989; Chatelin, 1983, 1984, 1988). The study of eigenvalue problems remains 
a delicate task, which generally presents numerical dif-ficulties in relation to its 
sensivity to roundoff errors that may lead to numerical unstabilities, particularly 
if the eigenvalues are not well separated. Up to the present time, no direct finite 
method for the computation of a general square matrix is available: only itera­
tive procedures, such as LR, QR algorithms, Jacobi, Rayleigh quotient, Inverse 
iteration, Power method, projected Newton methods are used in the literature. 

The purpose of this paper is to present new algorithms of sub-gradients, 
based on the stability of Lagrangian duality in non-convex optimization and 
on the duality in DC (Difference of two Convex functions) optimization, for 
the computation of extreme eigenvalues of a symmetric real matrix. In Sec­
tion 2 the duality in DC opt imization is presented in relation to sub-gradient 
algorithms. The stability of Lagrangian duality in non-convex optimization is 
examined in Section 3. In Sections 4 and 5 the computational procedures for the 
determination of extreme eigenvalues of a symmetric: real matrix are preseuted. 
Section 6 presents comparative numerical experiments. Some final remarks and 
conclusions are given in Section 7. 

2. DC Optimization 

2.1. P reliminaries 

Let X be the Euclidean space Rn andY its dual space (Y = Rn). Denote by 
., f "tr\ ', - - -· ----- I:.- -- _ .... : - -- --- 'l,T - -- _, 
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consider the following optimization problem: 

(P) :a= inf {g(x) - h(x) : x E X} , g, h E fo(X ). 

Since g and h can become infinite simultaneously, we assume that ( + oo) - ( +oo) 
= +oo to avoid an indeterminacy problem. 

The DC duality may be defined by using conjugate functions g* and h* such 
that 

(D): (3 = inf {h*(y ) - g*(y): y E Y} 

where g*(y) = .sup { < :r, y > -g(:r) : :1: E X} is the conj ugate function of 
g E r 0 (X ) with values in f 0 (Y). Problem (D) is the dual of (P) and a = (3. 

If a is finite then dmn(g) c dmn(h) and only the values of (g- h) E dom.(g) 
are involved iu the search for global and local solut ions to (P). This DC duality 
was first studied by Toland (1979) in a more general framework. 

2.2. Duality in DC Optimization 

THEOREM 2.1 (Pham. Dinh, 1986) 
Let (p) and (.6) be the solv.tions sets of pmblems (P) and (D), ·respectively. 

Then: 
1. oh(:r) C og(.r) '<:h; E (&:!) 
2. Dg*(y) c ah*(y) Vy E (.6) 
8. U{Dg*(y) : y E (.6)} C (p) 
4. U{Dh(:r) : :r E (&0)} c (.6) 

(an equality if h is s11.b- diffeTentiable in (p)) 
(an eq7J.ality if g* is sv.b-di.ffe·rentiable in ( 6)) 

DEFINITION 2.1 A point .r* of X is a local minimv:rn of (g - h) if g(1:*) and 
h(1:*) a·refinite and ifg(x)-h(.r) 2 g(.r*)- h(1:*) joT each:J; in a neighbom-hood 
U of .r*. Conseqv.ently, dom.(g) n U c darn( h) . 

DEFINITION 2. 2 A point 1:* of X is a C'ritical point of (g - h) if oh(1:*) nag( x*) =f. 
0. 

If :r* is a local minimum of (g - h) , then Dh( x*) C Dg( :r*). This necessary 
condition is also sufficient for several non-differentiable DC problems (Pham 
Dinh, Hl84), in particular for a polyedral h (Hiriart Urruty, 1989). 

The sub-gradient algorithms presented in the following enable us to obtain 
a point x* such that 8h(.1:* ) C Dg(1:*) . The local minimum property of (g- h) 
for x* is likely. 

Let p 1 (resp . .61) be the set of points verifyiug the necessary conditions of 
local optimality for (P) (resp. for (D)), i.e. 

P1 = {1: EX: Dh(1:) C og(x)}, .61 = {y E Y : Dg*(y) c ah*(y)}. 

For every point x* in X (resp. y* in Y) , the following problems: 
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T(y*) = in f {g(.T) - h(.T): x E 8g*(y*)} 

are defined. We denote by s(.T*) (rcsp. T(y*) ) the set of solutions to S(x*) 
( rcsp. to T(y*)). 

THEOREM 2.2 (Toland, 1979; Yassine, 1995, 1997) 
* 'fj' * A t * !:l *( *) X E P1 1. Y E ~1 s." .T E ug y 

y* E ~1 iff .T* E P1 s.t. y* E oh(:~:*). 

COROLLARY 2.1 If x* E p 1 (resp. y* E ~1 ), then: 
i) s(x*) = oh(x*) (TeSp . T(y*) = og*(y*)). 
ii) h*(y)- g*(y) = g(x*)- h(x*) \:lyE oh(x*), 
(Tesp. g(x)- h (.1:) = h*(y*)- g*(y*) \:I.T E 8g* (y*)) . 

These results constitute the basis of DCA to be studied in Section 2.3. In 
general, DCA converges to a local solution. However, it would be interesting to 
formulate sufficient conditions for local optimality. 

