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Abstract: This paper presents new theoretical elements for nu-
merical simulation of two- and three-dimensional flows, based on the
concept of streamlines and domain decomposition. The so-called
“stream-tube method”, cousidered previously particularly for flows
involving open streamlines, is extended to general streamline con-
fignrations. It is shown how local transformation functions may be
defined in order to simulate flows of complex fluids, notably those re-
quiring evaluation of particle time history. The specific features (for
example: mass conservation, simplicity in handling time-dependent
constitutive equations) of the stream-tube methods previously inves-
tigated numerically are still preserved in the new formulation. An
example of caleulations is given in the case of the two-dimensional
flow of a Newtonian fluid between two cccentric cylinders where re-
sults are found to be consistent with literature data.
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1. Introduction

The main purpose of this paper is to present theoretical elements permitting
computation of general complex flows of various fluids, notably those obeying
more complex constitutive equations than the Newtonian model. Significant
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ten years, particularly for fluids modelled by non-lincar constitutive equations,
which generally lead to highly complicated governing equations to be solved.
Different numerical methods have been presented, particularly for rheological
equations involving viscoelasticity. 1f differential models present difficulties that
are generally overcome. memory-integral constitufive equations are still more
delicate to handle, mainly because of the so-called “particle tracking” problem
which is to be considered for general time-dependent equations of the type

T(t) = o' [Ki(t.7)] (1)

In equation (1), T denotes the stress fensor expressed at time ¢ in termns of
a functional tensor € of a finite number of kinematic tensors K; evaluated at
times 7, where —oo < 7 < t. The kinematic (rate or deformation) tensors
involved in such models have to be computed at every time for every spatial
point corresponding to the position of the material point on the streamline or
pathline (in the case of a steady flow situation). When evaluating numerically
flow characteristics by means of a set of governing equations, the consideration
of a fluid obeying such constitutive equations leads to significant problems. The
material points do not necessarily pass through the mesh points. Accuracy
problems in calenlating the kinematic and stress tensors may lead to failure of
the munerical procedure.

The numerous papers devoted to the numerical simulation of complex flows of
non-Newtonian fluids have generally considered finite element methods, using the
velocity components and the pressure as primary variables. In two-dimensional
flow situations, there are now classical finite elements verifying basic conditions
that can be successfully used in flow calculations, for various non-Newtonian con-
stitutive models, particularly differential models (see, for example, Marchal and
Crochiet, 1987, Caswell, 1996). Specific approaches for memory-integral equations
have been also developed, notably in two-dimensional flow situations, Luo and
Tanner (1988), Luo and Mitsoulis (1990), Goublomme et al. (1992). Insome cases,
the discretizing mesh built on the streamlines was updated at every step of the
iterative procedure, Luo and Tanner (1986). Other authors developed interpola-
tion functions in order to approximate the kinematic quantities related to a given
clement. The so-called Protean coordinates. introduced by Duda and Vrentas
(1967), were also used (e.g. Papanastasiou et al., 1987) in order to evaluate the
kinematics and related quantities. In the Protean system, one coordinate is the
stream function ¥. In three-dimensional flow situations, streamlines or pathlines
are warping curves and require significant effort for approximating the kinematic
quantities (rate- of-deformation and deformation tensors), when using time-
dependent constitutive equations. Successful three-dimensional approaches have
been proposed for differential viscoelastic models, Tran-Cong and Phan-Thien
(1988), Shiojima and Shimazaki (1990), but at the present time there are very few
nmumerical studies involving memory-integral constitutive equations. In a recent

paper., Broszeit (1997) considered the circulating steady flow in a single-flow
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constitutive equation by developing particle-tracking methods for open and closed
pathlines, and a mixed Galerkin formulation for computation of the unknowns.

Besides the significant work reported in literature on grid generation methods
widely investigated in the field of computational solid and fluid mechanies (e.g.
Smith, 1982, Lau et al., 1997), some authors developed specific approaches to
simulate two- and three-dimensional flows. For example, Greywall proposed a
method related to the evaluation of the streamwise velocity. Greywall (1985,
1988). and free surface equations, in order to compute 2D and 3D potential flows.

