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Abstract: In traditional statistics all parameters of the ma-
thematical model and possible observations should be well defined.
Sometimes such assumption appears too rigid for the real-life prob-
lems, especially when dealing with imprecise or linguistic data. To
relax this rigidity fuzzy methods are incorporated into statistics.
This paper is devoted to statistical inference about the population
median in the presence of vague data. We propose the notion of fuzzy
median. Then we suggest a fuzzy estimator and fuzzy confidence in-
terval for the median. Next we discuss the problem of hiypothesis
testing concerning the median in the presence of imprecise data. All
methods presented are distribution-free.
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1. Introduction

In traditional statistics all parameters of the mathematical model and the ob-
served experimental data should be well defined. However often this assumption
appears too rigid for the real-life problems. We face such situations when our
experimental data are imprecise or of linguistic type, like: “about five”, “more
or less seven”, “not less then fifty”, “approximately between seventeen and
twenty”, etc. Thus two types of uncertainty occur in our problem: randomness
caused by a chance mechanism and vagueness brought about by the imprecise
meaning of the data.

A possible way of handling situations like this is to apply the theory of fuzzy
sets to describe vagueness and then generalize classical statistical methods to
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on fuzzy sets, the extension principle and a concept of a linguistic variable
Zadeh (1965, 1975). Next, Kwakernaak (1978, 1979) introduced the notion of a
fuzzy random variable. Other definitions of fuzzy random variables are due to
Kruse (1982, 1984), Puri and Ralescu (1986), Stein and Talati (1981). Kruse
(1982) as well as Miyakoshi and Shimbo (1984) showed that the strong law of
large numbers also holds for fuzzy random variables. Kruse (1984) suggested
how to construct estimators under the presence of vagueness. Then Kruse and
Meyer (1987, 1988) obtained fuzzy confidence intervals for the mean and the
variance. They also proposed a method of testing statistical hypotheses for
fuzzy data (Kruse, Meyer, 1987), which however has a lot of disadvantages (see
Grzegorzewski, Hryniewicz, 1997). Attempts to contrive statistical problems
with fuzzy data were also made by Casals, Gil and Gil (1986a, 1986b), Corral,
Gil (1988), Gil (1988), Son, Song and Kim (1992) and Viertl (1996).

In all papers mentioned above the authors assume that a distribution in
question is known except one parameter, e.g. the distribution is Gaussian with
unknown mean and known standard deviation. Such an approach is called
by statisticians parametric. Unfortunately we still don’t have any effective
goodness-of-fit test for fuzzy data. Thus we can not be sure that our fuzzy
data have a distribution of a desired type indeed. Hence nonparametric meth-
ods would be useful in fuzzy statistics.

In this paper we show how to incorporate nonparametric methods into vague
data problems. In Sec. 2 we define so called fuzzy median. Next we suggest how
to estimate the median from vague data (Sec. 3) and how to construct a fuzzy
confidence interval for the median (Sec. 4). Finally we discuss the problem
of hypothesis testing concerning the median (Sec. 5). We generalize the well
known sign-test into fuzzy sign-test. All methods presented are distribution-free,
i.e. no assumptions on the type of the distribution are made.

2. Fuzzy random variables

The basic notion of the probability theory is a random variable. Roughly speak-
ing, a random variable is a mapping which assigns to cach random event a real
number. A fuzzy random variable may be defined by analogy, however now we
deal with fuzzy numbers. Thus we begin by recalling some basic concepts and
notation connected with the notion of fuzzy number.

DEFINITION 2.1 The fuzzy subset A of the real line R, with the membership

function p: R — [0,1], is a fuzzy number iff

(a) A is normal, i.e. there exist an element o € R such that p(zo) = 1;

(b) A is fuzzy convez, i.e. p(dz + (1 — Ny) > plz) A ply) Va,y € R and
YOo< A<,

(¢) pu 1s upper semicontinuous;
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An useful tool for dealing with fuzzy numbers are their o-level sets. The
a-level set A, of a fuzzy number A is a nonfuzzy set defined as

Ax={r€eR: p(x)>a}

The family {A : a € [0,1]} is a set representation of the fuzzy number
A (see Kruse, Meyer, 1987). Basing on the resolution identity we have the
alternative description of fuzzy numbers:

ae0,1

p(z) = sup ]{o_rf,;o ()},

where 14, () denotes the indicator function of A,.
Definition 2.1 implies that every a-level set of fuzzy number is a closed
interval. Hence we have A, = [AL, AY], where
AL = inf{z eR:pu(x) > a},
AY sup{z € R : p(z) > a}.

Il

REMARK 2.1 Some authors (see, e.q. Kruse, Meyer, 1987) consider separately
the a-level sets and the strong a-cuts, i.e. sets of the form {xr € R: p(z) >
a}, o € [0,1). This distinction, however, is useless in our case.

