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Abstract: It is shown that under some specific conditions, the 
solution of the generalised predictive control (GPC) design using 
the concept of anticipated filtering (AF) of the control error always 
exists, and that such a design leads to stable control systems with 
definite closed-loop characteristics. The plant cancellation issue is 
taken into account, and it is demonstrated that certain bounds on 
GPC design parameters have to be considered. An iterative proce­
dure for simultaneous determination of the three basic design-tuning 
parameters: the control horizon, the controller gain, and the order 
of plant cancellation, is also supplied. An important feature of this 
approach is that the anticipated fi ltering makes it possible to re­
duce a disagreeable control effort associated with GPC and to make 
the .\-tuning mechanism practicable. The bounds on the GPC de­
sign parameters are discussed, and certain optimal tuning rules are 
proposed and validated via simulated experiments. 

Keywords: discrete-time systems, system design, non-minimal 
systems, predictive control. 

1. Introduction 

The predictive control strategy is very well matched to modern control system 
design procedures. The mechanism of additional filtering of the control error 
has been proposed for the generalised predictive control design in ( Clarke et al., 
1987, Clarke and Mohtadi, 1987, Demircioglu and Gawthrop, 1991). The pur­
pose of this mechanism is to fictitiously abate the excitation of the closed-loop 
control system. The filtration is performed in the anticipation-time domain and 
is referred to as the anticipated filtering (AF). This approach can be successfully 
exercised in both discrete-time and continuous-time domains (Kowalczuk and 
Suchomski, 1995, 1996, 1999a, 1999b, Kowalczuk, et al. , 1996, Zhang, 1996). 
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In this paper it is shown that with the AF approach, under certain condi­
tions including the cancellation issue, the solution of the GPC design always 
exists and the design leads to stable control systems with definite closed-loop 
characteristics. Moreover, it is demonstrated that some bounds on the GPC 
design parameters have to be taken into account. An iterative procedure is also 
proposed which solves the problem of determining two design quantities (the 
control horizon and the controller gain), without the prior knowledge of the 
order of plant cancellation. An important feature of this approach is that the 
anticipated filtering makes it possible to reduce the disagreeable control effort 
associated with GPC and to make the A-tuning mechanism more suitable for 
implementation. 

2. AF-GPC design principles 

Consider a CARIMA model of a linear system (Clarke et al., 1987) 

A(q- 1 )y(t) = B(q- 1 )u(t) + 6. - 1C(q- 1 )e(t) (1) 

where t is the discrete-time index, {u(t)} and {y(t)} are the input and output 
of the controlled system, respecth·ely, { e(t)} is a zero-mean white-noise distur­
bance, q- 1 is the backward shift operator, 6. = 1-q- 1 is the difference operator, 
and 

(2) 

Let 
N2 2 Nu 

,[(6-u) =E{L [w(t+i)-y(t+i)] +A:Lb.u(t+i-1)2
} (3) 

i=N1 i=1 

be a cost function, where { w( t)} denotes a reference sequence, N 1 and N2 are 
the bottom and top of the observation horizon, respectively, Nu is the length of 
the control horizon, A ~ 0 is the control weighting factor, E is the expectation 
operator conditioned on data up to t , and 

b.u(t) = [ 6.u(t) b.u(t +Nu -1) )T, b.u(t) E ~N, 

denotes the incremental control sequence searched for. To facilitate further 
discussion, let us introduce also an auxiliary notion of the effective observation 
horizon 

(4) 

The optimal, in the minimum variance sense, i-step ahead predictor of y ( Clarke 
and Mohtadi, 1987, Favier, 1987) is given by 

fj(t + i) = Hi(q- 1 )b.u(t + i- 1) + fj(t + i lt), (5) 
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where fj(t + ilt) satisfies the following equation 

C(q- 1)fj(t + i lt) = Ei(q- 1)D.u(t- 1) + Gi(q- 1)y(t), i = 1, ... ,N2 (6) 

The polynomials Hi, Gi and Ei, i = 1, ... , N 2 , can be obtained from the Dio­
phantine equations (Clarke and Mohtadi, 1987, Favier, 1987, Gorez, et al., 1987) 

where 

A(q- 1)Fi(q-1) + q- ici(q- 1) = C(q-1), 

C(q- 1)Hi(q-1) + q-iEi(q- 1) = B(q-1)Fi(q-1) 

A(q- 1) = t:.A(q- 1), B(q-1) = qB(q-1) 

degEi(q- 1
) = max(NB- 2,Nc - 1), degFi(q- 1

) = i - 1, 

degGi(q- 1
) = NA and degHi(q- 1

) = i - 1. 

(7) 

(8) 

(9) 

Assuming that D.u(t + i- 1) = 0 for i > Nu, (if it exists) the optimal control 
sequence D.u* minimising (3) takes the following form (Clarke et al. , 1987, 
Clarke and Mohtadi, 1987): 

D.u*(t) = K(w(t) - y(t it)) 

where 

K = (HT H + )..I) - 1 HT K E ~N,xN0 

[ 

hN1 - 1 hN1 - 2 

hN1 hN1 -1 

H = . . . . . . 
hN2-1 hN2-2 

hN1-N, l 
hN1-N,+1 

' 
hN2 - N, 

HE ~NoxN-., 

with hk = 0 for k < 0 and 

w (t ) = [ w(t + N1 ) .. · w(t + N2) f, w(t ) E ~No 

y(tit) =[ fl(t+N11t) ... fj(t+N2 It)]T, y(tit)E~No. 