2.3. Sub-gradient algorithms (DCA Algorithms) 

2.3.1. Complete form 

In the sub-gradient algorithm , two sequences {xk} and {yk} verifying Theorems 
1 and 2, are constructed schematically a..<; follows : Starting from any element .1:0 

of X, the algorithm creates two sequences { xk} and {yk} defined by 

yk E s(xk ), x''+ 1 E T(yk) 

THEOREM 2.3 (Toland, 1979, Yassine , 1995, 1997) Let v.s assume that these­
quences { xk} and {yk} ar·e well- defined. Th en we have: 

1 . .9(1:''+1)- h(xk+1) ::; h*(yk)- g*(yk)::; g(xk)- h(xk). 
Th l 't ( hc+1) h( .k+1) - ( k) h( .k) . • j l'ji'll d 'fj' he E .e eqna LY g X - , 1, - g X - , X 1.S 7J, , ,e 1, . X 

og*(yk) andyk E oh(xk). Then, x'' E g:-11 andyk E ~1 · 
2. If a is finite, then: 

lim {g(.Tk)- h(xk)} = lim {h*(yk)- g*( yk)} =a* ~a . 
k~+oo k~+oo 

8. If a is .finite and if the seqv.ences { xk} and {yk } aTe bov.nded, then \:11:* E 

D(xk) and (Tesp. \:ly* E D(yk)) theTe exists y* E D(yk) ('resp. x* E D( xk)) 
sv.ch that: 

i) x* E p 1 and g(x*)- h(x*) =a* ~a 

ii) y* E ~1 and h* (y* ) - g*(y*) =a* ~a 

iii) lim {g(xk) + g*(yk)} = g(x*) + g*(y*) =< x*, y* > 
k~+oo 

iv) lim {h(:rk) + h*(y'' )} = h(.T*) + h*(y*) =< .T*,y* > 
k~+oo 
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From a pratic:al point of view, although this algorithm uses a DC decompo­
sition mentioned above, Problems (S(xk)) and (T(xk)) remain DC optimization 
programmes. Calc:ulation of y'' and .rk+l is therefore still a difficult task. In 
pratic:c, the sub-gradient algorithms arc generally used on the simplified form 
presented in what follows . 

2.3.2. Simple form 

Starting from an arbitrary point x0 in X, we dcfiue two sequences { 1:k} aud 
{yk} by takiug 

yk E oh(x''), xk+l E og*(y'') 

In this case, all the assumptions of Theorem 2.3 are still satisfied. Moreover, one 
could expect to obtain the properties oh(:r*) c og(x*) and og* (y*) c f) h.* (y*)' 
but we only have oh(x*) n og(:~;*) -1- 0 and og*(y*) n oh*(y*) -1- 0. 

DEFINITION 2.3 A fun ction f is stTongly convex on X if the·re exists a Teal 
p > 0 (called the coer"Civity coefficient) such that 

,\(1 - ,\) 
f[>.:~: + (1 - >.)y] ::; >.f(:~: ) + (1- >.)f(y)-

2 
Pllx- vll 2 

\;/,\ E [0, 1]; \/.1:, y EX. 

THEOREM 2.4 (A v.slendeT, 1976) Iff is stmnqly convex on X, then theTe e1:ists 
a ·real p > 0 such that 

f(x') 2: f(:r)+ < y, :~; ' - x > +pll:1;' - :rll2 'h:, x' EX; "'y E of(.T). 

The conveTse 1:s tTue iff is sv.b-differ·entiable. 

THEOREM 2.5 (Yassine, 1995, 1997} Let us assv:me that g and h. aTe stmngly 
conve1: functions and the sequences { xk} and {yk} are well-defined. Then we 
get the following pmpeTties: 

1. g(xk+l)- h.(:J:k+l)::; h*(y'')- g*(y'')- Phii.Tk+l- xkll2 
::; g(xk)- h(xk)- (Ph+ Pg)llxk+l- x''ll 2 
whe·re Ph and p9 aTe the respective coefficients of coer·civity Telated to h. 
and g. 

2. h*(yk+l) _ g*(yk+l) ::; g(xk+l) _ h(.?:k+l) _ Pg·llyk+l _ y'' ll2 
::; h*(yk)- g*(yk)- (Ph· + Pg· )llvk+l -Jl ll2 
whe·re (Jh.· and p9 • ar-e the Tespective coefficients ·related to h.* and g*. 

COROLLARY 2.2 (convergence of the simple fonn) 
1. g(1:''+1)- h(:rk+l) = h*(yk)- g*(y'') ~ yk E oh(xk+l) and xk+l = 

x'' . 
r~. +/-. ; ,. " """ '"" ,.,. f •. k ~ !O>Z.. f _ k\ n Q ,. / _ k\ 
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2. h*(yk)- g*(yk) = g(xk)- h(xk ) {:::=} .rk E og*(yk) and yk-1 = J/. 
He'f'e, we get yk E oh(.Tk) n og(xk). 

3. If a is finite and the seqv.ences { xk} and {yk} a·re bov.nded, then 1::/1;* E 
O(xk) (resp. 1::/y* E O(yk)) theTe exists y* E O.(yk) (resp. x* E n(:rk)) 
sv.ch that: 

i) g(x'') - h(.rk) = h*(yk) - g*(yk) ~ [h*(y*) - g*(y*)] = a* ~ a as 
k-. +oo 

ii) y* E oh(x*) n og(:r*) and x* E oh*(y*) n og*(y*). 

iii) lim llxk+1 
- x'' II = 0 and lim llvk+l - yk II = 0 

k-+oo k-+oo 

when D(zk) is the set of accv:m7Llation points of {z''}. 

Proof. This result follows immediately from T heorems 2.4 and 2.5. • 

3. Stability of the Lagrangian duality in non-convex opti­
mization 

3.1. Problem statement 

Let X be the Euclidean space Rn and Y be its dual space (i.e. Y = Rn). In 
this section, we consider the stability of the Lagrangian duality in non-convex 
optimi:.-:ation problems of the form: 

(P): rn.a.T {f(:r) : ¢(x) :S 1} 

where f E f 0 (R"'), and it is positively homogeneous, non identically :.-:cro, and 
¢ is any of the norms on X. 

The problem ( P) (called the primary problem) may be formulated as follows: 

. 1 2 1 
(P): Tm.n{-f(x): 2¢ (x) :S 2} 

The Lagrangian func tion related to problem (P) is defined by 

L(x, A)= { -_f00(:~; ) + ~(¢2 (x)- 1) if A~ 0 
otherwise. 