The so-called “stream-tube method”, based on geometrical considerations,
was introduced by Clermont (1983). This analysis has proved to be an ap-
propriate answer to computation of different complex flows of fluids obeying
memory-integral constitutive equations since the particle-tracking problem is
avoided. The boundary of the material may be free or confined. The calcula-
tions are performed in a transformed domain Q* of the physical flow domain 2,
Clermont (1983), André and Clermont (1990), Clermont et al. (1991), where the
mapped streamlines are straight lines parallel to a mean flow direction (open
stream lines) or concentric circles (closed streamlines), Clermont et al. (1991),
in the case of pure recirculating flows (Fig. 1). The primary unknowns of the
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Figure 1. Mapping of the physical low domain in specific stream-tube situations:
(a) Flow with open streamlines; (b) Flow with closed streamlines

problem are, together with the pressure, the transformation between domains
Q% and Q. Calculations are possible under the condition of non-singularity of
the Jacobian of the transformation 7 : Q“ — 1, that involved one or two coor-
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3D main flow conditions, the basic equations relating coordinates (z,y, z) of Q2
to (X.Y.Z) in the mapped domain 2* where the transformed streamlines are
rectilinear (Fig. la) are given by

v=f(X,Y.2), y=9(X.Y,Z); 2= 2. (2)

For 2D pure circulating flows, an unknown mapping function A was defined
using coordinates (x,y, z) in the physical domain @ and (R, Z, ¢) in the mapped
domain Q% of concentric civeular streamlines by means of the following equations
(Fig. 1b)

2=a+ RMR,@)sing, y=b+ RAR.p)cosg: 2= 2. (3)

The non-singularity of the Jacobian in both cases points out limitations of
the method to computation of:

e simply-connected (with regard to the streamlines) flow regions, for the
transformation expressed by equations (2) which means that the recircu-
lations are not taken into account explicitly,

e pure vortex flows (doubly-connected domains) with closed streamlines, in
relation to mapping equations (3).

The elements given in the present paper aim at providing possibilities of cal-
culation of main flow zones as well as sccondary flow regions. Some features pre-
viously depicted in studies related to the “classical” stream-tube method are still
used, particularly those concerning the simplicity of handling memory-integral
constitutive equations. Additional clements based on geometrical considera-
tions are given, allowing computation of a general flow field by still considering
the concept of streamlines and stream tubes. It should also be pointed out
that practical issues of this possibility are based upon previous computational
results on flows involving open streamlines (Clermont and de la Lande, 1993,
Normandin and Clermont, 1996, Guillet et al., 1996) and from recent numerical
studies on flow involving pure recirculating regions (Clermont and Radu, 1999,
1999b). The approach is presented here for steady flows of incompressible flu-
ids. Numerical results are given for the steady flow of a Newtonian fluid in the
annulus of a cylinder.

2. General transformations — Basic computational re-
sults with the stream-tube method

2.1. Basic equations for general transformations

Let o' (2! = 2, 2% = y. 2® = z) be the cartesian coordinates related to an
Euclidean basis €; (€1.€2,€3) for a material point M occupying the position

X (2,9.2) in D (R® D D). When considering another coordinate system &/
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2%(¢7) from D* to D may be defined by the following relations:

2 =a@(X;Y,s)
y=pB(X.,Y,s) (4)
2= X, Y,8).

The Jacobian A = |9(2%)/0(¢7)|, assumed to be non-zero, can be expressed
by the following equation

A = oy (Byvs — Bsry) — By (@ ys = 1y as) + vk (ay Bs — Byas) ()
where o | 3’ ete. stand for partial derivatives. In the following, different
partial derivative operators lead us to define quantities denoted by A;, As, As,
By, By, B3, Cy,Cy,Cs and given by the relations

Ay = ayfs — asfy; Ar = Byvs — By Az =1y ds — ysay
By = alyfs — a'sPy; Ba = Pxvs — Bsvxi Bs = vxas —vsalx
C1 = oy By — ayfy; C2 = Py — By Cs = vxay —ya