By picking up the first row of K 

kT = [ k1 ' · · kN0 ] 

(10) 

(11) 

(12) 

(13) 

a practical GPC control law is obtained given by the following 'single-sample' 
formula 

D.u*(t) = kT(w(t) - y(tit)) (14) 

in which only the first element of D.u*(t) is used as the control input. In order 
to judge certain cardinal consequences of such a settlement , and taking into 
account the fact that only the first sample of the calculated control sequence 
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is applied, the notion of a relative range of realisation (RRR) of the control 
sequence is introduced as 

RRR = 1/Nu (15) 

Assuming that within the observation horizon the future set point is known 
and constant, that is w(t + i) = w(t) fori = 1, ... , N2, we can define a future 
incremental reference 8w(i), equivalent to a filtered error sequence e(t) li=t+i = 
rie(t), based on the concept of anticipated filtering (Kowalczuk and Suchomski, 
1995, 1996, 1999): 

8w(t) li=t+i = e(t + i) = rie(t) = ri(w(t)- y(t)), i = 1, ... , N2 (16) 

where ri, i = 1, . . . , N2 , are the coefficients of the step response of an instru­
mental filter used in such anticipation. The above sequence can than be used 
as a reference trajectory for the predicted incremental plant output 

8fj(t + i) = fj(t + i)- y(t) 

If, in view of the above arrangements, the objective of the design is to drive the 
signal 8fj(t + i) to the reference signal 8w(t + i), i = 1, ... , N2 , the following 
modified cost function has to be considered 

N2 N,. 

J(t:.u(t)) = L [8w(t + i)- 8fj(t + iW + .\ L t:.u(t + i- 1)2 (17) 
i=1 

Minimisation of the above criterion yields the following incremental control ac­
tion 

t:.u*(t) = kT(8u(t1t) - 8y(t1t)) 

where the vectors from ~No 

(18) 

8u(t1t) = (w(t)- y(t))r = (w(t)- y(t))[ rN, · · · TN2 ]T (19) 

8y(tit) = [ fj(t + N1!t)- y(t) .. · fj(t + N2it)- y(t) ]T. 

By virtue of (6) it can be shown that the incremental control law (18) is ex­
pressed through 

C(q- 1)t:.u*(t) 

= gC(q-1)(w(t)- y(t))- L(q- 1 )t:.u*(t)- M(q- 1)y(t) (20) 

where 
N2-N1+l 

g = L kirN,+i-1 , 
i=1 

N2-N1+1 

L(q- 1) = q- 1 L kiEN,+i-1(q- 1
), 

i=1 

N2-N1+l 

M(q- 1
) = L ki(GN,+i-l(q-

1
)- C(q-

1
)) 

i=1 

(21) 

(22) 

(23) 
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with degL(q- 1) = max(NB -1,Nc), and degM(q- 1) = max(NA ,Nc). 

It follows from (20) that the closed-loop characteristic polynomial D(q- 1 ) of 
the resultant GPC control system with the 'nominal' plant model (1) is given 
by 

D(q-1) = A(q-1)C(q-1) + gB(q- 1)C(q-1) + A(q-1)L(q-1) 

+B(q- 1 )M(q- 1 ) (24) 

By virtue of (7) and (8) it can be shown that 

(25) 

where 

D(q-1) = A(q-1)- q-1 A(q- 1) + g* B(q-1) 
No N2-N1 +1 

g* = g- L ki = L ki(TN,+i-1 - 1), (26) 
i=1 i=1 
N2-Ni+1 

A(q-1) = L ki(A(q-1)HNt+i-1(q-1)- B(q-1))qN,+i-1. 
i=1 

Since C(q-1) is assumed to be stable, the closed loop system is stable if and 
only if D(q-1) is stable. 

3. Properties of the AF-GPC design 

In spite of a general usefulness of the idea of control weighting in the cost 
formulae of (3) and (17), the analytical properties of the resulting control system 
designed with A > 0 are not explicit. On the other hand, by putting A = 0 
and taking into consideration the effect of the anticipation filter (instead) one is 
able to resolve explicitly for the analytical properties of the GPC control system 
without losing sight of the control effort. 

After letting A = 0, two cases with respect to the reducibility attribute of 
polynomials A(q- 1 ) and B(q-1) have to be considered. The first case concerns 
irreducible (relatively prime) polynomials and the second one treats the poly­
nomials that have a common factor. To show the relationship existing between 
A(q-1), B(q-1) of (9) and {hks} , being the sequence of Markov parameters 
of the open-loop system B(q- 1 )/ A(q-1 ), it is helpful to bring up the following 
double infinite lower-triangular Toeplitz matrix, in which H can be identified 
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as a submatrix 

bl 1 
b2 ho 0 0 a1 

hl ho 0 

bN8 
h2 hl ho aNA+l 

(27) 

0 0 

It can be shown (Kowalczuk and Suchomski, 1995, 1996) that the anticipated 
filtering approach to the GPC design can lead to stable control systems with 
a desired corresponding closed-loop pole placement (for .A = 0) and that under 
certain conditions the GPC design solution (11) always exists. The fundamen­
tals of this result are given below in the form of three theorems. 

