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Abstract: This work addresses problems in optimal design of 
structures with a non-smooth buckling load criterion and in par­
ticular applications in layout design of plate reinforcements using 
a material based model and thickness beam optimization problems. 
Starting with the formulation of the linearized buckling problem, the 
optimization problem is formulated and the optimal necessary condi­
tions are derived. Considering the possibility of non-differentiability 
of the objective function , the optimal necessary conditions are stated 
in terms of generalized gradients for non-smooth functions. The im­
portance of the obtained result is analyzed and directional deriva­
tives of the critical load factor obtained from the generalized gra­
dient set definition, are compared with forward finite difference ap­
proximations. Optimization applications, to test the developments 
done, are presented. They are performed using a mathematical pro­
gramming code, the Bundle 'Il·ust Method , which addresses the non­
smoothness of the problem. 

Keywords: structures, homogenization, buckling, non-smooth 
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1. Introduction 

:Material based models have been widely applied to the problem of topology 
optimization of structures (Bends0e and Mota Soares, 1993) and to the layout 
design of plate and shell reinforcements (see e.g., Suzuki and Kikuchi, 1991, and 
Soto and Diaz, 1993) . Initially, these applications dealt with compliance based 
criteria but lately various extensions have been presented namely to the optimal 
control of natural frequencies (see e.g., Diaz and Kikuchi , 1993) and buckling 
loads (see e.g. Neves et al. , 1995) . 

The model presented in this work uses a laminate plate theory and a lin­
earized buckling model and the objective is to find the optimal material distribu­
t.ion . s imnl 11.t.ill!r t.hP nl at.P rPinfnrrPmPnt. in t.lw Pvt.Prinr bmin <J<: th <J t m"vimi ?r><o 
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Figure 1. Plate optimization model 
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Figure 2. Beam optimization problem 

the plate lowest buckling load. The plate cross section is symmetric and ob­
tained by joining different layers of material where the internal layers represent 
the original plate and are fixed in terms of design. The outer layers are made of 
a porous material with variable relative density obtained by the introduction, 
at the material "microstructure" level, of small voids. These design layers act 
like micro-perforate plates (see Fig. 1). The microstructure of this material is 
assumed to be locally periodic and the dimension of the voids characterizing the 
relative density, J.L, defines the reinforcement material distribution at each point. 
Regions with high-densi ty values indicate reinforcement while low values indi­
cate no reinforcement. The total amount of material available is constrained. 
Based on the linearized plate buckling equat ions the buckling load is computed 
numerically by a finite element approximation of the problem. 

The thickness beam optimization problem is also considered in order to max­
imize the lowest buckling load. In this case the design variable is the thickness 
of the beam, which can vary between a minimum and a maximum value. The 
amount of material available to the beam is constrained by an upper bound . The 
linearized beam buckling equations are derived and solved numerically using a 
finite element approximation. 
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derives from the fact that multiple eigenvalues are non-smooth with respect to 
the design variables. Considering this possibility the optimal necessary con­
ditions are stated in terms of generalized gradients (Rodrigues et al., 1995) 
and solved using the mathematical programming code Bundle Trust Method 
(Schramm and Zowe, 1992), meant for non-smooth optimization problems. 

Otherwise stated, summation convention is assumed, Greek indices vary from 
1 to 2 while Latin indices vary from 1 to 3 and bold letters identify tensors. 

2. Linearized buckling problem 

2.1. General case 

The linearized buckling problem can be obtained by introducing a displacement 
perturbation u1 to the fundamental linear elastic displacement field u0 , that is 
u = u0 + au1 (Novozhilov, 1953). For the general 3D case the equations can be 
stated as: 

Find ,\ (critical load factor) and u 1 (mode) satisfying the boundary kine­
matics conditions and satisfying, 

/ [EijklEkl(u1)t:;1(8u1)j d0.­
.fo 

>-.f~ [EijklEkl(u0 )~:7 °~~;] dD = 0, \18u
1 

admissible (1) 

In the previous problem u0 (fundamental displacement) is the solution of 
the linear elasto-static problem, 

find u0 satisfying the kinematics boundary conditions and solving, 

/ [EijklEkl(u0 )Eij(8u0 )j dD = .In 

1
1 
(fi8u~)dD + t l,; ti8u~dr, \18u0 admissible (2) 

where an admissible displacement field is such that, u0 , u 1 are regular enough 
and u~ = ii;, ut = 0 on rn;· 

