
Control and Cybernetics

vol. 29 (2000) No. 4

Similarity-based methods:
a general framework for

classification, approximation and association

by

Wlodzislaw Duch

Department of Computer Methods, Nicholas Copernicus University
ul. Grudziqdzka 5, 87-100 Torun, Poland

E-mail: d uch @phys. uni.torun. pl

Abstract: Similarity-based methods (SBM) are a generaliza­
tion of the minimal distance (MD) methods which form a basis of
several machine learning and pattern recognition methods. Inves­
tigation of similarity leads to a fruitful framework in which many
classification, approximation and association methods are accom­
modated. Probability p(CjX ; M) of assigning class C to a vector X,
given a classification model M, depends on adaptive parameters and
procedures used in construction of the model. Systematic overview
of choices available for model building is presented and numerous
improvements suggested. Similarity-Based Methods have natural
neural-network type realizations. Such neural network models as
the Radial Basis Functions (RBF) and the Multilayer Perceptrons
(MLPs) are included in this framework as special cases. SBM may
also include several different submodels and a procedure to combine
their results. Many new versions of similarity-based methods are
derived from this framework. A search in the space of all meth­
ods belonging to the SBM framework finds a particular combination
of parameterizations and procedures that is most appropriate for a
given data. No single classification method can beat this approach.
Preliminary implementation of SBM elements tested on a real-world
datasets gave very good results.

Keywords: similarity-based methods, kNN, optimization, fea­
ture selection, classification, approximation, associative memory.

1. Introduction

Recently, a general framework for similarity-based methods has been introduced
(Duch, 1998). This framework is extended here, leading to new versions of
similarity-based methods, including neural-like realizations. In pattern recogni-

938 W. OUCH

of similarity-based methods, in statistics many clusterization methods belong to
this group, in artificial intelligence the instance-based reasoning, memory-based
reasoning or case-based reasoning methods (Mitchell, 1997) evaluate similar­
ity to a set of prototype objects, and in neural networks many models are in
fact variants of SBM. As a first step towards a general computational intel­
ligence theory, integrating many learning methods withi a single framework,
various procedures and choices involved in creating similarity-based models are
described here. These models operate on the same principle: given a set of ob­
jects create from them a set of reference objects {R} and introduce a similarity
measure allowing to relate new query object X to the reference ones.

Four basic problems that such models may solve are: assign X to predeter­
mined specific classes, map X to some numerical values, complete the missing
features of X, or create clusters that are in some respect homogenous. The
first of these, supervised classification, has perhaps the widest applications, and
therefore the outline of the SBM framework is presented from this perspective.
Mapping problems - approximation and extrapolation -may be treated as clas­
sification with an infinite number of classes. Having selected a set of the most
similar reference vectors to a given vector X a number of interpolation proce­
dures may be applied to synthesize an approximate mapping. The same is true
in the third case, completion of missing values. Known elements of the object X
are used to find similar reference vectors and the missing parts are completed
using approximation or classification procedures. SBM may thus serve as a basis
for associative memories. Finally, clusterization or unsupervised classification
problems require evaluation of similarity and thus also belong to the SBM. All
of these methods may be useful in control problems.

A review of many approaches to classification and comparison of performance
of 20 methods on 20 real world datasets has been done within the Statlog Eu­
ropean Community project (Michie et al., 1994). More recently, the accuracy
of 24 neural-based, pattern recognition and statistical classification systems has
been compared on 11 large datasets by Rhower and Morciniec (1996). No con­
sistent trends have been observed in the results of these large-scale studies. For
each classifier one may find a real-world dataset, for which the results will be
excellent, and another one for which the results will be quite bad. Therefore, in
real world applications a good strategy is to find the best classifier that works for
given data. Frequently, simple methods, such as the nearest neighbor methods
or n-tuple methods (Rhower and Morciniec, 1996), are among the best. When
selecting from the simplest classification models one sho ld add different types
of optimization parameters and procedures developing the model in the most
promising direction in the space of all possible models belonging to the SBM
framework.

Some of the best classification algorithms applicable to pattern recognition
problems are based on the k-nearest neighbor (k-NN) rule (Krishnaiah and
Kanal, 1982). Each training data vector is labeled by the class it belongs to

Similarity-based methods 939

nearest to the unknown (query) vector X are found, and the class of vector X
is determined by a 'majority rule'. The probability of assigning a vector X
to a class C;, i = 1, ... , K is p(C;IX; k) = N;jk, where N; is the number of
nearest vectors belonging to class C;, "L:J< N; = k. If k = 1 a single nearest
neighbor determines the class of an unknown vector, i.e. p(C;IX) = 0 or 1.
The asymptotic error rate of the k-NN classifier in the limit of large k and
large number of reference vectors becomes equal to the optimal Bayesian values
(Krishnaiah and Kana!, 1982). In real situations, the number of reference vectors
is limited and small values of k may work better, therefore k should be optimized
for each dataset.

Because the k-NN method is so simple it is frequently used as a standard
reference for other classificators (surprisingly, very few computer programs for
k-NN are around). Computational complexity of the actual classification is
high, demanding for n reference vectors calculation of ,...., n2 /2 distances and
finding k smallest distances among them. Although Laaksonen and Oja (1996)
claim that "For realistic pattern space dimensions, it is hard to find any varia­
tion of the rule that would be significantly lighter than the brute force method"
various hierarchical schemes of partitioning the data space or hierarchical clus­
terization are quite effective in reducing the complexity of search from O(n2)

to O(nlogn). Even without any speedup of computations the datasets with
several thousand of training patterns do not present any problems on modern
personal computers. The search for the nearest neighbors is easily panitlelizable
and training time (selection of optimal k) is relatively short. Nearest neighbor
methods are especially suitable for complex applications, where large training
datasets are available. They are also used in the case-based expert systems as
an alternative to the rule-based systems (see Waltz, 1995, for more than 200,000
reference patterns and millions of vectors for classification) .

Only one neural model proposed so far is explicitly based on the nearest
neighbor rule: the Hamming network (Lippmann, 1987, Floreen, 1991) com­
putes the Hamming distances for the binary patterns and finds the maximum
overlap (minimum distance) with the prototype vectors, realizing the 1-NN rule.
Although other similarity-based methods presented here have natural neural­
network type realizations we will concentrate more on presentation of the general
framework rather than on the network implementation issues, since at this ini­
tial stage of the theoretical development implementation issues are of secondary
importance. We will not spend much time on the actual methods of learning,
based here on parameter optimization, neither. Other approaches to learning
(Mitchell , 1997) may be useful in more complex situations. In the next section
the general framework for SBM is presented and many novel elements outlined
at each step of the classification process. The framework accommodates well­
known classification methods and leads to new, unexplored methods. Examples
of new methods and relations with known classification models, including some
neural network models, are elucidated in the third section. Discussion and ref-

940 W.DUCH

2. A framework for the similarity-based methods

Here, N is the number of feat ures, K is the number of classes, vectors are in
bold face while vector components are in italics.

The following steps may be distinguished in the supervised classification
problem based on similarity estimations:
1) Given a set of objects (cases) {OP}, p = 1, ... , n and their symbolic la­
bels C(QP), define useful numerical features X} = X1(0P), j = 1, ... , N char­
acterizing these objects. T his preprocessing step involves computing various
characteristics of images, spatia-temporal patterns, replacing symbolic features
by numerical values, etc.
2) Find a measure suitable for evaluation of similarity or dissimilarity of objects
represented by vectors in the feature space, D(X, Y).
3) Create a reference (or prototype) vectors R in the feature space using the
similarity measure and the training set T = {XP} (a subset of all cases given
for classification).
4) Define a function or a procedure to estimate the probability p(CiiX; M),
i = 1, ... , K of assigning vector X to class Ci. The set of reference vectors,
similarity measure, the feature space, and procedures employed to compute
probability define the classification model M.
5) Define a cost function E[T; M] measuring the performance accuracy of the
system on a training set T of vectors; a validat ion set V composed of cases that
are not used directly to optimize model M may also be defined, and performance
E[V; M] measuring the generalization abilities of the model assessed.
6) Optimize the model Ma until the cost function E[T; Ma] reaches minimum
on the set Tor on the validation set E[V; Mal·
7) If the model produced so far is not sufficiently accurate add new proce­
dures/parameters creating a more complex model Ma+l·
8) If a single model is not sufficient, create several local models M~l) and use
an interpolation procedure to select the best model or combine results of a
committee of models.