3.1. Relatively Prime Polynomials A(q-1 ) & B(q- 1 ) 

THEOREM 1 For .A = 0, if A(q-1) and B(q-1 ) are relatively prime and the 
following conditions 

(cl) N2;:=:N1+Nu-1 

(c2) rankH=Nu 

(c3) N1 ;:::: Ns 

( c4) Nu ;:::: N A + 1 

are satisfied, then the closed-loop characteristic polynomial D( q-1 ) is determined 
by 

(28) 

where 

(29) 

Proof. Firstly, let us note that for >. = 0 from (cl) and (c2) we have K = 
(HT H)-1 HT and KH =I, where I E 1RNuxNu is the identity matrix. Thus 
the entries of kT H can be expressed as 

N
2
-N

1 +1 
{ 1 fork= 1, L kihN, +i-k-l = 0 f k = 2 N . 

i=l or , ... ' u· 

By using (26), (27) and (c3) the polynomial A(q-1 ) can be expressed as 

NA 
A(q-l) = LVjq-j 

j=O 

(30) 

(31) 
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where 

and 

NA-)+1 
v1 = L ak+jTk, j = o, ... ,NA 

k=1 

N2-N1+1 

Tk = L kihNl+i-k-1 , k=l , ... ,NA+l 
i=1 

From (30)-(33) and (c4) it results that 

and consequently 

NA 
A(q-1) = La1+1q_1 

j=O 

Now, from (49) it may be concluded that 

23 

(32) 

(33) 

(34) 

(35) 

A(q-1)- q-1 A(q-1) = 1. (36) 

That means that D(q-1) = 1 + g* B(q-1 ), what concludes the proof. • 

REMARK 1 Note that for ri = 1, i = N 1 , .. . , Nz, the closed-loop characteristic 
polynomial D(q-1) in (26) is completely determined by the observer polynomial 
C(q- 1) 

D(q- 1
) = C(q-1 ) • (37) 

REMARK 2 As it can easily be seen from (12), (27) and (cl), if Nu > NA + 1 
and N 1 > NB then it is clear that 

(38) 

and, consequently, H cannot have full column rank (rank H < Nu)· Thus, 
it can be inferred that certain upper bounds on the design parameters must 
be observed in order to assure the full column rank of H and the existence 
of (11). • 

LEMMA 1 Let us assume that one of the following set of conditions is satisfied 

(Cl') 
(C2') 
(C3') 

Nz 2 N1 + NA 
N1 >NB 
NuS.NA+l 

or 
(Cl") 
(C2") 
( C3") 

Nz 2 N1 +Nu - 1 
N1 =NB 
Nu2NA+l 

then H has full column rank if and only if A(q-1) and B(q- 1) are relatively 
prime. • 
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Proof. In the following draft proof we consider only the first set of conditions 
as the most crucial one for our discussion. It is thus enough to consider the 
limiting case of Nu = N A + 1. Keeping in mind that systems with different 
zero-pole cancellations have the same Markov parameters, it follows from (12) 
and (27) that 

1 1 r hN,- Nu -1 1 a1 ~ hN, -Nu 
. = -aNA+1 · 

a~A h N2 -·Nu- 1 

H (39) 

On the one hand, if the polynomials A(q-1 ) and B(q- 1 ) are reducible then 

there exists a reduced polynomial A0 
( q- 1) having coefficients a?, i = 0, . . . , N~, 

where N~ < NA. As aNA+l = 0, the right hand side of (39) is zero and the 
matrix H cannot have full rank. Hence, by using contradiction, one can state 
that if H has full column rank then the polynomials A( q- 1

) and B ( q- 1
) are 

relatively prime. 
On the other hand, it results from (39) that if rank H < N A + 1 then there 

must be a reduced-order system having the same Markov parameters as the 
original system (1). Therefore there must exist a different polynomial A0 (q- 1 ) 

of a lower degree that fulfils the 'matching' relation similar to (39). This con­
cludes the proof by contradiction that if the polynomials A(q- 1 ) and B(q- 1 ) 

are relatively prime then matrix H has full column rank. • 

We can now present our principal result. 

THEOREM 2 If A( q- 1) and B ( q- 1) are relatively prime and one of the following 
set of conditions 

(Cl') 
(C2') 
(C3') 

Nz 2: N1 +Nu - 1 

N1 >NB 
Nu=NA+l 

or 
(Cl") 
(C2") 
( C3") 

Nz 2: N1 +Nu - 1 
N1 =NB 
Nu 2: NA + 1 

is satisfied, then H has full column rank (rank H Nu), the solution ( 11) 
exists, and, for,\ = 0, the closed-loop characteristic polynomial D(q_ 1 ) is de­
termined by 

( 40) 

where 

( 41) 

REMARK 3 For ri = 1, i = N1 , ... , N2 in (26) the characteristic polynomial 
D(q- 1 ) is completely determined by the observer polynomial C(q- 1) 