2.2. Plate problem 

If one excludes the possibility of local buckling at the material "microstructure" 
level, the main hypothesis of homogenization methods, stating that the local 
displacement fields are periodic at the microstructure level due to the local 
periodicity of the microstructure, is valid (Neves et al., 1995) and the material 
properties are given by (see Guedcs and Kikuchi, 1990) 

1 / oxkrn 
E{fkm = IYT A Eijkl- Eijpq a:q dY (3) 
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Figure 3. Microst ructure 

triangular cell 

Jl = ¥/Y 

In the previous expression, IYI is the volume of the cell characterizing the mi­
crostructure, ¥ is the solid part of the cell and x"'m is solution of the elastostatic 
problem at the cell level, 

i. ax~m fJvi i' fJvi Eijpq-
8
---

8 
dY = E;jkm-

8 
dY, Vv E V¥, 

¥ Yq Yj ¥ Yj 
(4) 

with V¥{v(y), defined in¥, vis regular enough; v(y)Y- periodic}. 
To obtain homogeneous material properties as an explicit function of the 

material density J.L, the above problems are solved for several distinct values of 
J.L and a polynomial interpolation is then used to compute property values for 
intermediate values. 

Note that due to the cell symmetries (see Fig. 3) the material has transverse 
isotropy. 

For the plate model we impose that in each lamina the normal transversal 
stress must be zero (a33 = 0), which implies the constitutive relations, 

Assuming now the following displacement field (Mindlin plate), 

Ua(Xl, X2, X3) 

u3(x1,x2,x3) 

'1La(Xl, X2)- x3f3a(Xl, x2) 

v.3(x1, x2) 

we obtain the strain components, 

(5) 

(6) 
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Figure 4. Material properties function of relative density 

(7) 

Based on these strain components, the constitutive relation (5), and by in­
tegrating along the plate thickness, the linearized plate buckling problem can 
be stated as (see e.g., Kam and Chang, 1992): 

Find u~ , 171 satisfying the boundary kinematics conditions and load factor A 
solving, 

in [ D o:,B-yo ,_.-y,B ( 17
1 

),_.o:,B ( 01]1) + 4So:3-y3E-y3 ( u~, 17
1

) Eo: 3 ( 8u~, 817 1
)) dO-

i. [ 0 0 fJu~ 88u~ 0 0 8f3J 88f3J l -A Ao:,B-yoE-y6(u )~~ + Do:,B-yoE-y6(u )~-!:!- dO= 0, 
. l! UXo: UX,B UXo: UX,B 

(8) 

Vou~, 817 1 

where u 0 is solution of the elasto-static problem, 
find u 0 satisfying the boundary kinematics conditions and solving 
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Figure 5. Laminate topology 

(9) 

In the previous equations and for the geometry of the (symmetric) laminate 
(see Fig. 5), the tensors A, D and S are defined as (Vinson and Sierakowski, 
1987), 

j
h/2 N 

E~f316dz = L(hj - hj - 1) · E:~~6 
-h/2 j=1 

j
·h/2 1 N 

( ) 2 E* d - "'( I 3 /· 3 ) E*(1) X 3 . < o.{3-y6 z - - . ~ lj - Lj - 1 . o.f3-y6 
-h/2 3 j=1 

/

·h/2 

j(x 3) · Eo.3-y3dz = 
. - h/2 

5 ~ [ 4 ( 3 3 ] •(j) 4. ~ hj- hj-1 - 3h2 h1 - hj-1 . Eo.3-y3 

]=1 

2.3. P lane beam case 

(10) 

For a beam and considering the displacements in the x1 - x 3 plane only, we 
impose the constitutive relations 

(11) 

Assuming the following displacement field (Timoshenko beam theory), 

(12) 
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we obtain the strain components, 

ou1 o(J o 
~- X3 · ~ = E11 (ui)- X3 · Kn(fJ) 
UX! UX! 

1 ( 0U3 ) OU3 - -- (3 = t:13(u3,(3) =? 1'1 = -- f3 
2 OX! OX! 

(13) 

The next developments will only consider concentrated applied forces at 
x1 = x1 . So, based on the previous strain components, the constitutive relation 
( 11), and integrating along the beam cross section the elasto-static problem can 
be stated as, 

find u 0 , (3° satisfying the kinematic boundary conditions and solving 

.hL [EAt:~ 1 ( u~)E~ 1 ( 8u~) + EI K11 ((3°)Kn ( 8(3°)+ 

+GAsrl ( u~, (3°)ri(8u~, 8(3°)]dx1 

= L Ti8u~(x1 = x1) \f8u0
, 8(3° (14) 

i= l ,3 

where A, I and As represent the cross-area, second moment of area and effective 
shear area, respectively. Note that in the last equation the summation (applied 
forces) is only taken fori= 1 and i = 3. 