A space of all fuzzy numbers will be denoted by FN(R). Of course, FN(R) C
F(R), where F(R) is a space of all fuzzy sets on the real line.

Sometimes fuzzy sets are used to describe linguistic properties like: “rather
less than 107, “greater than 507, ete. Such fuzzy sets are not fuzzy numbers,
because their supports are not bounded. On account of importance of these
fuzzy sets in applications, we introduce a family of the left-sided fuzzy numbers
and the right-sided fuzzy numbers defined as follows (see Grzegorzewski, 1998):

DEFINITION 2.2 The fuzzy subsel A of the real line R, with the membership
function pu: R — [0,1], is the left-sided fuzzy number (right-sided fuzzy number)
iff

(a) A is normal;

(b) A is fuzzy convex;

(¢) p is upper semicontinuous;

(d) supp (A) is bounded only from the left side (only from the right side).

As before, we can use the alternative description based on a-level sets and
the resolution identity. Definition 2.2 implies that every a-level set of the left-
sided fuzzy number is an interval bounded from the left side, while the right-
sided fuzzy number has o-level sets bounded from the right side. Families of
all left-sided and right-sided fuzzy numbers will be denoted by FNpg(R) and
FNps(R), respectively (obviously, FNpg(R), FNrs(R) C F(R)).

Now we will introduce the notion of fuzzy random variable. Our definition
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Suppose a random experiment is described as usual by a probability space
(Q,F,P), where Q is the set of all possible outcomes of the experiment, F is
a g-algebra of subsets of Q (the set of all possible events) and the function P,
defined on F, is a probability measure.

DEFINITION 2.3 A mapping X : 0 — FN(R) is called a fuzzy random variable
(frv.) if it .mtisﬁes the following properties:
1. {Xo(w): a €[0,1]} is a set representation of X(w) for all w € R,
2. for each o € [0,1] both XX and XU defined as
b XE(w) = inf X (w )
Xg = Xcu (w) = sup Xq(w),
are real-valued random variables on (Q,F, P).

Thus a fuzzy random variable X can be considered as a perception of an
unknown usual random variable V' : © — R, called an original of X. Let x
denote a set of all possible originals of X. If only vague data are available,
it is of course impossible to show which of the possible originals is the true
one. Therefore we can define a fuzzy set of x, with a membership function
v: x — FN(R) given as follows:

v(V) = inf {;LX(W)(V(:;J)) tw e Q},

which corresponds to the grade of acceptability that a fixed random variable V
is the original of the fuzzy random variable in question.

A random variable is characterized by its probability distribution. However
often we are interested ounly in some parameters of the distribution. These
parameters (c.g. measures of location or dispersion, descriptors of symmetry or
shape) play a key role in mathematical statistics. They are uscful particularly in
statistics of vague data, where handling with probability distributions of fuzzy
random variables is rather complicated. Let us consider a parameter 6 = 0(V)
of random variable V. This paramecter may be viewed as an image of a mapping
which assigns to each random variable V' with distribution Py the considered
parameter . However if we deal with a fuzzy random variable we cannot observe
our @ directly, but only its vague image. Using this reasoning together with
Zadeh'’s extension principle, Kruse and Meyer (1987) introduced the notion of
fuzzy parameter of fuzzy random variable, also called a fuzzy perception of the
parameter 0. It is defined as follows

DEFINITION 2.4 A fuzzy perception of a parameter 6 is a fuzzy set A(0) with a
membership function

o) (t) = sup {3‘%& pxw)(V(w)): Vex,0(V)= f-} , tER,
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This notion is well defined since if our random variable is crisp, i.e. X =V,
we get A(0) = 0.

In this paper we restrict our considerations to the central tendency para-
meters (i.e. the representative value for the population, also called the location
parameter). Most often people are interested in the mean of a random variable.
This notion was also generalized to the case of fuzzy random variables (see
Kwakernaak, 1978). But there are distributions which have no mean (e.g. the
Cauchy distribution). Thus from our nonparametric view the median would be
a more suitable location parameter. Morcover, the median is less affected by
extremal values of random variable. This is the reason why the median is so
appreciated in statistics as a parameter robust to outliers. Here we propose
a definition of a fuzzy median of fuzsy random variable X. Let us recall that
v € R is the median of the random variable V' if it satisfies following inequalities:

Dy(y~) £0.5 < Dy (7),

where Dy denotes the distribution function of V. Using Zadels extension
principle we may generalize this notion to the fuzzy context.

DEFINITION 2.5 A fuzzy median of a forv. X s a fuzzy set T with a membership
function defined as

.H.p(f.) = E-illp{ n&lg! ;:.X(w)(V(w)) : V ey, Dv(l—') <05 < D-,z(ﬂ)} , 1 € R.