( 42) 
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REMARK 4 Contrary to a popular rule of thumb used in tuning the GPC con­
trollers, setting N 1 to the value of the plant's transportation delay, say K, does 
not guarantee solvability of the design problem (11) because Theorem 2 states 
that (with >. = 0) N1 cannot be lower than the degree of the numerator NB. 
Note that by using this advice, apart from skipping the first K samples, one also 
rejects additional NB - K seemingly informative samples of the output signal. 
Consequently, NB can be interpreted as a lower "information boundary" recog­
nised in the system's output sequence that allows for isolation of the piece of 
system's information that is most essential from the prediction viewpoint. • 

REMARK 5 With reference to the prime set of the triple condition (Ci') it is 
now evident that in order to assure the main result of Theorem 2 one has to 
put Nu = N A + 1. In the case of the parsimonious choice of N 1 = NB (see the 
secondary triple - Cz") the upper bound does not exist. • 

REMARK 6 The first condition in both sets (Cl' and Cl") represents the nec­
essary 'geometric' prerequisite Nu ::; No that says that the effective observation 
horizon No = N2 - N1 + 1 should not be shorter than the assumed length Nu of 
the designed control sequence t:..u(t) (see eqns. 10 through 12). • 

REMARK 7 The above limitation combined with conditions C:J and C3'' leads 
to a bilateral restriction on Nu: 

( 43) 

Hence it results that the GPC observation horizon has also a limit: N 0 ;::: N A+ 1. 
Since matrix H is No X Nu and rank H = Nu must be satisfied, Nu is the critical 
parameter sought after. • 

REMARK 8 Note that Nu 2: N A+ 1 fulfils both of the CS conditions at the same 
time. Thus, taking into account that N 1 ;::: NB can be accepted as the second 
restriction C2, a single common set of conditions can be specified as follows: 

(Cl) 

(C2) 

(C3) 

N2 ;::: N1 +Nu - 1, 

Nl;::: NB, 

Nu= NA + 1. 

(44) 

• 
REMARK 9 Having in mind both the design parsimony (with respect to N2 and 
Nu) and the maintenance of the 'essential information' (NI), two parsimonious 
(P and S) ways of selecting the observation and control horizons based on the 
degrees of the plant transfer function N A and NB, can be proposed as: 

(P1) 
(P2) 
(P3) 

Nl =NB 
N2=NA+NB 
Nu= NA + 1 

and 
(Sl) 
(82) 
(S3) 

N1 =NB+ 1 
N2=NA+NB+1 
Nu= NA + 1 
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In these 'square' tuning settings the effective observation horizon equals the con­
trol horizon: 

• 
The above presented prime triple-condition (Ci') and the suboptimal tuning 

set (S) are a basis for derivation of a numerical algorithm (CD-HAG) presented 
in Section 4. 

3.2. Reducible Polynomials A(q-I) & B(q-I) 

Let us presume that 

A(q-I) = Ao(q-I)A(q-I) 

B(q-I) = Bo(q-I)A(q-I) 

( 45) 

(46) 

where A(q-I) and B 0 (q-I) are relatively prime, and A(q-I) denotes the great­

est common factor of A(q-I) and B(q-I) with degA(q-I) = N11. > 0, which 
will be referred to as the cancellation order. Clearly, the Markov parameters 
of B(q-I)/A(q-I) are identical to the Markov parameters of B 0 (q-I)/A(q- 1), 
where B 0 (q-I) = qB0 (q-I) (see eqn. 9) . Therefore it follows from (25)-(26) 
that the closed-loop characteristic polynomial D ( q- 1) has now the form 

D(q-I) = C(q-I)A(q-I)(Ao(q-I)- q-I Ao(q-I) + g* Bo(q-I)) (47) 

where Ao(q-1) = I:;~1-N1 +1 ki(Ao(q- 1)HNdi-1(q-1)- Bo(q-I))qN1 +i-1. 
By reconsidering the proofs of Theorem 1 and Lemma 1 one can easily find that 
the following general lemma and theorem hold. 

LEMMA 2 If A(q-I) and B(q- 1) have a common factor of degree N11. and one 
of the two following triple conditions 

(Cl') Nz ~NI+ NA- N11. 
(C2') NI > Ns- N11. or 
(C3') Nu= NA- N11. + 1 

(Cl") 
( C2") 
( C3") 

Nz ~NI +Nu -1 
NI= N 8 -N11. 
Nu~ NA- N11. + 1 

is satisfied, then H is of full column rank. • 

THEOREM 3 If A(q-I) and B(q-I) have a common factor of degree N11. and 
one of the two following triple conditions 

(Cl') Nz ~NI+ Nu- 1 
(C2') NI > Ns- N11. or 
(C3') Nu= NA- N11. + 1 

(Cl") 
(C2") 
(C3") 

Nz ~ N1 +Nu -1 
NI=Ns-NII. 
Nu~NA-NII.+l 

is satisfied, then H has full column rank (rankH = Nu)), the solution (11) 
exists, and, for A = 0, the closed-loop characteristic polynomial is 

D(q-I) = C(q-1)A(q-I)fh(q-I) 

i5~~.(q-I) = 1 + g* Bo(q-I). • 

( 48) 