All these steps are mutually dependent and involve many choices described
below in some details. The final classification model M is build by selecting a
combination of all available elements and procedures. A general similarity-based
classification model may include all or some of the following elements:
M = {X (O), ~(·, ·), D(·, ·), k, G(D), {R }, {Pi(R)}, E[·], K(·), S(·)}, where:
X (0) is the mapping defining t he feat ure space and selecting the relevant fea­
tures;
~1 (X1 ; Yj) calculates similarity of features Xj, Yj, j = 1, ... , N;
D(X , Y) = D({~1 (X1 ; Yj)}) is a function that combines similarities of features
to compute similarities of vectors; if t he similarity function selected has metric
properties, the SBM may be called the minimal distance (MD) method.
k is the number of reference vectors taken into account in the neighborhood

Similarity-based methods 941

G(D) = G(D(X, R)) is the weighting function estimating contribution of the
reference vector R to the classification probability of X;
{R} is a set of reference vectors created from the set of training vectors T =
{XP} by some selection and optimization procedure;
Pi (R), i = 1, ... , K is a set of class probabilities for each reference vector;
E[T; M] or E[V; M] is a total cost function that is minimized at the training
stage; it may include a misclassification risk matrix 'R(Ci,Cj), i,j = 1, ... ,K;
K (·) is a kernel function, scaling the infi uence of the error, for a given training
example, on the total cost function;
S(-) is a function (or a matrix) evaluating similarity (or more frequently dissim­
ilarity) of the classes; if class labels are soft, or if they are given by a vector of
probabilities Pi(X), the classification task is in fact a mapping. The S(Ci, Ci)
function allows to include a large number of classes, "softening" the labeling of
objects that are given for classification.

Various choices of parameters and procedures in the context of network
computations leads to a large number of similarity-based classification meth­
ods. Parameters of each model are optimized and a search is made in the space
of all models Ma for the simplest and most accurate model that accounts for the
data. Optimization should be done using validation sets (for example in cross­
validation tests) to improve generalization. Starting from the simplest model,
such as the nearest neighbor model, qualitatively new "optimization channel"
is opened by adding the most promising new extension, a set of parameters or
a procedure that leads to the greatest improvements. Once the new model is
established and optimized, all extensions of the model are created and tested
and a better model selected. The model may be more or less complex than
the previous one (since feature selection or selection of reference vectors may
simplify the model). The search in the space of all SBM models is stopped when
no significant improvements are achieved by new extensions.

The steps involved in setting up a SBM model are presented below in a
detailed way. Examples of well-known classification models and new models
that result from the SBM framework are given in the next section.

2.1. Feature space and similarity of features

Frequently the database contains a numerical description of the objects and the
preprocessing step involves only rescaling or standardization of the input data.
Features used should allow to assign a new vector X to one of the classes with
high reliability. The number of features created by the X(O) mapping should
be as small as possible to avoid the "curse of dimensionality" (Bishop, 1995). In
some cases a group of features of the same type may be aggregated and replaced
by a single feature, using, for example, the linear combination Xi = 2:1 SjtXt.

The Sj t scaling coefficients in this combination may be estimated in two ways.
The first method is based on inexpensive local approach (Aha, 1998), which tries

942 W . OUCH

for example the percentage of correctly classified t raining samples using only the
Xi feature. The second method is global, treating Sjt as adaptive parameters
that are optimized simultaneously using the total cost function E[T; M]. In
the multi-layer perceptron (MLP) network with two hidden layers the first layer
should essentially perform aggregation and may sometimes be replaced by a
linear layer. A more sophisticated approach, used in Support Vector Machines,
is based on non-linear projection of feature vectors (Scholkopf et al., 1998).

In some methods the feature Xj taking the symbolic value Xj = Tki is
treated directly using an appropriate similarity function ,6. i (Tk 1 , Tt 1) that may
be defined as follows. Define a characteristic class function: r m(X) = 1 if
X E Cm, otherwise r m(X) = 0. The vector X with feature Xj = Tkj is denoted
as X(Xj = Tk1). The number of vectors belonging to the class m with Xi = Tk
is Nm(Xj = TkJ = L:x r m(X(Xj = Tk,)) and the total number of such vectors
is N(Xj = Tk1) = I:m Nm(Xj = Tki). The ratio of these two numbers estimates
the probability p(CmiXi = Tk,) = Nm(Xi = Tk,)/N(Xj = Tk1) that given the
symbolic value Tk1 of feature X i the whole vector belongs to the class Cm.
Symbolic features that have similar probabilities should have high similarity:

m

where a is an arbitrary exponent. The similarity of the two symbolic values of
feature j is the highest (or dissimilarity is the lowest, l:ii (Tk1 , Tt1) = 0) if both
values Tk1 , Tt1 predict the same probabilities. The generalized Value-Difference
Metric (VDM) for vectors with symbolic values is defined as:

(2)

Since many classification methods require numerical inputs it is convenient
to replace symbolic with numeric values. Replacing symbolic feature Xi with
K-dimensional vector of probabilities p(CiiX(Xi = Tk,)), i = 1, ... , K allows
to compute the same similarity values:

K

l:ij(Tk1 ,TtJ'" = L lp(CmiXj = Tk,)- p(Cml}j = TtJie>· (3)
m=l

Thus, ,6. i (·, ·) is a Minkowski distance function in K -dimensional space. Note
that since for two classes p(CdX) + p(CziX) = 1 only one probability p(CdX)
is sufficient to compute similarity:

(4)

The number of numerical features is the same as the number of symbolic fea­
tures. For more than two classes (K > 2) the absolute value in the sum above

Similarity-based methods 943

growth of the dimension of the feature space the Value-Difference Metric (2)
should be used directly (Wilson and Martinez, 1997), or other methods that
do not preserve probabilistic estimations of similarity may be used (Aha, 1998,
Grqbczewski and Duch, 1999).

2.2. Similarity measures and feature scaling

Calculation of similarities is most often reduced to the Euclidean metric for
continuous inputs and the Hamming metric for binary inputs. In a more gen­
eral approach let us first define one-dimensional feature similarity functions
D..j(Xj, }j), for example:

D..j(Xj, Yi) = Xi - Yj a simple difference

D..i (Xi, Yi) = I Xi - Yi I an absolute value of the difference

D.. . (X . , Y.) = Xi - }j renormalized difference
1 1 1 maxi -mini

X·- y.
D..j(Xj, Yj) = 1 1 standardized difference

4aj

D..i(Xi, Yj) = o(Xi, }j) overlap difference

(5)

(6)

(7)

(8)

(9)

where in the last case Kronecker delta is used. Feature similarity may also
be computed as the probabilistic value differences (2). Similarity is defined in
this case via a data-dependent matrix with the number of rows equal to the
number of classes and the number of columns equal to the number of features.
Generalization for continuous values requires a set of probability density func­
tions Pii (x) , with i = 1, ... , K, j = 1, ... , N. This distance function may be
used for symbolic values and combined with other distance functions for con­
tinuous attributes.

Generalized Minkowski metric involves two exponents, a and (3, although
frequently a single exponent a = (3 is used. Typical distance function compute:

N

D(X,Y)13 = LD..j(Xj,Xj)" (10)
j

D(X, Y) = maxb..j(Xj, Yj) Maximum Value. (11)
J

Scaling factors weighting one-dimensional similarity functions allow to include
different contributions of different attributes and are very useful global param­
eters. Minkowski distance with the scaling factors is defined as:

N

D(X, Y; s)/3 = L Sjb..j(Xj, Yj)"'; Sj 2: 0. (12)

Euclidean metric corresponds to a = (3 = 2, which is completely isotropic,

944 W. OUCH

parallel to the axis than to the directions between the axis. In fact, the unit
contour is a circle for Euclidean distance, a square with vertices in (0, ±1) and
(±1, 0) for Manhattan, approaching a square with vert ices at (±1, ±1) for large
a = (3, and a concave 4-arm star for a = (3 going to zero.

Methods of selecting optimal scaling factors for feat ures were reviewed by
Wettschereck et al. (1997a) , where a five-dimensional framework to characterize
different methods of scaling features has been proposed. Scaling is the simplest
way of pre-processing the features. The scaling factors facilitate feature selection
in an automatic way. Admit ting only s1 = 0, 1 allows for simplified optimization
of the scaling factors for feature selection.