We define 

(P;..) : g(A) 

A 
= inf {L(x, A) : .r ERn}= inf {-f(.r) + 2(¢2 (x)- 1) : .r ERn}. 

The dual problem (D) related to (P) may be written down as follows: 

(D): (3 = sv.p {g(A): A~ 0} 
Jl - £ _ 11 ____ : _ ·-· ___ .... : ~-- - 1 -..-. . 
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1. It provides significant addit ional information to characterize primary and 
dual solutions. Consequently, we are able to obtain the primary solution 
from the dual solut ion and vice-versa. 

2. T he study permits to use problem (P>.) whose solution leads to that of 
(P) . 

3.2. Study of problem (P>.) 

We denote by (S:J>.) (rcsp. P and D) the set of solutions of (P>.) (resp. (P) and 
(D)). 

PROPOSITION 3.1 1. rlom(.q) = ]0, +oo[ 
, _ n. _ - f( .r,) ,\ _ ,\ 2 • 
2. (&-J>.) c {:1. E R . g(.A)- -

2
- - 2- - 2 (¢ (:1.) + 1)}. 

Proof. 

1. Iff is posit ively homogeneous and non identically zero, then 
g(O) = inf {- f( x) : :rE X} = - oo (1) 

Hence rlorn.(g ) c]O, +oo[. 
Iff is finite , then Vx EX, 3b > 0 such that j(x) :S: b¢(:r). We have 

,\ ? ,\{ ? } L(.r.,.A) = - j(.1:) + 
2 

{¢(x)- -1} 2': - b.¢(.r.) + 
2 

¢(:r)- - 1 

and 
,\ 

lim L(:r:, .A) = lim - ¢(x)2 = +oo 
¢(:r,) ..... +oo ¢(cc) ..... + oo 2 

Consequently, rlom.(g) = ]0, + oo[. 
2. :r; E (P>.) =:;. 0 E 8xL(:r:, .A) =:;. 0 E -8J (:r:) + .A¢(.r,)D¢(:r:) =:;. aj(:r) C 

,\cp( X )acp(.1:). 
Then 

Vy E 8j(.1:), Vz E 8¢(.r.), xty = .A¢(x)xtz (2) 
Iff is posi t ivcly homogeneous and ¢ is a norm on X, then Vy E [) f ( :~:), V z E 
8¢(x) 

.?:ty = f(:r:), xtz = ¢(:~:) (3) 
Combinating (2) and (3), we get 

j(:~; ) = .-\ cp(.T) 2 (4) 
Hence 

,\ ,\ 2 ,\ f(:~:) ,\ 2 
g(.A) = - 2 - J(:~: ) + 2 ¢(:~: ) = -2 - - 2- = - 2 { 1 + ¢(:~: ) } 

COROLLARY 3. 1 Let x E (p>.), then we have 
i) ¢(x) > 1 =? -,\ > g(.A) >- f(x) 
ii) ¢(x) < 1 =:;. - ,\ < g(.A) <- f (x) 
iii) ¢(:r:) = 1 =? -,\ = g(.A) = - j(.1:) and x E P, ,\ ED. 

• 
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CoROLLARY 3.2 Fo'f' eve·ry A > 0, we get the following th·ree pmpe-rties which 
aTe mv.tnally excl11.sive: 
i) (p,\) C {x E R 11

: ¢(x) > 1} 
ii) (p,\) C {x ERn : ¢(x) < 1} 
iii) (p,\ ) C {:r E R 11

: ¢(x) = 1}. 

This corollary follows immediately from Proposition 3.1. 

REMARK 3.1 If (p,\) is a singleton, then the above comlla·ry is tTivial. 
• 

- A k 
THEOREM 3.1 1. g(A) = 2 + 3:' ' wher·e k is a negative constant depending 

on f and¢. 
2. D = {A*} = { J=2k} is a singleton and we get 

i) (p,\) C {x E R 11 
: ¢(:r) = 1} 

ii) a= (3 = g(A*) =- f(x*) =-A* 

:J. p = (p,\). 

Proof. 

1. 8g(A) C co{¢
2

(:r~ - 1
}, hence \lg(A) = g'(A) = ¢

2

( 1~ -
1 = - 1- .9\A), 

- A k 
and then g(A) = 2 + '):' , where k is a real to be determined. 

2. and 3. 
Let A* and x* be the dual and primary solutions, respectively. Therefore: 

-1 k A* 2 

g' (A*) = 2- A* 2 = 0, whence k = - 2 and finally A*= J=2k. 
¢2 (x*)- 1 

Futhermore, g'(A*) = · 
2 

= 0 ==? ¢2 (.r*) = 1 ==? f(x*) 

A*¢2 (x*) =A* ==? g(A*) =-A*, and then 
!1 = g(A*) =- f(x*) =a = -A* , ¢(x*) = 1 and A*= Hk. 

• 
3.3. Stability of Lagrangian duality when f and ¢ are two semi­

norms 

Let us consider the primal problem (P) when f and¢ are two semi-norms defined 
on X= Rn such that N(¢) C N(f). We want to prove that the previous results 
are still consistent for this class of problems. If A = N ( ¢) and B = A j_, then 
X can be expressed as X = A EB B and the following properties are established 

¢(x +a.) = ¢(x), f(.T +a)= j(1:) \Ia. E A 

Consequently, (P) may be expressed as 
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The semi-norms f and¢ on X are norms on B, hence problem (Q) always pos­
sesses a solution. We denote by Q the set of solutions to (Q), then P = Q +A 
(i.e. if .-r is a solution to (Q), then x* = x +a is a solution to (P) 1::/a E A). In 
addit ion, we get 

,\ 
(P>-.) : g(.A) = inf {- f(:r) + 2(¢2 (.-r)- 1) : .1: E R"} . 