( 49) 
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REMARK 10 Note that this time with ri = 1, i = N1, ... , N2, the character­
istic polynomial D( q- 1) set in (25) is only partly determined by the observer 
polynomial C(q- 1) 

D(q- 1
) = C(q- 1 )A(q- 1 ) . (50) 

This leads to closed-loop systems stable for all stabilisable systems of (1). On the 
other hand, for another choice of r from (19), in fundamental stability consid­
erations, the zeros of the factor Ih(q- 1) have to be examined. To this end the 
idea of root loci can be applied (Kowalczuk and Suchomski, 1995, Kowalczuk, et 
al., 1996) to show that for sufficiently small absolute values of g* the polynomial 

Ih ( q- 1) will always be stable. 
Note that the continuous-time approach (Kowalczuk, et al., 1996, Kowalczuk 

and Suchomski, 1999a, b) offers new alternatives in this respect. • 

REMARK 11 The conditions of Theorem 3 are analogous to those of Theorem 
2, provided that the degrees of the numerator (NB) and denominator (NA) of 
the plant transfer function are reduced by the cancellation order NA. In other 
words, it is the 'effective degrees' (i.e. the parameters of a minimal realisation 
of the plant model) that should be appropriately utilised. Note that the value of 
the cancellation order ( N A) is used explicitly in Theorem 3. This is especially 
disadvantageous in the case of the condition (Cf!' ), which imposes the necessity 
of precise knowledge of the effective degree of the numerator 

• 
REMARK 12 Since the condition (C:I) has been chosen (Kowalczuk and Su­
chomski, 1995) to detect the upper bound on Nu, the first set of conditions ( Ci') 
seems to be a favourable basis for choosing the design parameters. Consequently, 
with reference to Remark 9, although resulting in the same observation horizon 
N 0 and the same order of the controller, it is the suboptimal tuning procedure 
(S) that should be preferred. • 

4. Numerical algorithms 

There is a practical problem in the determination of the cancellation order N A. 

Note that the cancellation can take place in the controlled plant or be induced 
by identification of an overparameterised plant model. Since N A diminishes the 
bound on Nu, the cancellation order can be evaluated- as it has been proposed 
in Kowalczuk and Suchomski (1995), Kowalczuk, et al. (1996) -by means of 
detection of the upper bound of Nu that guarantees nonsingularity of HT H . 

Taking into account solvability of the design problem for A = 0, as it results 
from Lemma 2 and its first set of conditions (Ci'), where N2 2: N 1 + NA 2: 
N 1 + NA- NA and N1 > NB 2: NB- NA (see also Remark 11 ), there always 
exists an upper bound on Nu: 

Nu ::; N~nax = N A - N A + 1 
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that establishes the maximum value of the GPC controller design parameter 
Nu necessary to assure problem solvability. As the cancellation order suitably 
diminishes the bound on Nu, with an arbitrarily assumed value of N A the can­
cellation order can simply be estimated by detecting the maximum value of 
N{;'ax: 

(51) 

(see also condition C3' of Theorem 3). The significance of this procedure lies 
in the fact that the detected parameter N:;'ax is an equivalent of the effective 
system order N~ = N A - N 11., namely: 

Consequently, both of the effective degrees can be found from 

N~ =NA -N11. 

N~ =NB -Nfl.. 

(52) 

(53) 

(54) 

The process of estimating the bound N:;ax consists in detection of the 
degeneracy of the 'Markov' matrix (12). Let the matrix Hi+l E ~No x(i+l) , 

i = 1, 2, ... , be partitioned as follows 

where 

[ 

hN,-1 hN,-2 
hN, hN,-1 

Hi= . 

hN2-1 hN2-2 

hN,-i l , hN1 -i+1 
H i E ~Noxi 1 

hN2 -i 

hN1 -t+1 
hi = hi E ~No and hk = 0 for k < 0. 

[ 

hN,-t l 
hN2 -t 

(55) 

Consider first the projection I -HiHt on R(Hi).l., where Ht E ~ixNo denotes 
the Moore- Penrose pseudo inverse of Hi, and R(Hi).l. stands for the orthogonal 
complement of the range of Hi. Let us assume that , for some i, hi+1 belongs 
to the null space of I - HiHt: 

hi+1 E N(I- H iHt) . 

Hence we can conclude that HiHt hi+l = hi+1 and hi+1 E R(Hi)· Ultimately 

rank [ Hi (56) 
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From the common rule of computing the pseudo inverse of partitioned ma-
trices (Boullion and Odell, 1971) it results that 

I h . ]+ _ [ Ht- H;+h;+lnt±l ] 
>+1 - + 

ni+1 

where ni+1 E ~No is defined as 

ni+1 =(I- H;H"t)hi+l· 

(57) 

Assuming that ni+1 =/= 0, and Pi = I - H;H"t, such that P; E ~No x No, one 
obtains the following recursive solution 

T ni+ln;+1 
pi+1 = P;- T . 

ni+1 nt+l 
(58) 

On the basis of the above derivation the applicable iterative procedure CD­
HAG - for Concurrent Determination of the control Horizon Nu And Gain K 
(11)-can be stated as follows : 