Thus a fuzzy median may be regarded as a (fuzzy) perception of the unknown
usual median, The following theorem is true:

THEOREM 2.1 The fuzzy median T of a fir.v. X is a fuzzy number with a set
representation I'y of the form To = [['%, TY], where

Ph=inf{t € R: Dxs(t7) <0.5< Dxs(t)}
and
Ig =sup{t €R: Dxu(t™) <0.5< Dxu(t)}.
Proof: If {T'y} is a set representation of the fuzzy median then
To={teR: 3V € x with Dy (t7) < 0.5 < Dy (t)
such that V(w) € Xo(w) Yw € Q}.

By Definition 2.3 XX(w), XY (w) € Xqo(w) Vw € Q and VYo € [0,1]. So the
medians of the random variables XZ(w) and XY (w) belong to Ty, for all « €
[0,1].

Let a € [0,1], and V € X,. Assumne that v is a median of V. Since
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we have
Dx(t) = Dy(t) = Dxu(t) for all t € R.

Therefore
inf {t € R: Dys(t™) <05 < Dyu(t)} <7
<sup{t€R: Dxv(t7) 0.5 < Dxu(t)}.

Since it holds for all a € [0,1], we conclude that T = [['L, I'Y], where
Ta

FU

inf {t e R: Dxr(t7) <0.5< Dxr(t)},
sup{t € R: Dyu(t™) <0.5< Dyu(t)},

is the set representation of the fuzzy median I'. By the normality of a fuzzy
random variable, we have 'y # 0 VYo € [0,1]. Since Lr.v. is fuzzy-convex, we
get 'y, C Ly, Yoy > ag € [0,1]. Thus we conclude that ' is a fuzzy number,
which proves the theorem. |

3. Fuzzy point estimation

Let V3, Vs,...,V, be a random sample which is the outcome of a random exper-
iment. The problem of point estimation is to give a good guess for an unknown
parameter of the underlying distribution. The best known point estimator of
the median is, so called, the sample median defined as

. V[%]Hm_ if n is odd,

% (V%:n, 7 Vé‘{--i—l:n) if nis oven,

where Vi, € Vo, < ... £ Vjun denote order statistics of the sample (i.e. the
original sample after arrangement in the increasing order of magnitude) and
where [2] is the largest integer less than or equal to 2. It is known that if the
sample is drawn from the distribution with the uniquely determined median,
then 4 is a consistent cstimator.

Now consider the situation that the results of our random experiment are not
precise but vague. We describe thein by a fuzzy random sample X, Xa, ..., X,
which may be considered as a fuzzy perception of the random sample Vi, Vs, .. .,
V. A natural question arises: is it possible to estimate precisely an unknown
median on the basis of these vague observations? The answer is negative, of
course, because in the presence of randomness and fuzziness we can infer with
the precision no better than the precision of the experiment outcomes. The best
we may get is a fuzzy perception of our unknown parameter defined above.

Thus our task is to obtain a fuzzy point estimator of the fuzzy median,
which may be viewed as a perception of the unknown parameter. Basing on the
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DEFINITION 3.1 A fuzzy sample median I from the fuzzy random sample Xy,
Xo,..., Xy is a fuzzy set with a membership function pp @ (FN(R))" — [0,1]
given as follows

pi(X1, X2, .00, Xa)(t) = sup {“f[l‘"g,fg](‘) : € |0, 1]} fort e R,

where
( Xﬁ?) if n is odd,
TE =TE( Xy, Xo,0niyXn) = #]+1m
s : { %((Xa)%m + (Xc{‘)§-+l:n) if n is even,

¢ X) 5] +1m if n 1s odd,
% (X&) gm+ (Xg)%_,_l:,,_) if n is even.

Here (XL ); . denotes the k-th order statistic of the sample (X ) PR )
while (XY)jn is the k-th order statistic of the sample (X1)Y,. (Xn)g.

fg = f‘g(Xl,XQ;---;Xu) - {

REMARK 3.1 If the observations are not vague but crisp, our fuzzy samnple me-
dian becomes a traditional (crisp) sample median.

The algebraic properties of the fuzzy sample median, in particular, fuzzy
convexity and normality, are stated by the theorem.

THEORE’\I 3.1 The fuzzy sample median r from. the fuzzy random sample X1,
Xo, ..., X, is a fuzzy number,

Proof: Without loss of generality we assume that the size of our sample n is

odd (otherwise the reasoning is analogous).