Using the scalar product and the norm:

N

(XIY) = I:Xj}j; IIXII 2 =(XIX) (13)
j=l

several other distance functions can be defined:

(XIY)
Dc(X, Y) = 1- IIXII IIYII Cosine distance (14)

2(X IY)
Dd(X, Y) = 1 - IIXII 2 + IIYII 2 Dice distance (15)

(X IY)
DJ(X, Y) = 1- IIXII 2 + IIYII 2 _ (XIY) Jaccard distance (16)

Dc(X,Y) = ~j(Xj , }j) generalized Canberra distance. (17)
~i(Xj, -}j)

Additional parameters that may be introduced in similarity measures are
either global or local (different for each reference vector). In some applications
(for example in psychology) similarities are not symmetric. The simplest exten­
sion to non-symmetric similarity function is obtained by introducing different
scaling factors, depending on t he sign of Xj- Yj, for example:

Dn(X,Y;s)"
N

= L(max(O, Sj+(Xj- Yj))- min(O, s1_(Xi- Y1)))",
j

(18)

where two separate scaling factors SJ+, Sj- ~ 0 are used. This function provides
2N adaptive parameters. The Mahalanobis distance (Bishop, 1995) is obtained
by applying a linear transformation to the input vectors. Alternatively, a metric
tensor Gij = Gji is introd ced, providing N (N + 1)/2 adaptive parameters:

N

D(X, Y; G)2 = >' Gii(Xi- Yi)(Xi- Y7). (19)

Similarity-based methods 945

Any adaptive system may provide a distance function for similarity-based
methods. For example, a typical MLP network may be trained on the differ­
ences of pairs of vectors {X- Y}, learning to predict the distance between
the classes IIC(X) - C(Y)II· The output of the neural network is then used
in k-NN or other similarity-based method (see Chiu and Kavanaugh, 1997,
where a similar idea is pursued). A better way is to give an MLP both X and
X - Y = {di(Xj)- di(Yj)} as input vectors, where di(·) is a set of the feature
pre-processing functions (in the simplest case scaling factors). A non-symmetric
similarity function D(X- Y; X), smoothly changing between different regions
of the input space, is obtained iteratively: for each training vector its k near­
est neighbors are selected using initial similarity estimation, and after the first
epoch of neural training the process is repeated using the new similarity func­
tion. Thus, MLP mappings may be used to create similarity functions most
appropriate for a given data.

Minimization of in-class distances and maximization of between-class dis­
tances is used in some statistical methods (for example Fisher's discrimination).
A distance function with such properties should be useful in similarity-based
methods. A function of this sort is based on a combination of sigmoidal func­
tions in each dimension:

Kj

di(Xj; p) = dJ(Xj; aj, bj, cj) = L ajla(bjlXj + Cjl), (20)
1=1

where Kj determines the number of steps in the smoothed sigmoidal step func­
tion (Fig. 1). Using this transformation with the Minkowski metric a network of
nodes computing such distances may be applied for classification or prediction,

Sum of 3 sigmoids

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Figure 1. Sum of 3 sigmoidal functions provides a useful distance function al-

946 W. OUCH

like any other neural network. It also could be used for extraction of logical
rules from data, either fuzzy rules or - within the limits of high slopes - crisp
logical rules. So far these ideas have not been tried in practice.

Calculation of distances may also be parameterized in a different way around
each reference vector, providing a large number of adaptive parameters. Local
coordinate systems with their origin placed at the reference vectors may provide
either local scaling factors or local metric tensors. In specialized applications
(for example in speech or handwritten letters recognition) invariant similarity
measures are used - the "elastic matching" is defined by the shortest distance
between two objects that are distorted in all possible ways while preserving their
identity (class). Simard et al. (1993) introduced a simplification of this idea by
measuring the distance between the tangent planes for the prototypes.

2.3. Feature selection

Scaling factors in the similarity function (12) allow for feature selection and
feature scaling but since the global optimum of a cost function may be difficult
to find (Duch and Grudzinski, 1999b) simpler feature selection procedure may
be useful. Many methods of feature selection and estimation of optimal scaling
factors for features were reviewed by Wettschereck et al. (1997). These methods
either iteratively optimize the scaling factors on the performance basis or assign
fixed scaling factors by calculating mutual information between the values of
features and the class of training samples or by summing probabilities (estimated
through frequencies) of training vectors with non-zero values of features for
a given class (per category feature importance). These scaling factors after
binarization are used to select features.

Several simple feature selection procedures have been developed and tested
specifically for the similarity-based methods (Duch and Grudzinski, 1999b). In
the feature-dropping algorithm features are removed consecutively, one at a time,
and the best-first search (BFS) strategy is used. To achieve good generalization
the leave-one-out test is performed on t he training file and the change in accuracy
is noted. Feature leading to the highest improvement of classification accuracy
on the training file is selected as the least important and removed from the input
set. If there is no improvement the feature that leads to a minimal degradation
is selected. At each step all the remaining features are evaluated. At the end of
the selection procedure all features are ranked according to their importance.

An approximate ranking of features is done at a lower cost. Assuming that
features are independent and the effects of feature removal are additive only
one test for each feature is done to determine the ranking. To make the method
more robust features are ranked after averaging the results of crossvalidation
tests with a single feature removed. An alternative is to perform the BFS
feature-dropping algorithm using only a subset of features identified as promis­
ing during the approximate evaluation, for example using those features that

Similarity-based methods 947

such as the beam-search, may be used if the number of features is not too large.
After calculation of feature ranks crossvalidation tests with first M best features
are performed for M = 1, ... , N. Usually, the best results are obtained with
those features that on average were found useful (did not increase the accuracy
after being dropped).

Search strategies may also be used for feature weighting. The cost func­
tion is simply the number of classification errors. Since features have real­
valued weights, they have to be initially quantized, either with fixed precision
or precision that is steadily increased during the progress of the search proce­
dure. Non-gradient optimization methods that may be used for optimization of
discontinuous cost function are expensive and may require a large number of
function evaluations for convergence. Search methods for feature weighting are
worth trying. Three such methods have been developed (Duch and Grudzinski,
1999b): adding features starting from a single one, dropping features starting
from all features and tuning the scaling factors, using the search procedure with
systematic increase of the precision of the scaling factor's quantization.

Feature selection may be combined with regularization of the classification
model. To lower the complexity of the model the cost function should include
an additional penalty term, such as the sum of all s]. Unrestricted optimization
will of course lead to a very small values of all factors, therefore one should fix the
scaling factor of the most important attribute at 1, optimizing over all other
attributes (renormalization of the scaling factors is an alternative, but more
complicated, solution). Features, for which the product of the scaling factors
si maxik IXji) - x jk) I is small may be deleted without a significant loss of accu­
racy - after additional optimization of the scaling factors accuracy may even in­
crease. In the framework of Wettschereck et al. (1997a) these methods use feed­
back, do not change feature representation, use global weights, do not use task
specific knowledge and perform both feature selection and feature weighting.

Features may be selected globally, for all classification models or for all
classes, leading to one set of features. For models that specialize in discrimi­
nation between pairs of classes or between a given class and all others, optimal
features should be selected independently.

2.4. Missing values

The Value-Difference Metric treats the missing values like any other symbolic
values, but if the missing feature is not symbolic it cannot be used directly.
Ad hoc procedures based on replacing the missing values with class averages,
the most frequent values, arbitrary constants, or ignoring these values, should be
avoided. In statistics analysis of independent surveys in which some questions
are not answered by some respondents and some questions are not asked in
some surveys is known as the "multiple imputation" problem (Rubin, 1996).
Assumptions about normal distributions used in the multiple imputation theory

948 W. OUCH

Methods belonging to the SBM framework, such as the nearest neighbor
method, may be used as associative memories in a natural way. Any part of
the input vector X = (Xd , Xu) may be used to estimate the unknown input
values Xd once the classification model is created. In the simplest case the
undefined part Xu is predicted interpolating the values of nearest neighbors
for the dominating class. Optimization of the model to increase classification
accuracy in the Xd subspace should improve the results of Xu prediction.

An iterative technique of finding the missing values is recommended. In the
first step a classification model M is created using the training vectors that do
not contain missing features or using the largest subspace of features without
missing values. This initial model is then used to calculate the probability of
unknown values Xu by maximization of:

(21)

i.e. searching for the maximum of the probability given by the model M in the
subspace of undefined features, with fixed point in the xd subspace.

At a later stage, once all elements of the initial model are defined, feature
selection and feature weighting procedures may be added. These procedures are
closely connected with the definition of similarity measures.

2.5. Selection and weighting of reference vectors

SBM models may use all training data as the reference vectors. Reducing the size
of the reference set leads to models of lower complexity, speeds-up classification
and minimizes memory requirements (this is important not only in real-time
applications - optimization of some parameters may require many evaluations
of the cost function). It also helps to improve generalization capabilities of the
classification system, especially for noisy data. Moreover, eliminating redundant
cases and leaving only the most interest ing prototypes may sometimes allow
to understand the structure of the data, providing an alternative to the rule­
based classifiers. Systems designed for on-line learning, where the number of
the incoming vectors may in principle be infinite, must use partial memory (see
Michalski, 1999), selecting the best prototypes.