PROCEDURE CD-HAG 
(*) Initialisation: i = 0, h1 = [ hN1 -l hN2 -1 ] T 

P0 =I 

n1 = Poh1 

ni = llnlll2 2nf 
H{ =ni 

P1 = Po- n1ni 

(*) Iteration: i +- i + 1 

h; = [ hNl-i hN2 -i ]T 
n; = Pi-lhi 

llnill~ = nf ni (if lln;ll~ < c: then go to Termination), 

nt = lln;ll22nf 
Pi= Ht_1h; 

H+ = [ Ht 1- p;nt ] 
' n; 

P; = Pi-1 - n;nt 

(*) Termination: Nu = N~nax =rank H; = i 

K = H+ =(HT H;)- 1 HT. 
2 t " -~ 

where Hi+1 , i = 1, ... , denotes a matrix of the following structure 
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and 

hN2 -1 hN2 -2 

hN1 -i+l 

hN1 -i+2 
, hk = 0 fork < 0. 

REMARK 13 It remains to emphasise that with .\ = 0 for the terminal Nu = 
rank Hi= i one obtains the required solution K of {11). In a practical case of 
detection of linear dependency, the terminating condition ll ni ll ~ < c is applied, 
where c is a very small computer-dependent real value. • 

REMARK 14 It is clear from Theorems 2 and 3 that the second set of conditions 
(C2"') does not lead to analogous results, because the parameter Nu can have an 
arbitrarily large value. • 

Assume that r is the first co-ordinate of the vector r that is slightly smaller 
than one (r = rN

1 
~ 1), while the other co-ordinates of r are of unit value 

rN1 +1 = · · · = rN2 = 1. A complete AF-GPC design procedure based on the 
recommended implementation of the anticipation filter with only one parameter 
(r) submitted to tuning is presented below. 

PROCEDURE AF-GPC 
1. Preliminary estimation of the bottom of the observation horizon: N 1 = 

NB + 1. 
2. Preliminary estimation of the top of the observation horizon: N2 2: N A + 

NB+ 1. 
3. Computation of the maximum value of Nu = N:;ax with the use of the 

CD-HAG procedure. 
4. Calculation of the cancellation order: N 11. = N A - Nu + 1. 
5. Calculation of the observation horizon's bottom: N 1 = NB - N 11. + 1. 
6. Calculation of the observation horizon's top: N2 2: N1 + Nu - 1. 
7. Setting a suitable value of the anticipation filter parameter: r E (0 .8, 0.99). 
8. Computation of the gain matrix K and picking its first row kT. 
9. Solution of the Diophantine equations for the design polynomials Ei(q- 1) 

and Gi(q- 1), with i = N1, .. . , N2. 
10. Computation of the gain coefficient g and the controller polynomials L(q- 1

) 

and M(q- 1 ). 
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5. Simulation examples 

5.1. Simulation settings 

The basic form of the plant under examination is given by the following minimal 
model with relatively prime polynomials A(q- 1) and B(q- 1 ) 

A(q- 1 ) = (1- 0.67032q- 1)(1- 0.76593q- 1)(1- 0.81873q- 1) 

B(q- 1
) = 0.0028689(1 + 0.21523q- 1)(1 + 3.01224q-1)q- 1 (59) 

C(q-1 ) = (1 + 0.9q- 1)[(1 + 0.63639q- 1) 2 + (0.63639q- 1) 2]. 

The following integral index describes the performance of transient processes 

(60) 

where {f(t)}0 and F(z) denote the time and the z-domain representations 
of a given process. In the sequel, two particular cost functions Iu and le are 
considered that refer to the control signals u(t) and the control errors e(t), 
respectively. 

5.2. Elementary performance 

According to the first parsimonious rule of selecting the observation and the 
control horizons (Pl-P3), the applied design settings are as follows 

A= 0, N1 =NB = 3, N2 = NA +NB= 6, Nu= NA + 1 = 4 

T = TN1 E [0.8, 1]. 

The resulting plant input and output signals for the unit step reference signal 
w(t) are demonstrated in Figs. la and lb, respectively. Clearly, the desired effect 
of reduction of the control effort is obtained at the cost of a slight deterioration 
of the transient of the controlled process. 

Taking into account the control quality indices Iu and Iu shown in Fig. le, a 
compromising effect of the AF filter implemented with the use of the anticipation 
parameter r = r N 1 is transparent. The plots of the indices exhibit a monotonous 
character. Therefore, a particular choice of r can be imposed by a need of 
balancing both of the cost functions. 

----------------------------------------------
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Figure la. The control signal for different anticipation ( r) 
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Figure lb. The effect of anticipation (r) on the system step response 
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Figure le. The control effort (lu) and error (le) indices versus parameter r 
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Thus, due to the AF mechanism the two fundamental factors of control qual­
ity (i.e. control error and control effort) can be taken into account in a rational 
manner. Note that a balanced relation between Iu and le can be obtained in 
spite of>.= 0. This means that not only the existence of the solution (11) can 
be ensured but also the design procedure can be considerably simplified. On the 
other hand, it should be emphasised that for >. = 0 there are no apparent con­
ditions for solvability of the design problem and, what is more, frequently with 
a 'natural' discrepancy between the magnitudes of the control and controlled 
signals, the >.-tuning can bring about practical difficulties. 