(i) Let take any @ € [0,1). Suppose that T'L = (X;)%, where i € 1,2,.
Hence there exist at least [4] + 1 observations Xy such that (X;_)
(X)E, k € 1,2,...,n. By Definition 3.1 we get 'Y = (XV

o )[%]+l:ﬂ
(X:)k =T'L. Thus [y = [[L,TY] # 0 for all a € [0, 1].
(ii) Let tcl.l\(‘ am’ two (11,(19 G [U 11 such that ay > as. Suppo‘a( that
cn (X')a, ? (X )cxl; FL = (X )ﬁg; (Xf-)
There is no loss of gene Iaht_v 111 assuming that / = i. We have Lo consider thlcu
cases: )
1. lf-;" =k Hl(?l-l FCH [FQI,FHIJ = [X 0:|'-‘ ’Y.i') ] c [ aa!(x)
[ ,) = Lay, because both X; and X are fumy Convex;

[« TR

2. if j # k and (X;), < (Xx)g, then we have f‘a, [IL I“” J =X )m,

(23] C(],’

( o) € [(X0)&y» (X3)%,) € [(Xi)g,s (Xi)ag) = [, TF I—Fazs
if § # k and (X Vo, > (){L)U2 then it should lmpp('n that (X;)J <

(Xa) sowe get Fa, = [0F,,0%,] = [(X:)&,, (X3)8,] € [( v.c.},(X.u,]E

rrV\f v AU L Al
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Thus we have f‘m c f‘a, for any ay > ag and [ = 4. If | # i the reasoning
is analogous to that given above. Hence

e Va € [0,1] ﬁ'o is an interval (by the definition);

o Vae[0,1] I'a #0;

o Yoy > ap € [0,1] [‘ot1 C I‘n,2
:}nd we conclude that the fuzzy sample median I is convex. Moreover, by (i)

La=1 # 0, so there exist such an element 2o € R that pp(z0) = 1, and we see

that I is normal. Since each a-level set of I is also bounded we conclude that
the fuzzy sample median [isa fuzzy number, which completes the proof. M

Now we will discuss statistical properties of the fuzzy sample median. We
begin by recalling some basic concepts connected with the subject (see, e.p.,
Kruse, 1984, and Kruse, Meyer, 1987).

DEFINITION 3.2 We say that a sequence {X,}, of fuzzy random variables

converges in probability to the fuzzy number Z (and we write X, 2 Z) if for
every € > 0

sup]P(wEW: |(Xn(@))E = ZE|V [(Xn()Y = 2Y| > €) =0
acl0,1

as n — o0,

It is easily scen that this is a generalization of the convergence in probability
for usual random variables to the case of fuzzy random variables.

Suppose that the unknown parameter @ has to be estimated from the vague
data X;,Xo,...,Xn. Any mapping 0,(X1,Xo,...,X,) from (FN(R))" into
FN(R) may be considered as a fuzzy point estimator of that unknown param-
eter. However we need some criteria to choose a reasonable estimator among
all possible ones. In the classical statistics such a basic property that a reason-
able estimator should possess is consistency. In our case of vague data we may
express this property in the following way.

DEFINITION 3.3 Let Xy, Xs,..., X, denote a fuzzy random sample from the
distribution with unknown parameter 6 and let A(0) denole a fuzzy perception
of 0 based on X1, Xs,..., X, (see Definition 2.4). Then a fuzzy point estimator
6, = é“(X].,Xz, ..y Xn) is called afuzzy consistent estimator of the parameter
|9 (actually we have a sequence {0,}° >, of estimators) if for all sequences of
fuzzy random variables {Xy,}, .,

On(X1,Xa, ..., Xn) 5 A(6).
Now we may prove a following theorem:

THEOREM 3.2 The fuzzy sample medzan I‘ is afvzzi,- consistent estirmator of the
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Proof: Let 6 denote the median we want to estimate (here we restrict our
considerations only to distributions with unique median). If we have vague data
X1, X2, ..., Xn, then the fuzzy median I' is the fuzzy perception of v, i.c. A(y) =
I'. Let us consider the set representation {I'y} of the fuzzy sample median I',
ic. Iy = [[%,TY] for a € [0,1]. By Definition 3.1 it is casily seen that both
Ff; = f‘g(Xl‘Xg, ...y Xyp) and 1“},{ = f‘g(Xl,Xg, ..., X,) are usual estimators of
the crisp medians 4; and 7y, from crisp random samples (X)L, (Xo)E,. .., (Xa)E
and (X1)Y,(X2)Y,...,(Xn)Y, respectively. These medians are unique, because
of the assumption on distributions (originals) under discussion. Since the usual
sample median is a consistent estimator of the crisp median, provided that
we restrict ourselves to distributions with unique median, we have I't % 1L
and IV L TV va € [0,1], where 93 = T% and 45 = I'Y. Therefore Ve >

0 and Yo € [0,1] we get P(w eW: ‘f‘g(Xl(w),Xg(w),...,X“(u)) - TL{v
f“f;’(Xl(w),Xg(w),...,Xn(w)) - Ff;" > F) — 0 as n — oo. Thus the fuzzy

sample median I is a fuzzy-consistent estimator of the median, which completes
the proof. il

4. A fuzzy confidence interval for the median

Very often the experimenter is interested in finding an interval that contains the
true (but unknown) parameter with a specified high probability. This is a prob-
lem of interval estimation. The desired interval is called the confidence interval
and this specified probability is called the confidence level. Thus 7 = |7y, 9],
where 77 and 7y are functions of the observable random variables Vi, Vs, ..., V,,
is a confidence interval for the parameter @ on the confidence level 1 — 6 if

P{oen}>1-6.