Ba..'>ed 011 the previous remarks , problem (P>-.) may be formulated a.•:; follows : 

. ,\ ? ,\ 
(P>-.) : g(.A) = mf {- f(x) + 

2
¢ -(x) : x E B} - 2· 

. ,\ . ,\ ') 

Smce g(.A) S -
2

, we can COI!Slder the set E = {:~: E B: -f(:r) + 
2

¢-(x) S 0}, 

which means that the last problem considered is equivalent to 

,\ ,\ 
(P>-.): g(.A) = inf {- f( :r) + 

2
¢2 (:r) : .-r E E}- 2· 

Since f is bounded everywhere, :Jb > 0 such that f( :r) S li ¢(x). Hence (P>-.) can 
be written down in the form: 

,\ ,\ 
(P>-.) : g(.A) = inf {- f(.r) + 

2
¢2 (x) : x E EI}- 2· 

2b 
where E1 = {:r E B : ¢(:r) S ):' ,\ > 0}. Since ¢(.1:) is a uonn on B, we 

deduce that E1 is bounded and the previous stability results can be applied. 

3.4. Resolution of problem (P) 

The idea consists in solving the intermediate problem (P>-.) for a given .-\0 
, 

,\0 
which leads to a value of the constant k = .A0 {g(.A0 ) + 2 }, since,\* = V-2f 
is a solution to (D). Problem (P>-.·) is solved again to obtain a solution to (P). 
We then get the following algorithmic: scheme: 

1. Choose any ,\ 0 > 0. 
2. Solve 

,\0 
(P>-.o) : g(.-\0

) = inf {L(x, .-\0 ) : x E R"} = inf {- f(x) + 2(¢2 (.7:)- 1) : 

:1: E R 11
} 

),0 
3. Compute the constants k = .A0 {g(.A0) + 2 }, .A* = v-2k. 

4. Solve 
,\* 

(P>-.·): inf {L(.T, .\*): :r E R"} = inf {- f(x) + 2 (¢2(x)- 1): .T E R"} 

The solution .r* to ( P\•) is a lso a solution to ( P) . 
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4. Extreme eigenvalues of a real symmetric matrix 

4.1. Consider the following optimization problem 

(P): nw .. 1: {f(:r) = J < A.1:, x > : ¢(:r) = ll ::rll ::::; 1} (DC l ) 

where A is a symmetric: positive semi-definite matrix and 11 .11 is the Euc:lidean 
norm. 

It is obvious that the optimal value of (P) equals the square root of the max­
imum eigenvalue of A. Usiug the sub-gradient a lgorithm previously presented 
in Section 3.4. (all the conditions are satisfied) and the intermediate problem 
(P>-.) solved by means of the sub-gradient algorithm, on the simple fo rm already 
considered , we obtain the following expression: 

where A and fL arc positive rcals. 
Considering an arbitrary ekmeut .1: 0 such t hat A:~:0 #- 0, the sequence { :rk} 

defined by ( *) verifies the property A.1:"' #- 0 \:lk > 0. 
A 

Indeed, the relation A:r1 = 0 =} (pJ + )A1:0 = 0 '* A.1:0 = 0, J < A,r,O, :rO > 
which contradicts our assumption . This remark a llows the algorithm related to 
the search of eigenvalues to be written without considering points where j(1:) is 
not differentiable. This method may be used to compute the ext reme eigenvalues 
of any symmetric: matrix. Indeed, let A be a real symmetric: matrix of order n , 
A1 -< A2 -< ... -<An its eigenvalues, and {J = II AII 1 = II AII oo = ·rn.a.r.{2:~'~ 1 IAiil : 
i = 1, .. , n}, then: 

Applying the above-mentioned method to the positive ::;emi-definite matrix 
A' = (A + pi) , one obtains the value (p +A,), which gives the value of A,. 

Since the matrix A" = (-A+ pi) is ::;till positive semi-definite, one obtains 
the value (p- A1) which allows determination of A1 . 

The description of the sub-gradient algorithm may be summarized as follows: 
1. Choose any A 0 > 0 

2. Solve (P>-.o): g(A0 ) = inf{ - f( :r) + >-.2°(¢2 (x) - 1): x E R"} by the 
sub-gradient algorithm with regularisation (see Section 2.3.): 
Select :1:0 E R" such that ¢(x0 ) = 1, k = 0, and c:oustruct the sequence 
{.Tk} as follows: 

1 AT'' l 
:J:''+l = -- [f 1..1:k + --;:===== 

A + fl. J < A.?:"', xk > 
where A and fl· arc positive reals. 

Ao 
T his sequence converges to a limit x: g( A0

) = - j(:1:) + 2 (¢2 (x)- 1) 

Ao 
'J f"1 ~w.~ni-A 1-l.A Nm<•l-<>nl- I" - ).O(n(\0\ .J_ _ \ ). * = , /_? J: 
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A* 
4. Solve (P>.·) : inf {- J(:r) + 2 (¢2 (:r) - 1) : :r E R"} by the sub-gradicut 

algori thm with regularisation presented in Section 2.3. The solutiou .7:* 

of (P>.· ) is a solu tion of (P) and the maximum eigeuvalue of A is o* = 

[f (.T*W . 

4.2 . Consider the following maximization problem 

(P) : Tn.a.:t {J(:r) = IIA:r ll : ¢(.1:) = ll :r ll :::; 1} (DC2) 

where A is a posit ive semi-defiuitc symmetric matrix and 11 . 11 the Eucl idean 
nonn . 