Three groups of reference set selection algorithms may be distinguished:
clusterization based algorithms, algorithms start ing from the whole set, and
algorithms starting from the empty set. K-means, dendrograms or other clus­
terization techniques may be used to select a relatively small number of initial
reference vectors close to the centers of data clusters. Classification accuracy is
checked on the remaining set and each wrongly classified vector is moved from
the training to the reference set. Variants of this approach may use a validation
set to determine best candidates for the reference set.

An alternative approach to selection of reference vectors that does not re-

Similarity-based methods 949

that have all k nearest vectors from the same class are then removed from the
reference set (k should be relatively large here, for example, k = 10). Re­
moved vectors are far from cluster borders; all test vectors that fall in their
neighborhood will be anyway unambiguously classified. This approach leads to
a "hollow" cluster representation, leaving in the reference set only those vec­
tors near the cluster borders. Variants of this approach may start with a large
number of neighbors k' to remove vectors near the centers of clusters first, and
decrease k' to the final k value in a few steps. Noisy data contain some training
vectors that are surrounded by neighbors from different class; to remove them
from the reference set the vectors that have all k - 1 neighbors from the same
class and a single neighbor from another class should also be removed.

Another useful algorithm to select good reference vectors near class borders
starts from the empty reference set. For every training vector X that belongs to
the class C(X) it finds k nearest vectors from classes Ci =j:. C(X). Those vectors
are moved to the reference set. This algorithm also leaves in the reference set
only vectors near the class borders.

In the SBL-PM (Similarity-Based Learner- Partial Memory) algorithm in­
troduced recently (Grudzinski and Duch, 2000) training vectors are sequentially
removed and the prediction accuracy of the system on the whole training set
is calculated after each removal. If the accuracy drops below a user-defined
threshold, relative to the result of the leave-one-out test on the whole training
set, the removed vector is placed in the reference set; otherwise it is eliminated.
Unfortunately, because of the high computational costs this method may be
used only for relatively small datasets or with classification models that have
few adaptive parameters only, such as the k-NN method. More sophisticated
methods, for example GIGA, using genetic algorithm for selection of the refer­
ence set (Fuchs, 1996), have even higher computational demands, but the results
are not necessarily better.

In the on-line version of the method the system has to decide whether a new
training case, coming from the input stream, should be added to the reference
set (partial memory of past cases). An obvious approach, used in the IB2
procedure (Aha et al., 1991) is to check whether each new instance recei.ved
is correctly classified using the reference set created so far and add it to this
set only if it leads to an error. To make this algorithm more resistant to noise
one may introduce a "candidate reference" vector, that is included only on
the preliminary basis. Candidate reference vectors are then checked during
subsequent learning: if they contribute to correct classification they are kept,
but if their presence leads to errors they are removed.

Active selection of reference vectors may eliminate many training vectors
from the reference set. Further optimization of their positions should decrease
the training error. The reference vector R in the neighborhood of a training
vector X should be updated as follows:

950 W . DUCH

Here, rJ is the learning rate, slowly decreasing to zero during training, and
Kronecker 8 is 1 if the class C(X) = C(R) or 0 otherwise. Various rules for
moving centers R are used: moving only the nearest neighbor, moving all k
neighbors by the same amount, using distance-dependent ry , decreasing rJ during
training etc. (Laaksonen and Oja, 1996). One can also optimize a subset of
vectors, for example only those that are close to t he center of clusters.

Virtual Support Vectors (VSV) may be added to the reference set to improve
classification rates. The simplest approach is to interpolate between existing
training vectors and to add VSV between vectors of different classes that are
near to each other. In cases when data clusters belonging to different classes
are far from each other VSV help to shift decision borders between classes,
improving generalization. If the clusters mix with each other or are very close
VSV are not created at all because the vectors from different classes will be
closer than a minimum threshold value.

Reference vectors R that are far from the query vector X should obviously
have smaller contribution to the classification probability. Radial Basis Function
(RBF) neural networks (Bishop, 1995) using Gaussian or inverse multiquadratic
transfer functions are a particular example of the soft weighting minimal dis­
tance algorithms, where the number of prototypes included is not restricted,
but the weighting function provides an effective cutoff. The conical radial func­
tion is favorite among fuzzy logic practitioners: zero outside the radius r and
1- D(X, R)/r inside this radius. Classification probability is calculated by the
output node using the formula:

I:mEC; G(X;Rm,r)
p(C;IX; r) = I:m G(X; Rm, r) ;

G(X; R,r) =max (0,1- D(~, R)) (23)

Here G(X; R, r) is the weight estimat ing contribution of the reference vec­
tor R at some distance D(X, R). An almost constant weight value up to a
distance r is provided by a sigmoidal function a(D(X, R)- r), falling to zero
for larger distances (slope of the sigmoid may be used as an additional parameter
here).

One may also use variable r equal to the distance to the k-th neighbor and
the weighting function for the vectors inside this radius. If rk is the distance to
the k- th neighbor and r k ;::: r;, i = 1, ... , k - 1 then a conical weighting function

G(D) = 1- Dfo:rk, o: > 1 (24)

has values G(O) = 1 and G(rk) = 1- 1/o:. For large o: the cone is very broad
and all vectors receive the same attention; for o: approaching 1 the furthest
neighbor has weight approaching zero. Therefore, an SBM model with optimized
o: cannot be less accurate than the model that uses similarity to k prototypes

Similarity-based methods

Wettschereck et a!. (1997) propose the hyperbolic weighting scheme:

p(CIX; M) = _L_R~EO::::::k(-'---X-'-) o_(_C(_X_),:-:-C........,) 1=/--(D........,(X_ , R.,.....)_+_t:)
LREOk(X) 1/(D(X, R) + t:)

951

(25)

where Ok(X) is the neighborhood of X containing k reference vectors R and
t: is a small constant used to avoid dividing by zero.

2.6. Estimation of classification probability

Classification models require a function or a procedure to estimate p(C;IX; M),
probabilities of assigning vector X to class C;. If the estimations do not sum
to 1 they should be renormalized. Some methods may predict only the most
likely class, in effect assigning probability 1 to this class and 0 to all others. In
the k-NN method probabilities p(C;IX) = N;jk, where N;::; k is the number of
neighbors belonging to the class C;.

There is no guarantee that probabilities obtained from classifiers will give the
accuracy of results above the base rate (majority rate). Classification models
that are too complex frequently overfit the training data, especially if optimiza­
tion of model parameters is done on the training set only. A simple way to
correct these probabilities is to introduce an additional linear model. In the K ­
class problem the order of the classes is chosen in such a way that the majority
class has the highest label. Probabilities p(C;IX; M) for i = 1, ... , K - 1 are
rescaled by parameters "'i:

Pi(X) = "'iP(C;IX; M),
K-l

PK(X) = 1- L Pi(X), /1,; E [0, 1]
i=l

(26)

For "'i = 1 nothing is changed and original probabilities are used; for "'i = 0
all vectors are assigned to the majority class. Since this is a linear model it
is easily optimized in the least-mean square sense. For two classes an explicit
formula for the optimal Pl(X),pz(X) may be written.

2. 7. Cost function definition

Knowing the formula for classification probabilities a cost function E[T; M] may
be defined. It should include an estimation of the empirical risk of misclassifica­
tion R(C;, Ci), an estimation of the similarity (or dissimilarity) of the predicted
classes S (Ci, Cj), a kernel function K (·), scaling the influence of the error on
the total cost (for a given training example), and an appropriate regularization
term to avoid overfitting. The empirical risk matrix R(Ci, Ci) measures the
risk of assigning the class Ci when the true class is Ci. In most cases risk and

952 W . OUCH

conceptually they are quite different. A high risk may be assigned to misclas­
sification of two quite similar classes. In the simplest case 'R(Ci, Ci) = 8ii or
'R(Ci, Ci) = li- jl.

The simplest cost funct ions measure the number of classification errors,
reported as the error (or accuracy) achieved on some dataset. The winning
class Cm(X), where m = arg maxi p(CiiX; M), is compared with t he true class
C(X) and the number of errors counted:

E(T; M) = L (1- 8(Cm(X), C(X))). (27)

XET

If classes are ordered in some meaningful way errors may be quantified and
instead of the Kronecker delta the sum of the differences (Cm(X)- C(X))2 or
more generally of similarities S(Cm(X), C(X)),

E(T;M) = L S(Cm(X),C(X)) (28)
XET

is minimized over all parameters and procedures involved in determination of
C(X). For S(Ci, Ci) = 1- Dij the cost function (27) is obtained, but a domain
expert may provide specific similarity values.