Now we define a concept of the fuzzy confidence interval, due to Kruse and
Meyer. Let Xy, X, ..., X, be a fuzzy sample and let denote by A(8) the fuzzy
perception of 6.

DEFINITION 4.1 A fuzzy set 1l is called a fuzzy confidence interval for 6 on the
confidence level 1 — § if

inf P{we: A, Cll,}>1-4,
agl0,1]

where Iy = [1I£,T1Y] and 1%, 11V : (FN(R))" — FN(R).

Our definition is similar to those given in Kruse, Meyer (1987, 1988). If we
know two usual (i.c. crisp) one-sided confidence intervals [my, 00) and (—oo, 2]

for @ we can also derive a fuzzy confidence interval for . This construction is
e Lo citidve o P e dwsil- Kl swnmw OO 230500
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THEOREM 4.1 Let [my,00) and (—o0, 2] be two usual one-sided confidence in-
tervals for @ on the confidence level &, and 82 respectively, where 6, + 62 = 0,
6 €(0,1), and my < mg. Let Xy, Xa,..., X, be a fuzzy sample and A(0) denote
a fuzzy perception of 6. Define for a € [0,1]

nE(Xy,X3,...,X,) = inf{teR: Vie{1,2,...,n} Iz; € (Xi)a
such that w1 (x1,@,...,2n) <1},
nYy(X:,Xa,...,Xn) = sup{t€R: Vie {1,2,...,n} 3z € (Xi)a
such that wo(x1,T0,...,Tn) > 1},
pn(t) = sup{alpz ny(t) : a€[0,1]}

Then a fuzzy set I1 with a membership function pup is a fuzzy confidence interval
for 0 on the confidence level 1 — 6.

For the proof we refer the reader to Kruse, Meyer (1987). Basing on this
theorem we may construct a confidence interval for the median.

THEOREM 4.2 Let Xy, Xs,..., X, be a fuzzy sample and § € (0,1). Define for
a € [0,1]

(HI‘(X'MXZI ey Xn.))cr = [(Xi)k1+1:n9 (Xg)kz:n] )

where ky is chosen to be the largest integer which satisfies t‘zo ( r ) (0.5)" <

-g- and ky =mn — ky. Then a fuzzy set Iy with a membership function

pie (1) = sup {alnp(xy, Xs,.. 60 () : @ € [0,1]}

is a confidence interval for the median on the confidence level 1 — 6.

Proof: By Theorem 4.1 it suffices to show that for every fuzzy sample X, Xo,
oy Xn and Va € (0,1 [IE(X1,Xa,...,Xn),0Y (X1, Xa,...,Xn)] C
(Mp (X1, X2,...,X5)), is valid. Without loss of gencrality we assume that the
sample size is odd.

It is known (e.g. sce Gibbons, 1971) that if V4, Va,...,V, denote a usual
(i.e. crisp) random sample then the confidence interval for the median on the
confidence level 1 — 6 has a form: [Vi,4+1:n, Viy:n), Where &y and ko are defined
as in Theorem 4.2.

Let us set any a € [0,1]. Let us take & € R such that there are z; € (Xi)a
Vie1,2,...,n for which my(2y,29,...,%,) = T, +1.» < & holds. Such £ exists
because the supports of X;, i = 1,2,...,n, are finite. Since Vi € {1,2,...,n}
z; > (X)L is valid, it follows that

-=T - ‘ \ -~
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Therefore we get

TE(Xy, Xy ooy Xn) =inf {t €R: Vi€ {1,2,...,n} I2; € (Xi)a
such that m1(21,%2, .- ;%n) 1} 2 (XE)k41:m-

We can show in a similar way that

nY(X1, Xs,...,Xn) =sup{t € R: Vi€ {1,2,...,n} 3z; € (Xi)a
such that mo(z1,22,...,2,) > 1} < (Xg)kzm.

These two inequalities show that [IICI;(Xl Xy euny Xn), TE (X5 Xz,
o) £ [(Xc{*);.-.ﬁ.l;,,,(Xf,{)km] = (Op(X1,X2,...,X,)), which proves the
assertion. ||

Sometimes one-sided confidence intervals are used in applications. Kruse and
Meyer (1987) also showed how to derive one-sided fuzzy confidence intervals.