It is obvious that the optimal value of (P ) equals the maximum eigeuvalue 
of A. T he intermediate problem (P>.) is solved by the sub-gradient algorithm 
with rcgularisation of Sec:tiou 2.3. (the simple form is used) , which leads to the 
following formula : 

1 AtA~·~.c 
.k + l - [ ,k .•• l 

1
' - A+ I'· ll .. ?. + II A1:kll 

where ,\ and I'· a rc positive rcals . 
One chooses arbitrary x 0 such that A:1:0 =f. 0, then the sequence { 1:k} defiued 

by ( **) verifies the property A:1:k =f. 0 'r:/ /,~ > 0. Incleecl, t he asSlllllp tion A.1: 1 = 

0 => (J.l.l + II~:~ II )A.1:0 = 0 => A.1:0 = 0, which contradicts om assu!llp tion. This 

remark allows to write the algorithm usee! for the search of eigenvalues without 
cousideriug points where f is uot differentiable. 

Accordiug to Section 4.1., this method may be used to compute ext reme 
eigenvalues of any symmetric matrix. 

T he elcrneutary steps of the sub-gradient a lgorith!ll cau be smm m"l.ri :t<!d as 
follows: 

1. Select auy A 0 > 0 
2. Solve (P>.o) : g(-\0

) = inf {- j (.1:) + ~0 (¢2 (:r) - 1) : .T E R"} by the 
sub-gradient algorithm with regula ri::mtion prcscutccl in Section 2.3. as: 
We select any 1:0 E R" such that ¢( :r0 ) = 1, k = O, and construct the 
sequence { :r''} as follows: 

1 At· A~·., 

:J:k+l = -- [ rJ.:J: ~.c + -II ·.:·Ill 
A + 11· AT' 

where ,\ and I'· are posi tive reals. 
T his sequence converges towards a limi t :1: : g( A 0 ) = - f (x) + ~

0 

( ¢2 (.1:) - 1) 
,\0 -

3. Compute the constant k = A0 (g( A0
) + '"2 ), ,\* = V-'ik. 

A* 
4. Solve (P>.·) : in f{- j( :1:) + 2 (¢2 (x)- 1) : :r E R"} by tlJC sub-gradient 

algorithm with rcgularisat ion presented in Section 2.3 . The solu tion .1:* of 
In \ · r r n \ r t • \ 
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The two DC a lgorithms presented above are applied to the Lagrangian func­
tion. We now consider DC algorithms directly related to the initial problem 
(P) : 

4.3. Let us consider the following optimization problem: 

(P) : max {f(x) = J < Ax, x >: </J(x) = llxll 5 1} 

where A denotes a positive semi-definite symmetric matrix and 11 - 11 is the Eu­
clidean norm. 

It can be easly verified t hat (P ) is equivalent to the following problem (Q): 

(Q) : m.in{-J< Ax,x > + XE(x): x E R n} 

where XE(x) stands for t he indicatrix function related to the set E = {:rE R " : 
llxJI 51}. 

The problem (Q) may be written on the DC form: 

where p, is an arbitrary positive real. 
Application of the simple form of the sub-gradient algorit hm given in Section 

2.3. to solve (Q) leads to the following formula: 

(Projl): x'H ~ ProjE(y') ~ { 

Axk 
where yk = [pxk + · ] 

J< Axk ,xk > 

otherwise 

T he sequence {xk} converges to x* solution of (P) and t he maximum eigen­
value of A is a* = [f(x*)F . 

4.4. Consider now the optimization problem: 

(P): max {f(x) = JI Axll : </J(x) = llxJI 51} 

Problem (P) is equivalent to problem (Q): 

(Q): min { - AJixJI + XE(x) : x ER"} 

which can be writ ten in the following DC form: 

where p, is an arbitrary positive real. 
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The simple form of the sub-gradient algorithm (see Section 2.3.) used to 
solve problem (Q) leads to the following formula: 

(Proj2) : 
k + l . [ k AtAxk ] 

x = ProJe f..LX + IIAxkll 

The sequence {xk} converges to x* solution of (P ) and the maximum eigenvalue 
of A is a*= f(x*). 

4 .5 . T he optim ization problem: 

1 
(P ) : max {f(x) = 2 < Ax, x >: ifJ(x) = llxll::::; 1} 

(P) is equivalent to the following problem (Q): 

f..L 2 1 /.L 2 
(Q): min {[211xll + xe(x)] - [2 < Ax,x > +211xll l : X E R " } 

where f..L is a given positive real number. 
To solve (Q), we apply t he simple form of the sub-gradient algorithm and 

obtain the following relation: 

(Proj3) : 

T he sequence { xk} converges to x* solution of (P) and t he maximum eigen­
value of A is a* = IIAx*ll-

4.6. T he optimization problem : 

1 
(P ) : max {f(x) = 2IIAxll2

: ifJ(x) = llxll::::; 1} 

(P) is equivalent t o problem (Q): 

where f..L is a positive real. 
The simple form of the sub-gradient algorithm applied to ( Q) leads to the 

following expression: 

(Proj4) : 

T he sequence {xk} converges to x* solution of (P) and the maximum eigenvalue 
of A is a*= IIAx*ll -
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5. Linpack technique for computing the smallest eigen­
value 

Let A be a real symmetric matrix, .-\1 its smallest eigenvalue and,\ a real positive 
number strictly superior to - .-\ 1 (in general, A = IIAII 1) . Using Choleski method, 
we write (A + .-\!) = Rt.R, where I denotes the unit matrix of order n and R 
an upper t riangular matrix. We wish to estimate the vector associa ted to the 
smallest eigenvalue of A, which corresponds to evaluating the vector z* such 
that: 

IIRz*ll = m.in {IIR.TII : ll xll = 1} 

We find it not reasonable to solve directly this rninimization proolem to 
calcula te Z* . We compute an approximation of z* by usiug the so-called Linpack 
technique proposed by Cliue & al (1979) . This method consists in cletermiuing 
the vector w oy solving the liuear system R1w = e with e = (±1, ± 1, ... , ±1)t.. 