—~ o~ o~
o g3 D
N N N

These equations lead to writing the Jacobian A as
A= (Y{\-Ag + ﬂ_l\—Ag + ’)’f\-AL (9)

Then, the natural basis e; (ey,eq, e3) related to the coordinates (X, Y, s) is
expressed by

e = yer + fyer +xes
ey = ()1/),—61 + /3;82 -+ ’Y;rE;g (10)

/ /
e3 = a'gey + Pse2 + Y5€3

Conversely, from equations (10), the cartesian basis vectors may be given in
terms of the natural basis by

€1 = (1/A)[A2e1 + Boeg + 0283] (11)
€9 = (1/A)[A3€1 + Baes + Cgeg] (12)
€3 =(1/A)[A1e1+Bleg+Cle3]. (13)

It can also be shown that the derivative operators 9/0x, 9/dy and 9/0z are
expressed in terms of 9/9¢7 by the following equations

0/0x = (1/A)[A20/0X — Bad/OY + C20/0y) (14)
9/0y = (1/A)[A30/0X — B3d/0Y + C30/dy] (15)
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2.2. Transformation of subdomains

As pointed out previously, applications of stream-tube analysis have coucerned
caleulations of main flows for various viscoclastic fluids obeying diflerential
(Clermont and Radu, 1999b) and integral equations (e.g. Guillet et al., 1996)
and also pure recirculating flows related to closed streamlines in a two-dimen-
sional journal bearing geometry (Clermont and Radu, 1999a, 1999b). In both
cases, the formulation allowed simple mapped computational domains €2* to be
defined in order to solve the governing equations.

For purposes of performing simultancons computations of main and recir-
culation flow regions in general situations for a bounded physical domain €.
we now consider sub-regions §2; that may involve open or closed elementary
streamtubes or both. These non overlapping subdomains are defined such that:

m=ing

U O (17)

m=

Starting from an original ‘-i(‘(,'l;i()ll z1, we limit each sub-domain £2,, by two
cross-section planes z,,, and 2,41 (m = 1,2,....mq). These sub-domains may
involve open and closed streamtubes, denoted, respectively, by B, and B,.. They
are a priori unknown and correspond to main flow and vortex regions of the total
flow domain €.

Let us consider a sub-domain £, of © limited by two cross-section planes
at z,, and 2,41 (Fig. 2) in an axisymmetric flow situation. We select in Q,,
a cross-section Sy, at z = G (2m € G € 2my1). used as reference section.
The mapped domain Q7 is a straight cylinder (Fig. 2), of basis 8}, identical,
in shape, to the reference section S,,. The eylinder consists of mapped straight
lines of streamlines of the physical sub-domain €2,,,, parallel to the direction of
the generants. These transformed streamlines are related to a local variable s in
2%, to be used as computational sub-domain. The mapped domains B], and B},
of the respective open and closed stream tubes B, and B, are clementary straight
cylinders of €F,. The basis of the cylinder is related to local variables (X,Y).

Let 7 be elementary subdomains of rectilinear parallel streamlines related
to a refercnce cross-section S*, and involving a finite munber of mapped stream
tubes B (QF, = JB},,). We then investigate elementary transformations 7,
defined from a mapped subdomain Q7 towards a subregion @, of number m,
defined between two cross-sections z,,, and z,,4; in the physical domain €, such

that
:rm S—ZTN _':' m
with

M*(X.,Y,s) — M(x,y.2) (18)
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Figure 2. Subdomain €2, and its mapped domain involving rectilinear stream-
lines for a two-dimensional (axisymmetric) How

streamline (in a steady flow configuration) defined by

..\"=;\.'u+/ |V ()| dr (19)

to
where yo denotes the abscissa of the reference section S}, of the mapped sub-

domain 7,, [V(7)| the modulus of the velocity vector V on the streamlines

points, exprﬁs:svd by
V =u(x,y.z2)ey +v(e.y, 2)es + wlz,y, z)es. (20)

In equation (19), the times o and £ are associated to positions sn and s of a
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Defining by sar (spr < +00) the given total length of the streamline in the
transformed domain and by xas (xar < +00) the maximum curvilinear abscissa
on every streamline £ originated at a point M, of the stream tube, we may
define the variable s by the following relationship

s = (x/xar)sm- (21)

In order to define the variable s for a streamline £ of zero velocity (presence
of a wall where the fluid adheres), the coordinate x related to a point M is
assumed to be the curvilinear distance MgM. Such definitions contrast to
the previous specific formulations of stream-tube method which do not involve
variables directly related to the kinematics.