THEOREM 4.3 Let [w1,00) and (—o00,m] be two usual one-sided confidence in-
tervals for 6 on the confidence level 8, 6 € (0,1). Let X1, Xa,..., X, be a fuzzy
sample and A(0) denote a fuzzy perception of 0.
(i) Define for a € [0,1]

IO,(X1,X9,....,X,) = if{teR:Vi€{1,2,...,n} 3z; € (Xi)a

such that (21, 2a,...,2,) <1},

Il

pn(t) sup {a}mﬂm)(t) ca e, 1]} .
Then a fuzzy set II with a membership function pup is the lower fuzzy
confidence interval for 0 on the confidence level 1 — 5.
(ii) Define for a € [0,1]
5 s N 3 sup{te R:Vie {1,2,...,n} 3z; € (Xi)a

such that wo(xy,Ta,...,2,) > 1},
pp(t) sup {rﬂ(_w,ﬁn](t) ta €0, 1]} )

Then a fuzzy set 1, with a membership function jisp is the upper fuzzy
confidence interval for 0 on the confidence level 1 — 6.

For more details we refer the reader again to Kruse, Meyer (1987). As in
Theorem 4.2 we may construct the one-sided fuzzy confidence intervals for the
median,

THEOREM 4.4 Let X1, X»,..., X, be a fuzzy samnple and § € (0,1).
(i) Define for a € [0,1]
(e ( X1, Xy Xn))e = (XD )k 41mv00) 5

where ky is chosen to be the largest integer which satisfies
k1

Z( :’ )(0.5)" < 6.
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Then a fuzzy set I with a membership function

Mo, (f) = sup {alﬂr(.’ﬁ.Xz,m‘X,.)(t) T € [U, 1]}
is the lower confidence interval for the median on the confidence level 1—6.
(ii) Define for a € [0,1]
(ﬁl"(Xl ' . T ' Xn))cx = (—OO, (Xg)kg:n] ]
where kg is chosen to be the smallest integer satisfying

3 ( £ )(0.5)" <6
kzkg
Then a fuzzy set Iy with a membership function

pig,.(t) = sup {(yfﬁr{xl,Xz‘w.x,,)(t) ra €0, 1]}
is the upper confidence interval for the median on the confidence level 1—6.

The proof is similar to the proof of Theorem 4.2.

5. Fuzzy sign-test

In addition to estimation, one of the primary purposes of statistical inference is
to test hypotheses. A statistical hypothesis is a statement about the population
(or populations) from which one or more samples are drawn. The hypothesis
under test is called the null hypothesis Hg. A statistical procedure which enables
one to make a decision whether or not Hg should be rejected is called a test.
If the null hypothesis is rejected one accepts the alternative hypothesis Hy. A
significance level § is a preselected upper bound for a type I error, i.c. the error
committed if the null hypothesis is rejected when it is true.

In the traditional approach to hypothesis testing all the concepts stated
above are precise and well-defined and the theory of that problem has been ex-
plored thoroughly (see, ¢.g. Lehimann, 1986). However if we introduce vagueness
into observations or hypotheses we face quite new and interesting problems. Di-
versity of approaches to testing hypotheses in fuzzy environment indicates that
we are yet in the initial stage and the commonly accepted methodology has
not been worked out. For a review of the achievements in this area we refer
the reader to Grzegorzewski, Hryniewicz (1997). Here we present our view on
the general problem of testing crisp hypothesis in the presence of vague data.
Then we apply the submitted theory to distribution-free problems concerning
the median.

Let Vi, Va,...,V, be a usual random sample from the population with un-
known parameter g. We consider the null hypothesis Hy : 0 = fp against the
two-sided alternative hypothesis Hy : 8 # 0y or against one of the following
one-sided hypotheses Hy : 8 > g or H{ : 0 < 0p. To verify the null liypothesis
on the significance level § we use a test ¢ : R — 0,1 defined as follows

m™rifyr wr Tr N 1+ 1rr 1 -~ ¢
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In statistics randomized tests ¢ : R — [0, 1], which use an additional random
mechanism, independent from a sample, are also known. Since their importance
is rather of theoretical kind, here we restrict ourselves to non-randomized tests,
called simply tests.

Now let us consider a fuzzy random sample Xy, Xo, ..., X,,. Grzegorzewski
(1997) introduced the notion of fuzzy test for testing hypotheses in the presence
of vague data.

DEFINITION 5.1 Let 6 € (0,1) and let Hy and H,y denote the null hypothesis
and the alternative hypothesis, respectively. A function ¢ : (F(R))" — F({0,1})
is called a fuzzy test for Hy on the significance level § if

sup P {w € Q: pa (X2 (@), Xa(w),-., Xn(w)) € {1} |Ho} < 4,
ae[0,1]

where @, is the a-level set of .