The sign of each component of vector e is choosen in such a way that the 
norm of w is large enough. Several approaches leading to determine the vector 
e in these conditions have been proposed in the literature (More & Sorenson, 
1983; Cline & a!, 1979). After calc:ula ting w , the equation Rw = w is solvecl , 
leading to z* = 1 1 ~ 1 1 . The Linpack technique may be summarized as follows: 

1. Choose a real A > - .-\1. 
2. Decompose (A + .-\!)= R"R. 
3. Determiue vector e ancl solve R tw = e. 
4. Solve Rv = w aucl z* = 11 ~ 11 . 

In order to compute the approximate maximmn eigenvalue of A, we apply 
the Linpack technique on -A. 

6. Numerical results for some examples 

In t his section, we present comparative numerical results related to the algo­
rithms previously defined for computation of the maximum eigenvalue (of a 
symmetric matrix). 

(1): A is a full, symmet ric, positive semi-definite, "Hilbert" matrix: 

A - 1 
'·.1-i+j-1 Vi= 1, ... ,n 

( 2) : A is a hollow tridiagonal symmetric matrix 

A;; =2 't:/i=1, .. ,n; A;;+l=-1 't:/i=1, .. ,n - 1; 

A;- 1; =-1 't:!i =2 , .. ,nandA;_1 = 0 otherwise. 

Cases (3), (4) and (5): A is a full, positive semi-definite symmetric 
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The computat ions were run on a SUN work station (SPARC station SLC). 
Information on the CPU time related to different techniques used arc given, 
together with the matrix size, in tables 1 to 5: 

DC1, DC2, Proj1, Proj2, Proj3 and Proj4 denote the different DC sub­
gradient algorithms used. 

Power is the iterative Power method (Chatclin , 1988) and Liniter corre­
sponds to calculat ion of the approximate value of a* by the Linpack technique 
(J\!Iorc & Sorenson, 1983; Cline & al, 1979) fo llowed by the use of the iterative 
Power method. 

Size DC1 DC2 Proj1 Proj2 Proj3 Proj4 IPower Linitcr 

50 0.2 0.2 0.3 0.3 0.3 0.3 0.4 0.4 

100 O.G O.G 1 1 1 1 1 l.G 

150 1 1.2 1.8 2 1.8 1.8 2 4.5 

200 2 2.3 4 4 3 r: ,i) 3 r: . iJ G 8.5 

250 2.G 3 5 G 5 5 9 14 

800 3 r: ,i) 4.5 7 7.5 G 5.5 14 20 

sso 4.G G 9 10 8.5 7.5 20 28 

400 G 8 13 13 11 10 29 37 

450 8 10 15 17 14 12 44 49 

500 10 13 20 21 17 1G G8 G2 

1000 48 73 105 117 95 91 25G 274 

Table 1. CPU time (in seconds) corresponding to different methods used for 
the Hilbert matrix (case 1) 

7. Accuracy of the method 

In Tables G to 10, the computed values of the maximum eigenvalue a* related to 
the different algorithms used in our calculations arc presented. The last column 
concerns the exact value of a*. It may be noted that Proj 1 awl Proj3 (resp. 
Proj2 and Proj4) lead to the same approximate values of o:* as DC1 (rcsp. 
DC2). 
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Size DCl DC2 IProjl 1Proj2 1Proj3 Proj4 Power Liniter 

50 3 6 3 6 3 6 6 12 

100 12 24 13 26 13 26 36 50 

150 28 55 31 60 29 61 82 114 

200 50 98 55 106 54 106 145 203 

250 77 153 86 166 85 152 228 318 

300 111 221 122 240 119 232 329 455 

.'350 156 301 166 325 165 316 443 618 

400 203 393 218 425 214 412 585 806 

450 258 496 278 546 268 523 741 1020 

500 316 613 342 672 335 665 940 1285 

1000 1364 2687 1468 3094 1428 2860 4230 5479 

Table 2. CPU time (in seconds) related to different methods used for case 2 

Size DCl DC2 Projl Proj2 Proj3 Proj4 Power Liniter 

50 4 6 5 7 (j 6 5 5 

100 12 18 13 19 13 19 9 19 

150 23 35 30 36 29 36 47 75 

200 54 105 54 lOG 52 105 148 185 

250 84 156 84 150 81 150 185 254 

300 121 236 121 236 116 236 305 393 

350 156 305 157 305 157 307 448 580 

400 204 398 204 398 204 400 480 614 

450 258 505 259 505 258 505 748 925 

500 318 623 320 625 318 622 924 1232 

1000 1382 2714 1408 2875 1324 2884 3818 4785 

Table 3. CPU time (in seconds) for a random positive semi-definite symmetric 
matrix (case 3) 
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Size DC1 DC2 Proj1 1Proj2 Proj3 Proj4 !Power ~Uinitcr 

50 4 6 4 6 4 6 8 9 

100 10 16 13 23 13 21 7 13 

150 29 57 30 57 30 57 17 32 

200 51 102 51 101 53 100 75 102 

250 79 160 80 157 85 158 115 172 

300 115 231 118 226 127 236 173 245 

350 156 318 160 310 167 311 248 35G 

400 204 412 210 401 217 401 372 468 

450 2GO 510 2G7 510 274 509 446 584 

500 318 G30 324 G26 33G G28 612 708 

1000 1384 2820 1406 2840 1434 2812 2450 2872 

Table 4. CPU time (in seconds) for case 4. 