Fig. 3 illustrates physical and mapped stream tubes of length s, corre-
sponding to open and closed streamlines in a three-dimensional flow situation.
The case of open stream tubes B, is shown in Fig. 3a. Fig. 3b depicts a flow

fa) Open stream tube B,
(X, Y,Z)
{] i ) /)
H ........ o :i} ....... ‘\ S Mepped stream tube 8",
(X,Y,s)
(b} 2 Closed streamiing £

‘ (XY.2)
> 7

Refarence  sacdon

Mapped segments of streamiines
£y

DN M N Y

£y

LE My
Referance saction u \\Z"

Mapped  sub-domamn

Figure 3. Elementary subdomains: (a) Physical open stream tube B, and its
transformed domain Bj. (b) Physical closed stream tube B and its mapped
domain B

subdomain of Q,, involving closed stream tubes, related to a reference section,
Fav o — o Tha enhorasinn of closed streamtubes. doubly-connected, is ob-
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Fig. 3b, it may be observed that the closed stream fube involves two separated
regions where the main velocity component does not change its sign. A closed
streamline £ can be divided into two curves £1 and £y such that £ =L, U Ly
according to the positions of streamline points of zero velocity. The curves £,
and Ly intersect the reference section af points My and M, respectively. The
mapped rectilinear lines of £ and Lo are represented in the mapped domain as
distinet segiments passing through M7 and M3, respective transformed points
of My and M,. The mapped closed stream tube defines a straight eylinder, of
basis included in the reference section of the mapped subdomain 7, of Q,,.

i

2.3. Kinematics — Basic equations and unknowns
Referring to the general definitions for flows of an incompressible fluid, we may
write the velocity vector in ferms of a pair of stream functions ¢, and - as
V = Vi (e, y.2) x Viho(z,y, 2) (22)
The use of this equation at a reference section S(X,Y.sy) where 2 = X,
y =Y and z = sg leads to writing the w-velocity component as
w(X, Y. s0) = O(a.y, 2)[0X.O(2, y. 2) [ OY|(x v .s0)
= (':)‘L"lll(_:!?. . 3)/0}’:6!}.’3(;17. Y, ‘3)/0*\’|(‘\'.}'.-'iu}' (23]
We define the reference kinematic function ¢(X.Y) by the following relation
X, Y)=w(X, Y, s). (24)
From equations (14-16), we may express the components (w, v, w) of the
velocity veetor 'V oas
w= (X, Y)/A; v=Bo(X.Y)/A; w=vHX.Y)/A, (25)
where A denotes the Jacobian, assumed to be non-singular. given by a relation

of the type of equation (4).
We can assume the following relations at the reference section S for (X, Y. sg)

av(X.Y.s0) =1, ayp(X,Y.s0) =0
B (X,Y,50) =0, B-(X,Y,50) =1 (26)

¥ (X, Y. 50) =0, 1(X,Y,50) =0
For a subdomain £2,,. the primary unknowns to be considered are the three
mapping functions a, 3.4 and the pressure p. In accordance with the definition
of the variable s, the set of the governing equations should also involve the

following relation (with w(X.Y,s) # 0), for points that are not located at the
boundary where generally the fluid adheres:

5
AR | l sl N ENAC f e
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or, equivalently
¥(X.Y,s) =v(X,Y, s0)
+o0Y) [ PUXY.O/AX Vg dg (28)

In isothermal conditions, the momentum conservation law provides three
dynamic equations. Though the writing of those equations is possible by classic
tools of tensorial analysis, we find it of more practical use to write them by
means of cartesian coordinates, following the approach already defined in specific
stream-tube analysis (e.g. Clermont and de la Lande. 1993). Accordingly, the
superscripts i and 7, k, respectively, associated to components b and AJ* of
a vector b and a tensor A are still related to 2 = 1, y = 2 and z = 3, but
the derivatives d/0X? arc expressed by means of derivative operators 0/0¢
defined by equations (14-16) that involve the variables (X, Y, s) of the mapped
computational domains.