Minimization of functions counting the number of classification errors is
difficult because these functions are discontinuous. A "soft" evaluation of the
cost

K

E(T;M) = L L:n(ci,C(X))S(p(CdX;M),Pi(X))) (29)
XET i=l

allows to use inexpensive gradient methods to optimize parameters and pro­
cedures defining the model M . The soft dissimilarity function S(p(CiiX; M),
Pi(X))) measures the difference between the predicted and the assumed prob­
ability Pi. Most often a quadratic function of the difference (p(ci IX; M) -
8(Ci, C(X)))2 is used. T he error function becomes then the standard mean
square error (MSE) function. Entropy-based and other cost functions are some­
times used as an alternative to MSE function (see Haykin, 1994). In general,
the minimum of the MSE does not correspond to the minimum of the classifi­
cation error. Only in the hard limit, when probabilities are zero or one, these
two minima are identical.

A regularization term penalizing high complexity of the classification model
may be added to the cost function. Regularization is quite effective in neu­
ral networks (Bishop, 1995), where it allows to enforce "smoothness" on the
mappings performed by a system based on a large number of homogenous pa­
rameters (weights). Regularization lowers the number of effective parameters
of the model and prevents overfitting of the data, thus improving the general-

Similarity-based methods 953

performance on the validation set, rather than directly on the training set, is a
form of regularization. Noise added in a controlled way to the data may reg­
ularize the model (Bishop, 1995). A bootstraping technique used in statistics
(Breiman, 1998) is also an effective regularization technique.

Kernel function plays a different role than dissimilarity or risk functions.
A kernel function K(D), for example a Gaussian function K(D) = e-D

2
/
2u

2
,

measures the influence of the reference vectors on the total error. D = D(X, R)
measures here the distance of the vector X to the nearest reference vector R or
to a set of all reference vectors Rref. In local regression based on the minimal
distance approaches (Atkenson et al., 1997) the error function is simply

(30)
m

where ym are the desired values for xm and F(Xm; M) are the values predicted
by the model M. If K(D) has a sharp high peak around D = 0 the function
F(X; M) will fit the values corresponding to the reference input vectors almost
exactly but will admit larger errors for other values. This may be regulated
by changing the dispersion a of the Gaussian kernel function. This is not the
same as the weighting function G(D) which is used to estimate the influence of
distance on contribution to classification probability. In classification problems
kernel function will determine the size of the neighborhood around the known
cases in which accurate classification is required.

2.8. Optimization and additional parameters/procedures

Optimization method that should be used to minimize the cost function E[T; M]
depends on the type of model used. To improve generalization a validation set V
may be used, composed of vectors that are not in the training set and not in the
test set. To avoid overfitting of the model to the training data the E(V; M) cost
function should be minimized instead of the E(T; M). The reference vectors
for the model M are selected using the training set T only, but features are
selected and parameters are optimized to minimize E(V; M). For example, the
leave-one-out error is minimized when the sum runs over all training examples
X E T except for one vector XP. The model M does not contain this XP vector
in the reference set while p(Ci IXP) is computed. The averaged error for all
p = 1, ... , n should be minimized - this is quite simple in the k-NN method,
where the only parameter optimized (k) has integer values.

For real-valued parameters multistart gradient methods seem to be the most
effective in optimization, if formulas for gradients of the error function can be
derived. Some models may be efficiently optimized by organizing gradient com­
putations in a neural network-like style. Real-valued parameters are provided
by transformation of features d(Xj), similarity measures of features .0.(-) and

954 W.DUCH

estimating contribution of the reference vector R to the classification probability
G(D) = G(D(X, R)).

In some applications the training vectors may be mislabeled. This effect
may be included by assigning probabilities of classes p;(R), rather than class
labels (equivalent to binary probabilities), to the training vectors. Probabilites
assigned to the reference vectors allow for soft-weighting of the class labels.
An interesting possibility is to treat these probabilities as adaptive parameters.
This should allow the classifier to reach base rate errors in regions where a few
outliers exist. A simple method to adapt these probabilities is to start from
the initial labels, i.e. class probability p(C;IR) = 8(C;, C(R)) and modify it,
so as to account for the neighborhood, adding just one parameter to preserve
normalization:

(31)

i.e. a priori probabilities are corrected by the data. The 1 parameter should now
be optimized. More complex models with several parameters may of course be
considered. Optimization of class probabilities is a form of data regularization,
leading to models that are more resistant to noise in the data.

2.9. Ensemble of models

An adaptive system may include several models M1 and an interpolation pro­
cedure to select between different models or average results of a committee of
models. Such averaging with boosting procedures for selection of training vec­
tors leads to creation of stable and accurate classifiers (Breiman, 1998). Simple
averaging, or linear combination of several models is most frequently used:

N

P(C;IX;M) = LW1 p(C;IX;M1). (32)
1=1

Least square minimization (LSM) procedure is used to determine W1 coeffi­
cients. When creating ensembles one should use all the information available.
Since we know for which training vectors R m each model makes an error it
seems reasonable to use this information in making an ensemble. Coefficients of
linear combination should depend on the distance between X and those regions
around reference vectors R[of the feature space where model M1 works poorly,
therefore:

N

P(C;IX;M) = LLW1D(X, R [)p(C;IX;M1) (33)
1=1 k

should be a good choice. Identical LMS optimization is used as in the previous
case. Probabilities are obtained after renormalization:

(34)

Similarity-based methods 955

Instead of a single model that tries to provide one distance function in the
whole input space, several local distance functions may be defined around the
main prototypes obtained using some initial clusterization method. This cor­
responds to a local coordinate systems that may have quite different optimal
scaling factors and orientations.

Various procedures for combining results of different models may be defined,
the simplest based on the selection of the submodel with the minimum distance
from the vector given for classification, and the more sophisticated based on the
estimation of confidence of each submodel in a given region of the input space.
Using more than one model provides more adaptive parameters and should
improve the results. New submodels may also be introduced in an incremental
fashion, adding local systems in the regions of space where classification is less
accurate.

3. Examples of SBM models

Many pattern recognition, machine learning and neural network models may
be accommodated in the SBM framework. One way to use this framework
is to start with the simplest model and develop it in the most promising di­
rection by adding new optimization parameters and procedures. For example,
starting from the simplest k-nearest neighbor method with Euclidean distance
measure on standardized data one may consider the following improvements:
optimization of the number of neighbors, optimization of the distance function,
sophisticated distance functions (such as in Fig. 1), soft weighting, selection of
features, selection and optimization of reference vectors, using several models
and many other options.

Each step towards more complex model decreases the bias of the classifier,
but may increase its variance (Breiman, 1998), therefore after each step the
model should be validated and only if the greater complexity is justified by
higher accuracy more complex models should be accepted, otherwise a different
type of optimization should be used.

A few examples of known and novel methods belonging to the SBM frame­
work are given below.

3.1. k-NN mo del

In the k-NN model p(C;I X ; M) is parameterized by p(CiiX ; k, D(·), {X }}), i.e.
the whole training dataset is used as the reference set, k nearest prototypes
are included with the same weight, and a typical distance function, such as the
Euclidean or the Manhattan distance, is used. Probabilities are calculated as
the ratio of the number of neighboring vectors belonging to the class ci to the
number of all neighbors included, p(CiiX; M) = N;jk, and the most probable

956 W . DUCH

The restriction to k neighbors is realized by a hard-sphere metric distance
function D(X, xm) with radius such that exactly k neighboring vectors xm fall
inside it. The type of the distance function D(·) and k are usually the only
parameters optimized in the k-NN model. For k = 1 there is no error on the
training set, but already for k = 2 the training vector near t he class border
may have the nearest vectors from two different classes. Therefore the error on
the training set, equal to zero for k = 1, grows for k > 1 but may decrease for
larger values of k. The leave-one-out test is recommended to optimize k using
the training set data only. This type of test is particularly easy to perform in
the k-NN method since there is no learning phase, unless the metric function
is parameterized. For two-class problems odd k values are recommended to
avoid ties that arise when the same number of neighbors from different classes
is found. For the K-class problem k = 1, K + 1, 2K + 1, . . . avoids the ties
but is a severe restriction on the choice of k. Ties may be resolved either by:
a) rejecting cases in which tie occur; b) adding one or more extra neighboring
vectors until the tie is broken; c) decreasing the number of neighboring vectors;
d) randomly breaking the tie; e) selecting class with the largest a priori prob­
ability; f) leaving probabilities instead of yes-no decisions; g) using Eq. (26) to
correct the computed probabilities.

Details of the k-NN procedure are rarely given in papers on applications and
it is not always clear how ties are broken. In our experience the last two options
are the most appropriate. Adding more vectors to break the tie seems to be
reasonable, although in real applications differences in classification accuracy
are sometimes negligible since ties do not occur if real-valued features are used.