Size DC1 DC2 Proj1 1Proj2 Proj3 Proj4 Power Linitcr 

50 3 G 3 6 3 G 9 12 

100 14 27 14 27 14 27 37 58 

150 31 GO 31 G1 30 GO 82 115 

200 42 65 55 81 53 81 150 179 

250 86 170 88 175 85 171 241 298 

300 124 252 130 252 123 251 360 457 

350 163 270 177 335 169 334 445 609 

400 219 440 228 457 221 446 604 816 

450 279 540 296 556 281 554 789 1065 

500 346 668 361 696 346 693 957 1268 

1000 1392 2868 1565 3212 147G 3103 3861 4453 

Table 5. CPU time (in seconds) for case 5. 
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Size DC1 DC2 Power Liniter a* 

50 2.0762967 ?.0762967 2.0762967 2.0762967 2.0762967 

100 2.1826961 2.1826961 2.1826961 ~.1826961 2.1826961 

150 2.2378812 p.2378812 2.2378812 2.2378812 2.2378812 

200 2.2742670 ~.2742670 2.2742670 ~.2742670 2.2742670 

250 2.3010352 ~.3010352 2.3010352 ~.3010352 2.3010352 

.'100 2.3220199 ~ . 3220199 2.3220199 2.3220199 2.3220199 

.'150 2.3391705 ~.3391705 2.3391705 2.3391705 2.3391705 

400 2.3536064 ~.3536064 2.3536064 2.3536064 2.3536064 

450 2.3660270 ~.3660270 2.3660270 2.3660270 2.3660270 

500 2.3768965 ~.3768965 2.3768965 ~.3768965 2.3768965 

1000 2.4258645 ~.4258645 2.4258585 2.4258645 2.4258645 

Table 6. Computed values of a* for the algorithms used in our calculations. 
The last column concerns the exact value of a* (case 1). 

Size DC1 DC2 Power Liniter a* 

50 3.9958160 3.9962050 3.9848430 3.9962067 3.9962067 

100 3.9963850 3.9983211 3.9945270 3.9991150 3.9990326 

150 3.9964000 3.9983267 3.9945670 3.9997980 3.9995672 

200 3.9964840 3.9983267 3.9945670 3.9999710 3.9997557 

250 3.9964840 3.9983267 3.9945670 3.9999990 3.9998433 

SOD 3.9964840 3.9983267 3.9945670 3.9999995 3.9998911 

.'150 3.9964840 3.9983270 3.9945670 3.9999999 3.9999199 

400 3.9964840 3.9983270 3.9945670 4.0000000 ~.9999386 

450 3.9964840 3.9983270 p.9945670 4.0000000 ~.9999515 

500 3.9964840 3.9983270 ~ . 9945670 4.0000000 3.9999607 

1000 3.9996800 3.9997460 ~.99Ci4980 4.0000000 3.9999902 

Table 7. Computed values of u* for the algorithms used iu our calculations. 
The~ I ::1st. c:nlmnn c:nnc:c~rns thc: c:xad value of o* (case 2). 
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Size DC1 DC2 Power Liniter ex* 

50 24.GOOOOO ~4.500000 ~4.500000 24.500000 24.500 

100 49.000007 ~9.000007 ~9.00000G 49.000007 49.000 

150 74.500004 75 .500004 74.500016 74.500009 74 .500 

200 99.49998G r9.Goooo8 r9.G00349 r9.Goomo 99.GOO 

250 124.50002 124.50002 124.50015 124.G0002 124.50 

800 149.49994 149.G0001 149.49997 149.G0002 149.GO 

S50 174.49993 174.49998 174.G0177 174.G0009 174.GO 

400 199.49992 199.49998 199.G0642 199 .49999 199.50 

450 222.99290 ~22.99994 ~22.99940 223.0002G 223.00 

500 249.49978 ~49.49986 ~49.50048 ~49.GOOOG ~49.GO 

1000 499.99870 ~99.99890 ~OO.OOG68 ~00 . 00481 pOO.OO 

TaGle 8. Computed values of o* for the algorithms usee! i11 our calculations. 
The last colurrm concerns the exact value of o:* (case 3). 

Size DC1 DC2 Power Liniter o~* 

50 10.979992 10.979983 10.9800G7 10.980008 10.98 

100 11.900003 11.900003 11.9004GO 11.900003 11.90 

150 12.%9972 12.9G9936 12.960091 12.960016 12.96 

200 13.97996G 13.979950 13.979931 13.979996 13.98 

250 14.9797GO 14.979998 14.980236 14.98000G 14.98 

SOD 1G. 97830G 1G.979891 1G.979961 1G.9800G1 1G.98 

850 16.%9991 16.%9994 16.960GOG 16.%9994 16.96 

400 17.977001 17.979740 17.980043 17.979900 17.98 

450 18.977G01 18.979830 18.978129 18.980017 18.98 

500 19.9G9985 19.9G9987 19.9G9858 19.9G9959 19.96 

1000 24.979873 ~4.979920 ~4.976G81 24.979850 24.98 

Table 9. Computed values of o:* for the algorithms usee! in our c:alc:ulations . 
The last column c:ollc:crns the exact value of a* (case 4). 
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Size DC1 DC2 Power Liniter a* 

50 12.449974 12.450153 12.450053 12.450001 12.45 

100 14.949786 14.949998 14.950497 14.949999 14.95 

150 17.449664 17.450004 17.450358 17.450008 17.45 

200 19.900002 19.900002 19.900071 19.900003 19 .90 

250 22.449171 ~2.449996 ~2 . 450415 22.450008 22 .45 

300 24.898710 24.899984 ~4.900003 24.899994 24.90 

350 27.399991 27.3999!)1 Q7.401263 27.399999 27.40 

400 29.949990 29.950005 29.951348 29.950001 29 .95 

450 32.299007 32.299888 32.299760 32.300006 32.30 

500 34.899620 34.900004 34.899611 34.900007 34.90 

1000 52.499540 52.499620 52.499580 52.500042 52.50 

Table 10. Computed values of a* for the algorithms used in our calculations. 
The last column concerns the exact value of a* (case 5) . 
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-A k 
For the matrix of siz;e 500, the graphs of the function g(A) = T + -:\"' are 

plotted in Figs. 1 through 5. 