2.4. Examples

Viscometric shearing flow situations provide simple examples of transformation
functions involving global mapping functions in the total flow domain. For the
plain Poiseuille case. the functions may be written as

t=a(X) =X, y=0Y)=Y; z=9(Y) =83 (29)

The pure rotating Couette flow in a plane (x,y) between two concentric
cylinders of radii Ry and Ry (Ry < R;) involves global mapping functions
expressed by

z=a(Y,s) =Y cos(s/Y)
y=pA(Y,s) =Ysin(s/Y) (30)
z=4(X)= X.

The flow streamlines of Fig. 2, previously considered, illustrate a two-dimen-
sional analytical case requiring local transformation functions (Normandin and
Clermont, 1994). In this situation, the upstream section z; allows a reference
section 8; to be defined such that the corresponding reference function ¢ (see
equation (23)) at section 8 is known. Various subdomains €2, , of reference
sections S,,, may involve stream tubes of different types.

The eclements shown in Fig. 4 provide an illustrative example of a three-
dimensional flow situation, with different subdomains Q}, of reference scc-
tions S,,. The stream-tube cross-sections of Fig. 3b and the cut section of
Fie' e in the mean flow direction point out the presence of a main flow region
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Figure 4. Example of a three-dimensional flow. (a) Duct geometry, involving
the positions of cut and cross-sections. (b) Cross-sections of the stream tubes
at z = Counstant. (¢) Cut section of stream tubes in the mean flow direction

3. Specific properties — Computational considerations
3.1. Specific features of the analysis

1) The formulation proposed here by means of local transformations 7, can be
proved to verify the incompressibility condition (mass conservation) V.V = 0,
by using equations (14-16) and (25), similarly to the previous formulations
related to open (Clermont and de la Lande, 1993) and closed (Clermont et
al.. 1991, Clermont and Radu, 1999a, 1999h) streamlines. Consequentlv. eiven
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V.o = F (o denotes the stress tensor, F the external forces). formally written as
Ewmglo, Biy v, pi) =0 (= 1,2,8); for m = 1,204, My (31)

are to be considered under isothermal conditions.

2) Using equations (11-13) and (25), it can be shown that the velocity vector
V in a stream tube is given in the natural basis e; (ej.eq,ey) by the simple
relation

V = [¢(X.Y)/Ales. (32)

3) The analysis enables the computations of the unknowns to be performed
in simple mapped subdomains where the streamlines are rectilinear and parallel
to the generants of the straight cylinders defined for the transformation (Fig. 2).

4) As for the particular cases of flows involving specifically open or closed
streamlines, the present formulation avoids particle tracking problems for Huids
obeying time-dependent constitutive equations. The time evolution of particles
on their pathlines may be casily evaluated using the w-velocity component given
by equation (25), such that :

il 55 / dfw(X.Y,€) = [1/$(X,Y)] /”lf_w;h.\-.‘-,ﬂ ¢ (33)

o

where ¢, denotes the reference time corresponding to the position of the material
point at the reference section (X,Y.s,) in the sub-domain considered.

5) It should be pointed out that the mapping of coordinate equations (2- 3)
cannot be considered as particular cases of the relevant transformation equations
(18), essentially because the coordinate s is divectly related to the eurvilinear
abscissa for a material point on its pathline. However, the definition of this
coordinate allows to consider mapped stream tubes of given length, as it was
the case in the previous stream-tube formulations.