The simplest error function used in optimization of k and the selection of
the type of similarity function D(·) is:

K

E(X; k, D)= 2::(1- o(C(XP), C1(XP))
p=l

C1(XP)_max p(CjiXP; M) (35)
J

where C(XP) is the true class of the vector XP while Cj(XP) corresponds to the
best k-NN recommendation. This funct ion should be minimized in respect to all
adaptive parameters of the model M (here only k and the type of D function).
In problems where a natural similarity of classes is defined or a risk function
has been given cost functions (29) and (28) should be used.

3.2. r-NN models

Instead of enforcing exactly k neighbors the radius r may be used as an adaptive
parameter. The number of classification errors, or the probability of classifica­
tion p(CiiX; r) = Nd L:1 N1, is t hen optimized using the leave-one-out method

Similarity-based methods 957

network realization of this algorithm. r-NN may reject some vectors X if no
reference vectors fall into the r radius of X or if equal probability of classi­
fication for several classes is obtained, but one could also consider a method
with variable r (increased until a unique classification is done) to avoid such
problems.

Introduction of variable radii ri for each reference vector instead of one uni­
versal radius in the input space improves the method by further increasing the
number of adaptive parameters significantly. Development along this line leads
to the Restricted Coulomb Energy (RCE) classifier introduced by Reilly, Cooper
and Elbaum (1982), which may be treated as the hard limit approximation of
the Gaussian-based RBF network. If no neighbors are found around the train­
ing vector X, the new spheres (reference vectors) are added with largest radius
such that the sphere does not overlap with the spheres of other classes. If the
new training vector falls into the range of a sphere of a wrong class, the radius
of this sphere is shrinked to leave the vector outside of the sphere. Positions of
the spheres are not optimized in the RCE algorithm - this would lead in the
direction of LVQ algorithms (Laaksonen and Oja, 1996) - but voting methods
for the committees of classifiers were used with success (Wasserman, 1993).

The number of radiuses ri may be reduced by using only a few independent
values in selected input space areas. One could also optimize components of
one radius (i .e. not just a total distance but separate distances for individual
input features), but this would give the same result as optimization of the metric
function described below. To reduce the number of parameters, variable radiuses
should be attached only to the centers of clusters. To assure smooth transition
between different regions of the input space interpolation of the r values from
the nearest cluster centers is recommended.

Although r-NN model is quite simple it does not seem to be used and little
is known about it. Our preliminary test showed that on same datasets it gives
better results than k-NN. A combination of these two nearest neighbor methods
could also be considered using Eq. (32) or (33).

3.3. Soft weighting k-NN and r-NN methods

A natural generalization of the r-NN method is obtained by introducing the
G(D) weighting function instead of sharply cutting off the neighbors taken into
account at the specified radius r. The Gaussian classifier (see Wasserman, 1993,
Krishnaiah and Kana!, 1982) also belongs to this category. In the simplest ver­
sion of the RBF algorithm Gaussian functions are used and only one parameter
- dispersion - is optimized (Bishop, 1995). Independent optimization of all N
components of the dispersion vector has the same effect as optimization of the
scaling factors s1 in the soft-weighted NN-r method.

Other methods of weighting discussed in the previous section may be tried
with the k-NN or r -NN method. The effect of weighting is more pronounced

958 W. OUCH

and a is optimized in the G(D) = 1- Dfark function, the results should be
close to the r-NN method, but if both k and a are optimized the results should
be better.

3.4. RBF, FSM, LVQ and fuzzy systems

In RBF networks Euclidean distance functions D(X,Ri) = IIX- Rill are as­
sumed, and radial, for example Gaussian G(D) = exp(-D2

), weighting func­
tions are used. Essentially, RBF is a minimal distance soft weighted method
with no restrictions on the number of neighbors - reference vectors Ri that are
near influence the probabilities of classification more than those that are far.
The SBM framework suggests that there is nothing special about this choice of
distance function and the weighting function (see the conical radial weighting
function (23) and other possibilities of weighting).

Optimization of the positions of reference vectors R m leads to the Learning
Vector Quantization type of methods (LVQ, Kohonen, 1995) in which the train­
ing set is used to define the initial prototypes and the minimal distance to one
of the prototypes is used to assign the classes. From SBM perspective it is clear
that LVQ may be combined with various weighting schemes and the probability
of classification may be calculated using more than a single neighbor.

The Feature Space Mapping (FSM) neurofuzzy model is based on separable
(rather than radial) weighting functions (Duch and Diercksen, 1995). FSM may
use many localized transfer functions, including Gaussian, conical, trapezoidal
or rectangular functions. These transfer funct ions may again be understood as
the weighting functions for prototypes localized in the neighborhood of a query
vector X. Thus, FSM may be regarded either as a specific realization of the
SBM scheme or as an adaptive fuzzy logic rule-based system. A whole class of
the fuzzy if-then rule systems is equivalent to the soft-weighted k-NN (Kuncheva
and Bezdek, 1997, 1999).

An important problem with localized description of the data by RBF and
similar methods concerns the representation of oblique probability distribu­
tions of the classes. A solution creating oblique probability distributions in
N-dimensional space using only N parameters has been described quite recently
(Duch and Jankowski, 1999). Oblique decision borders in SBM are obtained by
rotation of the local coordinate system in which distances are computed. It is
sufficient to use a rotation matrix with scaling factors ~i = Si on the diagonal
and rotation parameters ~i+l = f3i as the only off-diagonal element.

Relation of the SBM framework to other neural models has been discussed in
details in Duch et al. (2000a). Multi-layered perceptrons, although related more
to discrimination rather than clusterization methods, may also be regarded from
SBM perspective if the input vectors are normalized - this may always be done
in an extended feature space, adding one additional feature. Weights in such
networks play the role of reference vectors and sigmoidal transfer functions play

Similarity-based methods

in the form:

o-(W. X)= o-(~(IIWII 2 + II X II 2 -IIW - X ll2))

= o-(do- D(W, X))

959

(36)

where D(W, X) is proportional to the square of Euclidean distance. Using
o-(do - D(W, X)) activation functions with different distance functions leads
to new type of neural networks (D-MLP networks) with additional non-linear
parameters in the distance functions.

3.5. Neural k-NN generalizations

Neural realization of the 1-NN rule for binary patterns is ensured by the Ham­
ming network (Lippmann, 1987, Floreen, 1991). An alternative approach is to
build a network with hidden nodes realizing the hard sphere transfer functions,
i.e. 8(r- d(X, R)), where e is the Heaviside threshold function, r is the radius
of the sphere and d(X, R) is the distance between the vector X and the refer­
ence (training) vector R. The output units for each class Ci sum the incoming
signals from all active hidden nodes belonging to that class. The number Ni
of units assigned to a class Ci in the radius r from the new vector X allows
to compute the probability of classification p(CiiX) = Ni/ "£1 N1. From the
geometrical point of view in the input space a hard sphere is assigned to each
reference vector, labeled by the name of its class, and the output unit counts
how many spheres of a given class reach the point X . Neural realization of
the k-NN method finds r for which the sum of all network outputs "£1 N1 = k.
Formally, this can be done by introducing recurrent connections and stabilizing
dynamics when the "superoutput" node achieves fixed value but in software
realizations it is much simpler to select the node with maximum activity.

A network generalization of the k-NN method provides more adaptive pa­
rameters and therefore should give better results. The network should use hid­
den nodes computing distances D(X - Rm), where Rm are reference (train­
ing) vectors. The k nodes with the smallest distances output their class label
h1(X; R1) = Ci and the remaining nodes output hm(X; Rm) = 0. The classes
are numbered i = 1, ... , K . The output layer computes probabilities using the
formula:

O(CdX;M) = LWil · h1(X)

O(CiiX;M)
p(ci IX; M) = "£

1
o(C1IX; M)

(37)

The weights Wil between the output node computing probabilities for class Ci
are initialized to Wil = S(Ci, Cl)/Cl, where the matrix S(-) estimates similarity

960 W. OUCH

delta. Thus, each vector that belongs to the k nearest ones or that falls into the
r radius of X and is of the class Ct contributes to the probability of the C; class
a value S(C;, Ct). The structure of the network is shown in Fig. 2. For the cost
function that should be optimized one may take:

E(T; w, k) = L L R.(C;, C(X))(p(C; IX ; M)- 8(C;, C(X)))2 (38)
X i

where the model M includes k and output weights as parameters and S(C;, Cj)
is the output-class similarity function (matrix) . If we want to minimize the num­
ber of classification errors output probabilities should be changed into binary
values by the winner-takes-all procedure.

input

x1

hidden
layer output

Figure 2. Network generalization of the k-NN method. The hidden nodes com­
pute distances to reference vectors and return k values of class labels associated
with the nodes, while the output nodes compute probabilities.

The output weights Wit are treated as adaptive parameters. Introduction of
soft weighting G(D(·)) allows to use gradient optimization methods. For many
datasets this simple network should outperform many classification models. The
results should be at least as good as the results of k-NN, which came out to be
the best algorithm for image classification and a few other applications in the
Statlog study (Michie et al., 1994).