This definition reduces to the classical one if all observations are crisp.

It is well known that there is an equivalence between the totality of para-
meter values for which the null hypothesis is accepted and the structure of
the confidence intervals (see, e.g. Lehmann, 1986). Thus having a confidence
interval for a given parameter one may obtain easily a test for that parameter.
Similarly, fuzzy confidence intervals can be used for the construction of fuzzy
tests. That construction is due to Grzegorzewski (1997).

Let us denote by —A the complement of a fuzzy set A, ie. if g is a
membership function of 4 then a membership function of —A is defined as
fima(z) =1—pa(z),Vz € X.

THEOREM 5.1 Lel Xy, Xs,...,X, be a fuzzy sample and let § € (0,1). Let
IT = II(X;, Xa,...,X,) denote the two-sided fuzzy confidence interval for the
parameter 6 on the confidence level 1—68. Then a function ¢ : (F(R))" — F(0,1)
with its a-level sets defined as follows

9 ¢ 2y
1 1 € a 1
PalXi, XKoo Xn) =0 (01} of oge(n n(ﬁ )e)s

0 if 0o ¢ (Mo U (-IT)a)

tl

is a fuzzy test for the hypothesis Hy : 8 = 8y against Hy : 0 # 6y on the
significance level 8.

By the theorem given above we may express a membership function of the
fuzzy test considered above in a form more suitable for applications:

pe(x) = pn(fo)lo(x) + p-n(fo)h(z) =

O NT W) 0 1 va 0 YYT )y o= 11
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or, for short, p(z) = po/0 + (1 — 120)/1, where po = pn(fp). Thus it is seen
that the fuzzy test, contrary to the classical crisp test, does not lead to the
binary decision — to reject or to accept the null hypothesis — but to a fuzzy
decision: we may get ¢ = 0/0 + 1/1 which indicates that we should reject Hy,
or ¢ = 1/0 + 0/1 which means that Hy should be accepted, but we may also
get p(z) = po/0+ (1 — po)/1, where jzg € (0,1), which may be interpreted as a
degree of conviction that we should accept (pg) or reject (1— i) the hypothesis
Hy.

It is worth noting that our fuzzy tests reduce do the usnal (i.e. crisp) tests
if the data are not vague but crisp.

We may also obtain fuzzy tests for one-sided hypotheses. In order to get
a fuzzy test for testing hypothesis Hy : # < g against Hy : 8 > 6y it suffices
to replace P in Theorem 5.1 by II. Similarly, to get a fuzzy test for testing
Hy : 0 > 0y against H : 6 < 6, ouc has to replace P in Theorem 5.1 by II.

Now we can derive a fuzzy test for testing hypotheses concerning the me-
dian. This test is a natural generalization of the well-known sign-test (see, c.g.,
Gibbons, 1971) into situation with the presence of vagne data.

THEOREM 5.2 Let X1,Xs,...,X, be a fuzzy sample and let 6 € (0,1). Define
Jor a € [0,1]

(ch(xl, X?':"':X

{0y if (XHr,+1: (Xl—cz)kl+1 n) <%
< (()E )iz N (X1l o )kgm)s

{l} if Yo < ( Q)k1+1,u (Xl_a)k1+1:n) or
= { Y > ((Xc{:)h-}-l n (le—a)kziﬂ)
{011} 1.!( (X )k1~r1 m <7 < (Xi[‘—a)kl-{-l:n or
(X —a)kz n < ']"D (XL)}.1+1:11),
0 if (Xl— Jer+1m S Y0 < (X )k1+l:n or
k. (X )Lg,n <7 £ (Xl_a)k1+1:'m

where ky is chosen to be the largest integer which satisfies Zﬁ;o ( : ) (0.5)" <

% and ko = n—ky. Then a function ¢ : (F(R))" — F({0,1}) with its a-level sets
defined above is a test for the hypothesis that the median is equal to vy against
the alternative that it is not equal to vyo (i.e. Hy:v =0 vs Hy : v # o) on the
significance level 6.

Proof: By Theorem 5.1 we know that a test for an unknown parameter with
the two-sided alternative is completely determined by the confidence interval
for that parameter and its complement. As it was shown in Theorem 4.2 that
a fuzzy set Il = I1( X, X3, ..., X,) with a-level sets defined as

-y Fexrlon s wrlln 7
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i 5 . . : n
where ky is chosen to be the largest integer which satisfies Z:,_‘zo ( ’ ) (0.5)" <

% and kg = n — ky, is a two-sided confidence interval for the median o on the
confidence level 1 — 8.

Our next claim is to find a complement of that confidence interval. A fol-
lowing lemma will be useful:

LEMMA 5.1
(a) If A€ Frs(R) then ~A € Frs(R) and (-A)q = (—o0, Af_,].
(b) If B € Fgs(R) then =B € Fs(R) and (-B)s = [B_,,0).