3.2. Computational considerations

Recalling the case of specific “open stream-tube™ problems where the flow does
not involve recirculating regions, a single function " introduced similarly to
the reference kinematic function ¢ of cquations (22-23) is known and remains
unchanged, as also the corresponding reference section, during the iterative
numerical process (see, for example, Clermont, 1983, André and Clermont, 1990,
Clermont et al., 1991). However, for specilic “closed stream-tube” situations
(pure recirculating flows). Clermont and Radu (1999a, 1999b), Clermont and
Normandin (1993), that require a reference section z, to be selected arbitrarily
to define the streamline transformations. the function ¢* corresponding lo the
vaforenes fanetion & was unknown and had to be determined iteratively in the



. . . . |4
Stream tubes for numerical simulations of complex fluid flows 547

Concerning general features of the numerical computations, it should be
pointed ount that, according to the geometry of the streamlines in the com-
putational domain, simple meshes can be defined for approximating the equa-
tions and unknowns involved in the present formulation. The procedure to be
achieved here for computing the flow characteristics is essentially related to do-
main decomposition methods, requiring the writing of compatibility equations
at the interfaces of the sub-domains. The solution of the problem in the total
domain Q should be obtained by counsidering local sub-problems stated on the
subdomains ,,. This analysis generalizes the previous stream-tube formula-
tions already depicted. Field caleulations using subdomains for different flow
conditions have been around since quite a long time (sce for example Dinh et
al., 1984).

The basic ideas for solving the problem can be summarized as follows:

The geometrical domain 2 of boundary I' is divided into M sub-domains
Q (m=1,2,...,M). We denote by I';,—y (m = 2,3,..., M) the interface
of Q2,1 and §,, (see the example of Fig. 5).

PHYSICAL DOMAIN Q

ylllu-

Q8 Q & Q3 33 Qs 84

PPED SUBDOMAINS
MAPPED SUBDO e

|
Qy S%

l Q% §*
_Qn1 s*1 Q‘é 8"3

Figure 5. Physical domain Q divided into subregions €,, and computational
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If p; corresponds to the restriction of the pressure p to §;, we may consider
local transformations o; (X, Y. s), Bi(X,Y,s) and 7;(X, Y, s) verifying:

— the kinematic equation (27);

—- the dynamic equations (31);

— the following boundary condition equations on ' N €Q;:

aj(ai, Bi,vi,pi) =0 (j = 1,2,3)
bj(ais Biy%irpi) = 0 (j = 1,2,3) (34)
Pi = T,

the compatibility conditions at the common boundary I'; of the sub-
domains 2; and ;4. such that:

p(M]) = p(M}, ;) on I (35)
V(M) =V(M;)onT; (36)

where M € ;, M}, € Qipy, with o(M7) = a(M], ), y(M}) = y(M},,),
z2(M}) = 2(M},,) on T;.

For every subdomain §2;, we sonsider a reference section S; to which a kine-
matic function ¢; corresponds. This function is generally unknown for the sub-
domains, as pointed out previously.

To solve the problem, the main features of the algorithm can be written
according to the following process, given a munerical procedure for solving the
equations, upon convergence criteria:

(1) Initialization:

Definition of the subdomains €; (i = 1,2,..., M) and choice of the reference
sections &;.

A geometrical shape of the streamlines is assumed, as also the kinematic
function ¢;jg) in every mapped subdomain 27, related to the reference section S;.
The initial guess of the streamlines correspond to an estimate of the local func-
tions «;, F; and ;.

(ii) Solve the following set of equations:

-~ the kinematic equation (27),
- the dynamic equations (31) and boundary conditions (34-36) in the
total flow domain Q°. -

The Levenberg-Marquardt optimization algorithmn (see, for example, Gour-
din and Boumahrat, 1989) is assumed to be used to obtain new iterates and
achieving the process. This method combines the Newton and gradient algo-
rithms and should allow the procedure to converge for an initial estimate rather
far from the solution. This algorithm, previously used in applications of the
stream tube method (Clermont and de la Lande, 1993, Clermont and Radu,
1999b. Clermont and Normandin, 1993) that also required direct computations
of streamlines, has proved to be robust and efficient. [t should be underlined
that in such problems. slight modifications in position of the streamline points
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4. Application to the two-dimensional flow between ec-
centric cylinders

We now consider the steady flow of a Newtonian fluid, where the stress tensor
is given by the following equation

T = 2D (37)

in the annulus of a cylinder, as shown in Fig. 1b, when involving recirculations.
In equation (37), D denotes the rate-ol-deformation tensor; ;o the constant
viscosity of the fluid. Such flows have been extensively studied in the literature
(c.g. Ballal and Rivlin, 1977, Ramesh and Lean. 1991) and are notably related
to lubrication problems in journal bearings, for small gaps.