Repeating the same procedure as done for equation (14) , the linearized beam 
buckling problem is stated as, 

find u 1 , (3 1 satisfying the kinematic boundary conditions and load factor A 
solving 

hL [Ehn ((3 1 )Kn ( 8(31) + G A sri ( u5, (31 h1 ( 8u5, 8(31) ]dx1-

i·L [ 0 o ouj OOuj 0 0 0(31 00(31
] 

-A EAt: 11 (u1)~~ + Elt11 (u1)~ -!:)- dx1 = 0 
. 0 UX! UX! UX1 UX! 

(15) 

\f8u1, 8(31 

where u 0 is the solution of problem (14) and the symmetry of the beam is taken 
into consideration. 

2.4. Finite element model 

To solve the problem computationally, the set of equations (8) , (9) for the plate 
or (14) , (15) for the beam case, are discretized by a finite element model. For 
the plate model an eight-node isoparametric element, with selective integration 
is used and for the beam problem a two-node element with reduce integration 
is adopted (Hughes, 1987). By means of this approximation, equations (8) and 
(15) can be stated symbolically as the generalized eigenvalue problem, 

K(b)d; - AG(b. u)dJ = 0 (lf}) 
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In this eigenvalue problem, ¢ = { ¢;} E RN (N equals number of degrees of 
freedom per node times number of nodes) represents t he eigenvector or mode, 
b = {be} E RM denotes the vector of design variables (relative density for the 
plate problem and beam thickness for the beam problem) that are assumed to 
be constant for each finite element. T he vector u = { u;} E RN is the finite 
element approximation of t he fundamental displacement , solution of a finite 
element approximation of the linear elasto-static problem (9) or (14), 

K(b)u = F (17) 

where K and G denote the stiffness and geometric matrices respectively and 
F the load vector. The generalized eigenvalue problem (16) is solved by the 
subspace iteration method using the Householder's method to solve the resultant 
reduced problem. 

3. Optimization problem 

3.1. Problem formulat ion 

The optimal design problem is to maximize the lowest positive eigenvalue .>. 
(critical load >-cr ). Assuming that the eigenvalues are st rict ly positive this is 
equivalent to minimize the maximum of the inverse of all eigenvalues. With the 
above notation and using the Rayleigh quotient, the optimal design problem is 
restated as, 

(18) 

subjected to the following constraints: 
The volume constraint that bounds the total amount of material available 

for design (reinforcement), 

(19) 

Upper and lower bound local constraints on the design variables (material 
density or beam thickness) 

0 :S be :S 1, e = 1, ... , M (20) 

and the equilibrium constraint that gives the dependence of the fundamental 
linear elastic displacement u on the design variable vector b 

K(b)u = F (21) 
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3.2. Optimality conditions 

To obtain the necessary conditions for the optimization problem stated above, 
let us introduce a Lagrangian associated with the problem where the pre­
bifurcation equilibrium equation (21) is considered as an additional constraint, 

(22) 

In the previous Lagrangian, vis the adjoint displacement field, the Lagrange 
multiplier of the equilibrium equation (21), A is the Lagrange multiplier for the 
volume constraint (19) and TJ0 , TJ 1 arc multipliers associated with the bound 
constraints (20). We note that in the case of multiple eigenvalues, the objective 
function is non-differentiable. So, let us assume that, at the optimal solution, the 
critical load factor has multiplicity "m" and let ¢;p, = 1, ... , m be any set of m 
orthonormal (with respect to K) eigenvectors corresponding to the critical load 
factor Acr· From non-smooth optimization theory (Clarke, 1982) the optimal 
necessary condition is stated as 0 E chL, where obL identifies the Lagrangian's 
generalized gradient defined as (Rodrigues et al., 1995), 

where "co" means the convex hull of the set. 
In the above generalized gradient we have: 
Vpq is the solution of the adjoint equation, 

(24) 

z0 represents the volume and lateral constraint components of the generalized 
gradient, 

zo = { zoJ = A + / dD + TJ~ - 17~ 
Jn• 

(25) 

and the terms between brackets are the generalized gradient of the inverse of 
the critical load factor 

co{ z = O:n O:n Z nn : a E R m. II a ll = n. (26) 
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We can rewrite expression (23) as (sec Seyranian ct al., 1994), 

where H = {Hpq} is a general semi-d efin ite 1n x rn matrix with tTI-1 = 1. 