The proof of the lemma is straightforward.
Since IT is a fuzzy number, it follows that

II=InI],

where IT and TT are the left-sided and the right-sided fuzzy nmunbers respectively,
with a-level sets defined as

IL, = [(X%)ks41m,00) and Ty = (=00, (X¥)zon] -
Thus

-1 == U-II
and by the lemma given above we get

(M) = (=00, (XTa)kr+1m) U [(X1_a)kaims 00) .
Thus a simple analysis lead as to the following conclusion
_hrx \ (_‘ﬁ)a =
={reR: ((X)k+1m V (Xiadris1n) 7 S (XS ksm A (X1 o)igm)}
(ﬂ Ja \la = {7 €R: 7 < (X )ks+1:m A (X{_o )by 41m) OF
> (X321 V (X a)kam) }
ﬁ N(-Ma={7ER: (XZ) k41 €7 < (XL a)ki41m OF
(Xi—a)kain <7 < (X3 ka41m) }
MoU(Da={7ER: (X{o)kis1m S ¥ < (XE)y41m Or
(Xg)kz:n & (Xf—a)kﬁlm} .

Hence
9 1
_ 1 if we€ w\Ma)i
Pl X020 oy it 'rge(ﬁ (M), ™
if LA ATT 1 =TT N
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({0} if (XD)kgrn V(X )kig1m) S0 <
((Xg)kzm A (X{J—o:)-‘ﬂzln):
{1} if Yo < ((Xa)k1+1'ﬂ A (Xll‘—a)k1+1:n) or
1 _ M> (X2 )ks41:m (Xl a)kym)
{01 1} if (ch;)h-l-ln S Y < (Xl_a)k1+l i OF
(X adbm € £ (X115
0 if (Xfa)k+im <% < (XE)k 41n oF
" (Xg)kg:n < Yo S (X{‘_.Q)I\u-!-l:n-
By Theorem 5.1 this completes the proof. |

For one-sided alternatives we have

THEOREM 5.3

Let Xy, X5, ..., Xn be a fuzzy sample and let § € (0,1).

(i) Define for a € [0,1]

(X]i_"—a)k1+1:ﬂ!
(Xl a)k1+1 H 8]

?:f Yo _>_ {X(f:)ki-fl:n vV

{0}
{1}

oy Ngsvarni o) = ;
BT i =1 01 4 @hcian SWRDElition
@ ?'f (X]_—Q)L]"'l-ﬂ S ’YD < (XQ)LI"'I-?I?
where ky s chosen to be the largest integer which satisfies
?:0( 2 ) (0.5)™ < 6. Then a function ¢ : (F(R))™ — F({0,1}) with

its a-level sets defined above is a fuzzy lest for the hypothesis that the
median is less or equal to v against the alternative that the true median
exceeds the hypothesized value ~y (i.e. Ho:~y <y vs Hy : v > ) on the
significance level é.

(i) A function ¢ : (F(R))" — F({0,1}) with its a-level sets defined as

{0}
{1}
{0,1}
0

chosen to

(pG(X].!Xz:"‘!Xﬂ) oo

where ko is

Sl 5

is greater or equal to o against the alternative that it is less than o (i.e.

if Y0 < (X§ )kym A (X1 a)hﬂ?
if Y > (Xl—a)iz m V (X )kz ny
if (Xl a)xzn<’fo<(X Jiaims
U ( )-‘usﬂ<70<(xl cx)-‘un'ﬂ:

be i'he smallest  integer

Hy:y >y vs Hy:y <o) on the significance level §.

The proof is analogous to the previous one.

REMARK 5

.1 Theorem 5.3, part (i), remains valid if instead of fuzzy numbers
we use the left-sided fuzzy numbers, while Theorem 5.8, part (ii) also holds if

instead of fuzzy numbers we use the right-sided fuzzy numbers.

6. Conclusions

It was ahown how to estimate an unknown median, how to construct fuzzy
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satisfying
) (0.5)™ < 6, is a fuzzy test for the hypothesis that the median
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the median in the presence of vague data, so frequent in the real life practice
(environmetrics, medicine, social sciences, quality management, ete.). In fact,
we have generalized techniques — well known in the traditional statistics — into
more universal situation with fuzzy observations. These generalizations are
natural, since if the data are precise, not vague, suggested procedures reduces
to the traditional (i.e. crisp) ones.

The usefulness of the results stated above also lies in their distribution-free
character, This is extremely important in the presence of vague data, because
it is not known how to check the compatibility of a set of such observations with
given distribution.

There are however, some open problems, c.g., how to verify fuzzy hypotheses,
how to construct confidence intervals and statistical tests when the confidence
level or significance level, respectively, is also not precise but vague, ete.
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