0----~-------+-------+-------+~ 

0 5 

-10 

-15 

-20 

10 15 

g(x) = -xJ2 + k/x 

k = -2.8248185 

A* = 2_ 3768965 

20 

A 2.8248185 
Figure 1. Graphofthefunctiong(A) = - 2- A A*= 2.3768965 (case 1) 
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0 
0 5 10 15 20 

-5 

! 
- 10 

g(x) = -x/2 +k/x 

k = -7 .9998428 

- 15 A* = 3.9999607 

-20 

A 7.9908428 
Fignre 2. Graph of the function g(A) = - 2- A A • = 3.9999607 (case 2) 
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0------~------4-------~------~~ 
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-500 

I 
-750 

- 1E3 

250 500 750 

g(x) = -x/2 + k/x 

k =-31125.125 

A*= 249.5 

1E3 

. . A 31123. 125 
F1gm e 3. Graph of the functiOn g(A) = - 2 - A A*= 240 .5 (case 3) 
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A 199.2008 . 
Figure 4. Graph of the funct io11 g( A) = - 2 - A A* = 19.96 (case 4) 
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0 
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( 
- l 00 

g(x) = -x/2 + k/x 
k = -609.005 

- 150 A* = 34.9 

-200 

. . A G09.00G 
F1gurc G. Graph of the fu nct10n g(A) = - 2 - A A* = 34.90 (case G) 
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8. Discussion and concluding remarks 

According to the results, the following remarks can be made: 
1. The numerical results obtained for all the examples reported previously 

confirm the stability, the robustness and the superiority of the sub-gradient 
algorithms (particularly DC1), when compared to other classical methods. 

2. In sub-gradient algorithms DC1 and DC2, the choice of regularisation pa­
rameters A and p, is delicate and significant. Indeed, changes of values of 
A and f..l· do not affect the value of the computed solution, but influence 
significantly the performance of the algorithm in time. The different nu­
merical tests performed led us to conclude that the best values of A and 
p, are those in the 1-10 range. For rather small (resp. rather large) values 
of A and p., the convergence becomes slow. It should also be pointed out 
that, in some cases (for example the case T/.

0 2), the algorithm remains 
insensitive to variations of A and p. : the results remain the same for any 
positive value of A and p .. 

3. For the other sub-gradient algorithms (Proj1, Proj2, Proj3 and Proj4), 
the best values of JL arc found be in the 0-1 range. 

4. The number of iterations before convergence was not reported for the 
algorithms used in our calculations because the complexity of the iterative 
procedure differs from one method to another. In the author's opinion, 
the significant features concern performance in time and accuracy of the 
method under consideration, which corresponds to the global CPU time 
and the computed approximate value of o:*. 

5. The use of the Linpack technique for the iterate power method leads to 
increase of the global CPU time but improves the accuracy. 

6. When using the projected Newton method and the Rayleigh quotient al­
gorithm, it cannot be defined, a priori, what is the best-adapted norm for 
calculation of the extreme eigenvalues. 

7. Results concerning the use of the projected Newton and the Rayleigh 
quotient algorithms (involving or not the Linpack technique) for the cal­
culation of the maximum eigenvalue are not presented in the paper since 
these methods generally lead to determination of an eigenvalue which is 
not necessarily the maximum value. Three examples related to this prob­
lem are presented in the Appendix. 
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Appendix 

On the use of projected Newton aud Rayleigh quotient algorithms for the search 
of the maximal eigenvalue of a matrix A. 

EXAMPLE 8.1 (Go lv.b and Van Loan, 1989) 

r 

100 1 1 1 l 
A = 1 99 1 1 

1 1 2 1 
1 1 1 1 

Let O'(A) be the spectrum of the matrix A. Hence: 

O'(A) = {0.37982076, 2.579377773, 98.38412988, 100.65667158} 

Applying the above-mentioned methods, we obtain the eigenvalue ). 2 

2 "79377773 t t ' · f th · · T I · C0 l - e 1 1 1 )t .u , s ar .mg rom e Im .Ia pomt x - 5, 6> 6> 6 . 

EXAMPLE 8.2 (Golv.b and Van Loan, 1989) 

1 1 1 1 1 1 
1 2 3 4 5 G 

A= 
1 3 G 10 15 21 
1 4 10 20 35 5G 
1 5 15 35 70 126 
1 G 21 56 126 252 

O'(A) = {0.00300439 , 0.06429432, 0.48933883 , 2.04357378, 15.55347327, 

332.84631541} 

Starting from :rC0l = (l l l l l l)t the Rayleig1I nuotient alg·ori thm con-" 6 1 6 1 6'6'6' 6 l • 'I 

verges to >. 5 = 15.55347327 aud the projected Newton method converges to 
).4 = 2.04357378. 

ExAMPLE 8.3 (Chat elin, 1988} 
Let ns conside·r the n- sym:m.etric tr·idiagonal matrix A given by: 
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and Aij = 0 otherwise, for n = 5 : 

a(A) = {0.26794919, 1, 2, 3, 3.73205081} 

The methods considered here lead to the eigenvalv.e ,\1 = 0.26794919 when 
11.sing the Ev.clidean rwr-m and J- 2 = 1 jo'f· the infinite-norm. 

joT n = 10: 

a( A) = {0.08101405, 0.31749203,0.60027853,1.16916997, 

1.71537032, ... , 3.91898595} 

The methods lead to eigenvalue >-2 = 0.31749293 when using the Euclidean 
norm and, for the infinite norm, the Rayleigh quotient algorithm converges 
to A4 = 1.16916997 and the projected Newton method converges to ,\ 5 = 
1. 71537032. 