3.3. Optimization algorithm- BT code 

An optimization process based on the mathematical programming code, Bun­
dle Trust Method (Schramm and Zowc, 1992), solves the previous necessary 
conditions. The version of the code used was BTNCLC (Outrata ct a l. , 1991) , 
which can handle non-convex objective functions and linear constraints. It uses 
quadratic programming, to solve a subproblem, which turns out to be important 
in the performance of the method. 

To usc BTNCLC the objective fu nction, linear (volume) constraint and box 
constraints are now rewrit ten respectively as , 

1/ Acr objective function (28) 

(t be./ e dn) -v = 0 linear (volume) constraint 
e=l j 0 

(29) 

bm in ::=; be ::=; 1, e = 1, . . . , AI box cons trni nt (30) 

where buli n represents a ve ry small positive value (lo- 3 in the examples). 
Note that the method just requires the computation of one clement of the 

objective function's generalized gradient set (sec equation (26)) , 

{ ( 
r [ fJG 1 fJK] fJK , ) 

z , Ze = O:pO:q ¢p [)be - Acr [)be c/Jq - V pq [)be U 

o:E il"', JJo:JJ = 1} 

{z = O:pO:qZJlq : 0: E Il111
, JJ o:J J = 1}. (31 ) 

This implies solving the equilibrium cqua timt to compu te the solution u , 
solving the generalized eigenvalue problem to compute the eigenvalues A and 
eigenvectors ¢, computing the adjoin t displacement v1,q satisfying the adjoint 
equation (24). 'vVe stress that BT only needs one clement of the generalized 
gradient set . 

T he computational implementation considers the objective function and vol­

ume constraint scaled as (1/ A)/ (1 / Ao) = /\ o/ A and ( L~: 
1 
be {~ . dO) jfi -1 = 0. 
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Figure 6. Perturbation regions, loads and geometry 

Regions JnCI'CIIl€1ll Dec rc tn c nt 

Pertut·bcd FFD; 6 - 10 FFD; 6 - 10 Analyt ical FFD; 6- 10 FFD; 6- 10 Analytical 
A+D+C+D 152.601 152.7 15 152.683 - 281.884 -281.872 -281.870 

A + B 10.459 10 .480 10.452 -206 .9 19 -206.820 -206.824 
B+D 76.298 7G.378 76 .34 2 -1 40.956 -140.937 -140.935 

8 5.230 5.253 5.226 - 103.458 -103.403 -10 3.4 12 

Table 1. Comparison between finite differences and analytical values 

4. Applications 

4.1. Sensitivity analysis 

This example compares the directional derivative of the critical load factor, 
obtained from the generalized gradient definition (26), with forward finite dif­
ference approximations. We will assume that the critical load factor is strictly 
positive. Under this condition, the directional derivative in direction b* is given 
by (see e.g., Clarke, 1982) , 

dA.cr 2 ( *) 
db

* = -Acr max g, b 
gEo( l / >. c,-) 

(32) 

The structure tested is the simply supported plate shown in Fig. 6. The 
cell base material (see Fig. 3) is isotropic with Young 's module E = 210 GPa 
and Poisson coefficient v = 0. 3. T he derivatives arc computed for positive 
and negative perturbations in four distinct directions obtained from different 
perturbations of the regions A, B, C and D identified in Fig. 6. The two 
reinforcement layers have a uniform material with b = 1-l = 0.4, T2 = 1000 N/m 
and the cri tical load factor has multiplicity two (>.. cTl = Acr2 = 477.05) for the 
geometry shown. 

Table 1 presents the results obtained. The results show a very good agree­
ment between finite difference values and the analytical derivatives. Also from 
the different values obtained for negative and positive perturbations, the non­
differentiabili ty of the eigenvalues is apparent. 
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Figure 7. Loads and geometry (case A left, case B right) 

4.2. Beam examples 

In these examples two cases are presented to show the applicability of the com­
putational model. These cases are show in Fig. 7. 

The volume constraint allows for 40% of the maximum thickness and the 
design process starts with uniform thickness (verifying the volume constraint). 
The material is isotropic with Young's module E = 210 GPa and Poisson coef­
ficient v = 0.3. A two-node isoparametric finite element model of 150 elements 
is used in both cases. 