The half-plane physical doniain £ between the two cccentric cylinders (Fig.
6a). is referred to polar coorditates (2! = 7, 22 = ) limited by the azimuth
angles 6 = 0 and ¢ = #. The inner cylinder, of radius rg. rotates with an
angular velocity w. The outer cylinder is at rest. The parameter e denotes the
distance between the axes of the cylinders. According to results obtained for
such geometry with a Newtonian fluid and ignoring inertial effects, Kelmanson
(1984), we may consider two elementary sub-domains € and € such that Q =
Q7 UQy. The angle 6, corresponds to the limiting section between subdomains
Qp and Qs (Fig. 6) and is a priori unknown. Two reference kinematic functions
¢ and ¢ are defined at sections 0 = 0 and 6 = 7, respectively. On these

' SUBDOMAIN €,

-

PHYSICAL
DOMAIN £2

Q=7 - z S _;'LAE):O

L fixed cylinder

Y : .
“region with
open streamlines

y
secondary [low
region

b) '

lines of zero
" —
velocity =

_- SUBDOMAIN Q,

SUBDOMALN Q,_| =

Figure 6. (a) Physical domain £ divided into subregions €1 and €2y related to the
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subdomains, we define two local transformations 75, : Q5 — Q,, (m = 1,2).
where M*(s,R) — M(r.d). The variable s is defined according to equation
(21) and the variable R corresponds to the radius » at the reference sections of
the subdomains. Fig. 61 shows the mapped subdomaing Q7 and 3, where the
streamline lengths have been renormalized for computational purposes. The
first subdomain € involves only open streamlines. For subdomain €25, open
and closed streamlines are to be taken into account. The dynamic equations arc
written in terms of variables (s, I?) for cach mapped subdomain. The Levenberg-
Marquardt optimization algorithm is used to compute the unknowns (mapping
functions and pressure). A typical grid used for discretizing the equations and
unknowns is shown in IFig. Gb.

The code was implemented on a workstation (Pentinm 333 MHz processor).
The number of equations and unknowns was approximately 1000. Fig. 7 presents
our numerical results (solid lines) for the streamlines, in the case of a large gap
between the cylinders, compared to those previously provided by Kelmanson
(1984). A good agreement may be observed. Another example of computed

Figure 7. Computational results for the streamlines (Newtonian fluid): — : pres-
ent work: ¢ : Kelimanson data. The geometrical parameters are: rp = 15 mm,
r1 = 30 mm. e = 7.5 mm. The inner cylinder rotates at an angular velocity
w = 250 rad /s

Figure 8. Computed streamlines in the conditions of a journal bearing flow
(Newtonian fluid). The geometrical parameters are: 1o = 29.9 mm, r; =
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streamlines, corresponding to the case of a journal bearing geometry (small gap
and cccentricity), is given in Fig. 8.

5. Concluding remarks

The formulation presented in this paper provides a unified approach for the sim-
wlation of complex flows involving open streamlines. closed streamlines or both
situations, by using geometrical considerations allowing to rewrite the equations
in terms of streamline coordinates. Distinguishing features of the analysis are
related to the definition of local transformations leading to application of do-
main decomposition methods. The automatic verification of mass conservation
from the basic equations and the reduction of difficulties in particle-tracking
problems related to constitutive equations with history-dependence are signifi-
cant possibilitics of the approach to be underlined. Though the analysis involves
ereal similaritics with the previous studies using the concept of streamlines and
stream tubes, the corresponding basic equations of those specific stream tube
ncthods cannot be considered as particular cases. The numerical application
related to the flow in the annulus of two cylinders has provided consistent results
with those in the literature.
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