5.3 . Determination of the observation and control horizons for min­
imal models 

Assume that the controlled plant is described by its minimal model ( 4 7) with 
relatively prime polynomials A(q- 1 ) and B(q- 1

), and that the GPC design is 
performed based on the following rule 

). = 0, N1 =NB= 3, N2 2: NA +NB, 

Nu = No = N2 - N1 + 1, r = 0.9, 

which results from a necessary modification of the parsimonious rule of the GPC 
tuning Pl-P3. 

50 

20 

-10 

-40 

-70 
t 

0 4 8 12 16 

Figure 2a. The control signal for two control horizons (Nu) 

As it results from Remark 6, the control horizon Nu should not be greater 
than the effective observation horizon N0 . On the other hand , if the top instant 
of the observation horizon N 2 is increased (for example in order to have a more 
thorough description of the plant) an apparently obvious advice "let Nu follow 
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N 2" turns out to be disadvantageous. Note that by following the above men­
tioned advice one obtains a less scrupulous implementation of the computed 
control sequence !:lu(t) connected with a decreasing value of the relative range 
of realisation (RRR) of !:lu(t). These effects can be seen in Figs. 2a and 2b that 
show the plots of the control and controlled signals, respectively, corresponding 
to the unit step change in the setpoint for two values of Nu. 

oo··· 

oo o · 
o · o·· ····o··· 

8 12 

t 

16 

Figure 2b. The influence of the control horizon (Nu) on the system response 

The solid lines refer directly to the first parsimonious tuning rule, which 
leads to the following settings 

A = 0, N1 = NB = 3, N2 = N A + NB = 6, Nu = No = 4. 

The dotted lines denote the case with the top instant of the observation horizon 
N 2 chosen to be greater than the above specified minimal value N A + NB and 
the control horizon Nu increased according to the prescription 

Nu = No = N2 - N1 + 1. 

It is clear that decreasing of the relative range of the control sequence realisation 
(RRR) leads to an undesirable degradation in the speed of the control process. 

In contrast to the above effect it can be shown that by increasing the top 
instant of the observation horizon N 2 with the control horizon Nu kept constant, 
the control process can be speeded up. As above, the control and the controlled 
signals are taken into consideration in a similar experiment with the unit step 
change of the setpoint. The GPC controller is designed with the following 
settings 



Simple stable discrete-time generalised predictive control 35 

According to the Pl and P3 principles both the bottom instant of the obser­
vation horizon N1 and the control horizon length Nu are chosen at their lower 
bounds. The top instant of the observation horizon N 2 is increased from its 
lower bound N A +NB upward. The simulation results are illustrated in Fig. 3, 
where Figs. 3a and 3b show the control and output signals obtained for different 
values of N2, and the control quality indices and Iu are presented in Fig. 3c. 
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Figure 3a. The control signal for different tops (N2) of the observation horizon 
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Figure 3b. The control of the observation horizon's top N2 over the system responses 

As it results from t hese figures , by increasing N 2 a clear acceleration of the 
control process can be obtained - this can be done, however, along with a slight 
growth of the control effort. This effect can be interpreted as a result of taking 
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into account more and more exact Markovian representations of the plant while 
having the RRR ratio frozen at a possibly lowest level. Moreover, it can be 
notified that the rate of the process acceleration is a monotonically increasing 
function of the effective observation horizon N0 . 
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Figure 3c. The control effort (I,.) and error (I,.) indices versus parameter 

5.4. Determination of the observation and control horizons for non­
minimal models 

Consider now the GPC tuning problem for the plant models having the poly­
nomials A(q- 1) and B(q- 1 ) not relatively prime. Note that common factors for 
the numerator and denominator polynomials of the plant transfer function may 
arise in the case of identification of plants with variable model orders (and/or 
delays) by a parameter estimation procedure based on an overparameterised 
model. The Markovian characterisation of a plant is invariant under any per­
fect pole-zero cancellation in the transfer function of the plant. However, the 
GPC design (performe~ for an overparameterised model of the plant without 
the exact knowledge of the cancellation order N11.) is bound to be based on 
the assumed (though overestimated) degrees of the numerator and denominator 
polynomials. 

Consider the control system with the anticipated filter characterised by r = 
0.99. The remaining GPC parameters are established based on the second 
parsimonious tuning rule (81- 83). It means that the bottom instant of the 
observation horizon N 1 is equal to its lower bound (NB+ 1) and the top instant 
of the observation horizon N 2 (= N 1 +Nu- 1) is also equal to its lower bound 
(NA +NB+ 1). The control horizon Nu, in general, appears as a partly free 
parameter. Nevertheless, irrespective of the assumed estimate of the system 
orders (the model polynomial degrees) the true upper bound on the control 
horizon Nu, for which the problem (11) has the required solution, is established 
by the true plant order Nu= N~ + 1 (see C3' of Lemmas 1 and 2, and eqn. 52). 

The step-response performance resulting from overestimated values of the 
bottom N 1 of the observation horizon is illustrated in Figs. 4a- c, where Figs. 4a 
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and 4b concern the control and output signals of the plant with t he solid lines 
denoting the right choice of N A = NB = 3, and t he plots given in Fig. 4c 
show the control quality indices lu and l e as functions of N 1 , i. e. based on the 
assumed estimates of the degrees of the model polynomials A(q- 1

) and B(q- 1
). 