A single neuron provides discriminating hyperplane that may be replaced by
one reference vector. Position of this reference vector should be adapted to the
data. Using different Minkowski distance functions dramatically changes the
shape of decision borders. Using one prototype R i per class (i .e. one hidden
node) the class membership is decided by the discriminant function:

Similarity-based methods 961

where () is a threshold. The three adaptive parameters, W1, W2, B, and the
positions of two prototype vectors provide quite flexible decision borders in
the two class problem (Fig. 3 shows an example). If more reference vectors
are required the output node computing the discriminant function sums over
prototypes for each class:

(40)

X

• 0
o~--~--~--~--~--~

0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

X

0.5

• 0 • 0
0o~--o~.2-L~o.4----o.~s---o~.8--~ 0.2 0.4 0.6 0.8

Figure 3. Decision borders for various exponents of Minkowski distance function
in the nearest neighbor method for a = 0.1, 0.3, 0.7, 1, 2, 8. Weight of the first
prototype is three times larger than other weights.

Scaling of the whole sum, instead of scaling the influences of individual
reference vectors, is a simple way to reduce the number of adaptive parameters
used by the system. One option worth investigation is to use a simple gradient
optimization for weights and thresholds, and the search based techniques for
non-linear scaling parameters.

4. Discussion and related work

An overview of the similarity-based framework, with discussion of various pro-

962 W. OUCH

very rich and has deep connections with many well known classification models
developed by pattern recognition and neural network communities. Although
this paper focused on classification methods, heteroassociation, pattern com­
pletion, and approximation problems may also be treated by similar methods.
Numerous improvements of various aspects of t he SBM framework have been
discussed, including: a new method to convert symbolic features into numerical
features, a method to find the missing data, novel functions for evaluation of
similarity, methods of reference vector selection, method of improving the base
rate, novel weighting functions , feature selection, combination of several mod­
els using a priori knowledge, connection with neural networks and neural-like
realizations of SBM.

The major contribution of this paper is the change of focus from a single
model to the search in space of all possible models belonging to a common
framework. Starting from the simplest models new procedures and parameters
are added at each stage, creating more complex models and selecting those that
give the highest improvement of accuracy. In effect a best-first search (or a beam
search) is performed in the space of all possible models. The final model selected
may involve a combination of parameterizations and procedures corresponding
to known classification model or to a new method. Although we have no space
here to present experimental results it may be worthwhile to mention that pre­
liminary implementation of the ideas presented here allowed us (Grudzinski and
Duch, in preparation) to obtain the best results in classification of more than
half of the 20 datasets used in the Statlog project (Michie et al., 1994) and we
are quite confident that results that are statistically indistinguishable from the
best ones may be obtained for the remaining datasets using SBM methods.

The work presented here is related to many developments in computational
intelligence, trying to integrate numerous efforts in different branches of this
field. A survey of the nearest neighbor methods has been published (Dasarathy,
1990) but many aspects of SBM are not discussed there. Wettschereck and
Dietterich (1997) have tested several methods of variable k selection in differ­
ent input regions (multi-model approach in our terminology), using the k-NN
method. Surprisingly, the results for real datasets were sometimes worse than
for k-NN with a single k, except in cases where two datasets were mixed to­
gether, each requiring quite different k for good classification. Perhaps they
have approached the problem in a wrong way since a proper combination of
local models should always give a better result (or at least the same result) as
a single best model does.

Lowe (1995) introduced the Variable Kernel Classifier based on Variable­
kernel Similarity Metric (VSM). In fact, his approach is a version of the RBF
method. It is based on optimization of distance scaling factors for each feature,
equivalent to optimization of Gaussian dispersions. His formula for probability is:

(All

Similarity-based methods 963

where p;(R m) is the probability that the reference vector R m belongs to class Ci
and G(·) is the weighting function; this may be taken as 0 or 1, according to
known classes, or estimated for a given k using the leave-one-out procedure.
Optimization is done by assigning k neighbors to each reference vector. After
gradient-based optimization k-neighbors are selected again and optimization
repeated, if necessary. Lowe reports that deleting reference vectors from regions
where classification is unambiguous (if all neighbors assign the reference vector
proper class with p > 0.6) actually improved generalization slightly. Tests on
the noisy XOR problem with 4 inputs showed the ability of VSM method to
select relevant inputs and assign them larger weights.

Yang et a!. (1998) introduced a constructive neural method called DistAl
based on inter-pattern distances. A single hidden layer of hard-sphere weight­
ing functions is constructed, each covering as many vectors of a single class as
possible. This algorithm is similar to the network realization of the Restricted
Coulomb Energy algorithm (Wasserman, 1993) but the neural units realize the
difference between two concentric spheres of different radiuses rather than a
single sphere (formally two radiuses, called "thresholds", are defined for each
neural unit). The algorithm also checks for a single attribute that separates the
largest number of vectors from a single class. Distance matrix between all vec­
tors is computed once and sorted in the ascending order; each row i corresponds
to distances from the vector X(i). Spherical functions realized by neurons of the
DistAl network are equivalent to the reference vectors selected from the training
set by checking each vector (row) and counting the number of training vectors
belonging to a single class (it may be different than the class of the selected
vector), i.e. checking in a row how many consecutive entries are from a single
class. The vector for which maximum has been found defines the center of the
new function and the minimal and the maximal radiuses are defined using the
closest and the furthest vector from this center. All patterns correctly covered
by the new function are removed from the training set and the next hidden
neuron is defined. Since new functions may overlap with the old ones each new
neuron has weights that are by a factor of two smaller than the previous one.
The worst case complexity of this algorithm is of the order O(N), where N is
the number of patterns. Although Yang et a!. (1998) report very good results
for many datasets the decision borders of such classifier are far from natural.

From these papers and from the preliminary numerical experiments with
SBM methods a few conclusions may be drawn. Scaling of individual features
is very important and can bring substantial gains in accuracy as well as reduce
the number of features. Selection of a fixed number of neighbors works usually
better than optimization of one radius in which the number of neighbors is
counted. If the optimal number of neighbors is small, weighting procedures
do not contribute significantly to accuracy. Much better results are probably
achieved if local weighting functions are introduced, similarly as in the RBF,
where adaptation of individual dispersions is of great importance, or if the a-

964 W. OUCH

Hastie and Tibshirani (1996) write about adaptive k-NN classification from
the linear discriminant point of view, advocating the use of several local metrics
in different areas of the input space, instead of just one. Friedman (1994)
proposed an interesting way of adapting the metric based on a tree-structure
interactive partitioning of the data. Laaksonen and Oja (1996) proposed to
improve the k-NN reference vectors using LVQ techniques. Atkenson, Moor and
Schaal (1997) discuss locally weighted regression techniques, minimal distance
methods with various metric and kernel functions applied to approximation
problems.

All these and many more proposals may be accommodated in the general
framework presented here. Identification of the best combination of procedures
and adaptive parameters should allow for improvement of results achieved by
the nearest neighbor as well as neural classifiers. Many possibilities of creating
fuzzy k-NN models remain to be explored (see Bezdek et al. , 1986). Performance
of various methods described here (as well as any other classification methods)
depends on the nature of the data given for classification and remains a subject
of further empirical study. We have already developed and tested many variants
of SBM methods described here and we shall deal with the empirical evaluation
of these models separately (Grudzinski and Duch, in preparation). Our main
goal is to develop software that will automatically construct a series of mod­
els of growing complexity and growing accuracy, combini g various procedures
described in this paper.

Acknowledgments: Support by the Polish Commit tee for Scientific Re­
search, grant no. 8 TllC 006 19, is gratefully acknowledged.

References

AHA, D.W. (1998) Feature weighting for lazy learning algorithms. In: Fea­
ture Extraction, Construction and Selection: A Data Mining Perspective,
Liu, H. and Motoda, H., eds., Kluwer, Norwell, MA.

AHA, D., KIBLER, D. and ALBERT, M. (1991) Instance-based learning algo­
rithms. Machine Learning, 6, 37-66.

ATKENSON, C.G., MOOR, A.W. and SCHAAL, S. (1997) Locally weighted
learning. Artificial Intelligence Review, 11, 75-113.

BEZDEK J.C., CHUAH, S.K. and LEEP, D. (1986) Generalized k-nearest neigh­
bor rule. Fuzzy Sets and Systems, 18, 237- 256.

BISHOP, C.M. (1995) Neural Networks for Pattern Recognition. Oxford Univer­
sity Press.

BREIMAN, L. (1998) Bias-Variance, regularizat ion, instability and stabilization.
In: Neural Networks and Machine Learning, Bishop, C., ed., Springer.