The user-defined BT-code parameters are: FM variable 90% of the initial 
objective value for the first case and 70% in the second and LRESET = 5. 
This values are adequate for each example but it is not assured that this choice 
is the optimal one. 

The computed critical load factor (first eigenvalue) of the structure for the 
first and second cases, respectively, are >-cr = 103.2 and >-cr = 504.3 for the 
initial design and Acr = 160.2 (55.2% increase) and Acr = 1683 (233% increase), 
respectively, for the final designs after fifty design iterations. The optimal thick­
ness distribution and the evolution of the three lowest eigenvalue, for both cases, 
are presented in Figs. 8 and 9. Note that for case B the final design has a critical 
load with multiplicity three (m = 3) . 

4.3. Rectangular plate reinforcement 

This example considers the reinforcement of a rectangular plate subjected to 
inplane forces in one direction. The first case considers a simple supported 
plate on all boundaries and the other case the plate fixed along one boundary 
and simply supported along the other ones (see Fig. 10). The total thickness is 
10 mm and the thickness of the original plate depends on the ratio of the design 
layer. 

The design process starts with a uniform material distribution and the vol­
ume constraint allows for a 20 or 40% surface area increase. The cell base ma­
terial (see Fie-. 3) is isotronic with Youne-'s module E = 210 GPa and Poisson 
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Figure 8. Final design thickness distribution (case A to the left, case B to the 
right) 
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Figure 9. Eigenvalue evolution (case A to the left , case B to the right) 

base material: E""' 210 GPa,v=0.3 

Figure 10. Loads and geometry 
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simple supported plate fixed/simple supported plate 
initial uni- final design initial uni- final design 
form design form design 

20% area design AI = 513.5 AI = 628.1 AI = 531.0 AI = 732.4 
material 1/3 thick- A2 = 555 .1 A2 = 628.3 A2 = 693.7 A2 = 732.9 
ness design layer 
40% area design AI = 615.4 AI = 867.3 AI = 636.4 AI = 1010.8 
material 1/ 3 thick- A2 = 665.3 A2 = 867.3 A2 = 831.3 A2 = 1010.9 
ness design layer 

Table 2. Critical load factors (1st and 2nd eigenvalue) 

coefficient v = 0.3. The finite element model uses the eight-node isoparametric 
elements and has 32 x 24 elements . 

The user-defined BT parameters arc, for FlVI variable, 70 or 95% of the initial 
objective value and LRESET = 5. This values are adequate to each example 
but it is not assure that this choice is the optimal one. 

The results are summarized in Table 2 and Figs. 11 and 12. Notice that in 
all the cases there is an E-double eigenvalue at the final design. 

5. Final remarks 

The development presented extends the layout design of structures to include a 
non-smooth crit ical load criterion. It is applied to the optimal design of plate 
reinforcements and beam thickness. The problem is solved using a finite element 
model and a mathematical programming method for non-smooth problems, the 
Bundle method (Schramm and Zowe, 1992). 

The feasibility of the approach presented was substantiated with the reso­
lution of several numerical test examples. The importance of considering the 
non-smoothness of the problem is established with the good accuracy observed 
in the computed directional derivatives and, in the optimization examples, a 
substantial increase was obtained in the critical load of the structures tested. 

A limitation in the described model is the issue of the optimal structure 
sensitivity to geometric imperfections. This is not addressed in this work and 
using a linear buckling model docs not allow for an estimate of this sensitivity. 
To overcome this limitation a mechanical nonlinear model should be used. Mroz 
and Haftka (1993) discuss such a model and present sensitivity expressions for 
shape and size design variables. 

One important question in nonsrnooth engineering optimization problems 
relates to the dependability of existent mathematical programming methods. 
In this issue it was observed that the BT mrk~ nr.rformr.d r:ffirir.n t.lv :1.nrl r:1n 
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20% Volume Constraint 

40% Volume Constraint 

Figure 11. Simple supported plate reinforcement topologies 
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20% Volume Constraint 

40% Volume Constraint 

Figure 12. Fixed/simple supported plate reinforcement topologies 
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be used as an effective tool in engineering optimization problems. Lately, an 
intense research effort has been devoted to the study and development of efficient 
algorithms for non-smooth optimization problems and so it is expected that in 
the near future these new developments can lead to even more efficient and 
reliable algorithms . 
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