The overestimation of the system order leads to an ascent of the bottom of 
the observation horizon N 1 = NB + 1 and to an increase the effective obser­
vation horizon N 0 = N A + 1. Consequently, such a design procedure causes 
a degradation in the quality of control, including a reduction of the speed of 
the controlled process (see Fig. 4b ). For comparative purposes, the numerical 
values of the indices lu and l e are also listed in Table 1. 

N1 fu f e 
4 185.148 1.3269 
5 157.244 1.3894 
6 118.386 1.5339 
7 62.637 2.0063 

Table 1. Numerical values of the cost functions while overestimating N1. 

After an inspection of the above examples one comes to a conclusion that 
unsatisfactory results of the GPC design caused by inaccurate modelling of the 
plant can be considerably corrected by appropriately increasing the top instant 
of the observation horizon N2 . Certainly, if the bottom instant of the observation 
horizon N 1 and the control horizon Nu are fixed , an optimal shape of the control 
process can be 'retrieved' by increasing the effective observation horizon N 0 . 

To illustrate the above proposition let us consider the following design set­
tings 

.\ = 0, N1 = 5, N2 2: 9, Nu =4, r = 0.99. 
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Figure 4a. T he control signal for different bottoms (N1) of the observation horizon in 
t he case of overestimation of the system order 
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Figure 4b. The effect of the observation horizon's bottom ( N1) on the system reaction 
invoked by overestimation of the system order 
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Figure 4c. The effect of order overestimation (NI) on the control quality items 
(lu and le) 

Figs. 5a and 5b show the control and controlled signals obtained for the unit 
step setpoint change. From Fig. 5c one can learn more about the influence of 
the top instant of the observation horizon N 2 on indices lu and le. Numerical 
values of the considered control quality indices lu and le are listed in Table 2. 

It can be easily seen that by increasing the effective observation horizon N0 

an improvement of the transient control process can be obtained at a cost of a 
certain growth in the control effort. Taking into account the numerical results 
cited in Tables 1 and 2, it can be concluded that by following the proposed 
procedure it is possible to make the control error even smaller than the error 
obtained in the case of the 'correct' modelling previously discussed. This, how­
ever, involves more extensive design computations due to the required rise in 
the top (N2) of the observation horizon. 
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N2 fu fe 

9 157.244 1.3894 
10 169.518 1.3586 
12 182.771 1.3312 
15 191.722 1.3157 
20 197.645 1.3067 

Table 2. Numerical values of cost functions for the tuning of N2 
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Figure 5a. The control signal for ascended tops (N2) of the observation horizon in the 
case of overestimated N1 
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Figure 5b. A remedy for the order overestimation problem: retrieving the control 
performance with ascended tops (N2) of the observation horizon 
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Figure 5c. The case of order overestimation: the effect of ascended observation tops 
(N2) on the quality indices (/u and le) 

6. Conclusions 

It is known that designs based on the dead-beat approach lead to excessive 
control action, which can in many cases result in a very limited practical range of 
and some sensitivity problems. It has been shown that the anticipated filtering 
can have a desired effect on the closed-loop behaviour of the controlled plant 
(in terms of pole placement, for instance) and that an appropriate design of the 
anticipated filter can reduce a disagreeable control effort and lead to a certain 
balance in the control cost functions. 

An issue, which is vital for a successful application of the GPC designs, is to 
provide the user with a set of tuning rules. The proposed iterative algorithm for 
the simultaneous determination of the control horizon Nu, the matrix controller 
gain K, and the cancellation order, is in line with the latter demand. The 
developed tools make it possible to use any non-minimal (overestimated) models 
and, at the same time, to design regulator of a reasonable order. 

Simple tuning rules have been analytically obtained due to the assumption 
that ), is equal to zero. There are, however, no restrictions as to using the 
non-zero ), in the GPC design solution (11) after the proposed settlement of 
the design tuning parameters. Nevertheless , one has to keep in mind that the 
effect of anticipated filtration is similar to the effect of .A :f. 0. On the other 
hand, in fact , it is the anticipated filtration that makes the .A-tuning practicable 
(without it, the value of .A necessary to minimise the cost functions (3) and (17) 
often appears to be extremely small, and, in effect, unimplementable) and thus 
allows for a further alleviation of the GPC control effort (originally attributed 
to .A). 

The prospects of the application of the simplest anticipation filter results 
from mathematical characteristics of the design that consist in reducing the 
effect of the AF filter to a scalar gain coefficient g. This fact, supported also by 
experience, leads to the conclusion that it is enough to apply a single parameter 
r for tuning the AF filter (or, equivalently, the outer loop gain g). 

In analytical considerations a constant setpoint is considered, but , princi­
pally, this implicitly takes place only in the anticipation-time domain. On the 
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other hand, there are no stringent restrictions placed on the input signal, and 
it is apparent that the discussed design solution can also be used for a tracking 
problem. It is also worth noticing that the unit step function applied in the 
reported simulation study is considered in industry as one of the most severe 
types of excitation signals. 
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