CHIU, D.K.Y. and KAVANAUGH, F.E. (1997) The ck-nearest neighbor distance
network: a network using class boundary feature distances. ICONIP'97,

Similarity-based methods 965

DASARATHY, B.V., ed. (1990) Nearest neighbor norms: NN Pattern Classifica­
tion Techniques. IEEE Computer Society Press, Los Alamitos, California.

DUCH, W . (1998) A framework for similarity-based classification methods. In­
telligent Information Systems VII, Malbork, Poland, pp. 288-291.

DUCH, W ., ADAMCZAK, R. and DIERCKSEN, G.H.F. (2000) Neural Networks
and Similarity-Based Methods. Applied Mathematics and Computer Sci­
ence, 10, 101- 120.

DUCH, W ., ADAMCZAK, R. and GRJ\BCZEWSKI, K. (1997) Extraction of crisp
logical rules using constrained backpropagation networks. Proc. of In­
ternational Joint Conference on Neural Networks (IJCNN'97) , Houston,
Texas, pp. 2384- 2389.

DucH, W ., ADAMCZAK, R., GRJ\BCZEWSKI, K., ZAL, G. and HAYASHI, Y.
(1999) Fuzzy and crisp logical rule extraction methods in application
to medical data. In: Fuzzy systems in Medicine, Szczepaniak, P.S.,
Lisboa, P.J.G. and Kacprzyk, J., eds., Physica-Verlag, Springer, 2000,
pp. 593-616.

DUCH, W. and DIERCKSEN, G.H.F. (1995) Feature Space Mapping as a uni­
versal adaptive system. Computer Physics Communication, 87, 341-371.

DucH, W. and GRUDZINSKI, K. (1998) A framework for similarity-based meth­
ods. 2nd Polish Conference on Theory and Applications of Artificial In­
telligence, L6di, pp. 33- 60.

DucH, W. and GRUDZINSKI, K . (1998a) A framework for similarity-based
methods. 2nd Polish Conference on Theory and Applications of Artificial
Intelligence , L6di, pp. 33-60;

DucH, W . and GRUDZINSKI, K. (1999) The weighted k-NN method with se­
lection of features and its neural realization. 4th Conference on Neural
Networks and Their Applications, Zakopane, pp. 191- 196.

DucH , W . and GRUDZINSKI, K. (1999a) Search and global minimization in
similarity-based methods. International Joint Conference on Neural Net­
works (IJCNN'1999), Washington, paper no. 742.

DucH, W . and GRUDZINSKI, K. (1999b) Weighting and selection of features in
Similarity-Based Methods. Intelligent Information Systems VIII, Ustron,
Poland, pp. 32-36.

DucH. W ., GRUDZINSKI, K. and DIERCKSEN, G.H.F. (1998) Neural min­
imal distance methods. World Congress of Computational Intelligence,
May 1998, Anchorage, Alaska, IJCNN'98 Proceedings, pp. 1299- 1304.

DucH, W . and JANKOWSKI, N. (1999) New neural transfer functions. Neural
Computing Surveys, 2, 639-658.

FLOREEN, P. (1991) The convergence of Hamming memory networks. IEEE
Transactions Neural Networks 2, 449-457. ··

FRIEDMAN, J.H. (1994) Flexible metric nearest neighbor classification. Techni-

966 W. OUCH

FUCHS, M . (1996) Optimized nearest-neighbor classifiers using generated in­
stances. LSA-96-02E Technical Report, Learning Systems & Applications
Group, University of Kaiserslautern, Germany.

GRJ\BCZEWSKI, K . and D CH, W. (1999) A general purpose separability cri­
terion for classification systems. 4th Conf. on N eural N etworks and Their
Applications, Zakopane, pp. 203- 208.

GRUDZINSKI , K. and DucH, W . (2000) SBL-PM: A Sim le Algorithm for Se­
lection of Reference Instances for Similarity-Based Methods, Intelligent
Information Systems IIS'2000 , Physica-Verlag (Springer) , pp. 99-108.

HASTIE, T. and TIBSHIRANI, R. (1996) Discriminant adaptive nearest neighbor
classification. IEEE PAM!, 18, 607- 616.

HAYKIN , S. (1994) Neural Networks. A Comprehensive Foundation. MacMillian,
New York.

KoHONEN, T. (1995) Self-organizing maps. Springer-Verlag, Berlin.
KRISHNAIAH, P.R. and KANAL, L.N., eds. (1982) Handbook of statistics 2:

classification, pattern recognition and reduction of dim ensionality. North­
Holland, Amsterdam.

KUNCHEVA, L.I. and BEZDEK, J .C. (1997) A fuzzy generalized nearest proto­
type classifier. In: Proc. 7th IFSA World Congress, Prague, Czech Repub­
lic, vol. III , pp. 217- 222.

KUNCHEVA, L.I. and BEZDEK, J.C. (1999) P resupervised and Postsupervised
Prototype Classifier Design. IEEE Transactions on Neural Networks , 10,
1142- 1152.

LAAKSONEN, J. and OJA, E. (1996) Classification with Learning k-Nearest
Neighbors. In: Proc. of ICNN'96, WASHINGTON, D.C., pp. 1480- 1483.

LIPPMANN, R.P. (1987) An int roduction to computing with neural nets. IEEE
Magazine on Acoustics , Signal and Speech Processing, 4, 4-22.

LOWE, D .G . (1995) Similarity metric learning for variable-kernel classifier. Neu­
ral Computation, 7, 72-85.

MERTZ, C .J . and MURPHY , P .M. (1999) UCI repository,
http:/ jwww.ics.uci.edu/pubfmachine-learning-databases.

MICHALSKI, R. (1999) AQ-PM: A System for Partial Memory Learning.
Intelligent Information Systems VII, Ustron, Poland, 14- 18 June 1999,
pp. 70- 79.

MICHIE, D ., SPIEGELHALTER, D.J. and TAYLOR, C .C . (1994) Machine learn­
ing, neural and statistical classification. Elis Horwood, London.

MITCHELL, T.M. (1997) Machine Learning. McGraw-Hill.
REILLY, D.L., COOPER, L.N. and ELBAUM , C . (1982) A neural model for

category learning. Biological Cybernetics, 45, 35- 41.
RIPLEY, B. (1996) Pattern Recognition and Neural Networks. Cambridge Uni­

versity Press.
ROHWER, R. and MORCINIEC, M. (1996) A Theoretical and Experimental Ac­

count of n-tuple Classifier Performance. Neural Computation , 8, 657-670.
RUBIN, D.B . (1996) Multiple imputation after 18+ years. J. of the American

Similarity-based methods 967

ScHOLKOPF, B. , BuRGES, C. and SMOLA, A. (1998) Advances in Kernel Meth­
ods: Support Vector Machines, MIT Press, Cambridge, MA.

SILVERMAN, B.W. (1986) Density estimation for statistics and data analysis.
Chapman and Hall, London.

SIMARD, P ., LECUN, Y. and DENKER, J. (1993) Efficient pattern recognition
using a new transformation distance. Advances in Ne·ural Information Pro­
cessing Systems 5 (NIPS'S), San Mateo, CA, pp. 50- 58.

STANFILL, C. and WALTZ, D. (1986) Toward memory-based reasoning. Com­
munications of ACM, 29, 1213- 1228.

WALTZ, D .L. (1995) Memory-based reasoning. In: The Handbook of Brain The­
ory and Neural Networks, Arbib, M.A., ed., MIT Press, pp. 568- 570.

WASSERMAN, P.D. (1993) Advanced methods in neural networks. Van Nostrand
Reinhold .

WETTSCHERECK, D. and AHA, D.W. (1995) Weighting Features. In: 1st Int.
conf. on Case-based Reasoning (ICCBR-95), Lisbon, Portugal, Springer­
Verlag.

WETTSCHERECK, D. , AHA, D.W. and MOHRI, T. (1997) A Review and Empir­
ical Evaluation of Feature Weighting Methods for a Class of Lazy Learning
Algorithms. Artificial Intelligence Review, 11, 273-314.

WETTSCHERECK, D. and DIETTERICH. T.G. (1997a) Locally adaptive near­
est neighbor algorithms. Advances in Neural Information Processing Sys­
tems 6 (NIPS'6), San Mateo, CA, pp. 184-191.

WILSON, D.R. and MARTINEZ, T.R. (1997) Improved heterogeneous distance
functions. Journal of Artificial Intelligence Research, 6, 1- 34.

YANG, J. PAREKH, R. and HONAVAR, V. (1998) DistAl: an inter-pattern
distance-based constructive learning algorithm. World Congress on Com­
putational Intelligence, Anchorage, Alaska, pp. 2208- 2213.

