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Abstract: Similarity-based methods (SBM) are a generaliza
tion of the minimal distance (MD) methods which form a basis of 
several machine learning and pattern recognition methods. Inves
tigation of similarity leads to a fruitful framework in which many 
classification, approximation and association methods are accom
modated. Probability p( CjX ; M) of assigning class C to a vector X, 
given a classification model M, depends on adaptive parameters and 
procedures used in construction of the model. Systematic overview 
of choices available for model building is presented and numerous 
improvements suggested. Similarity-Based Methods have natural 
neural-network type realizations. Such neural network models as 
the Radial Basis Functions (RBF) and the Multilayer Perceptrons 
(MLPs) are included in this framework as special cases. SBM may 
also include several different submodels and a procedure to combine 
their results. Many new versions of similarity-based methods are 
derived from this framework. A search in the space of all meth
ods belonging to the SBM framework finds a particular combination 
of parameterizations and procedures that is most appropriate for a 
given data. No single classification method can beat this approach. 
Preliminary implementation of SBM elements tested on a real-world 
datasets gave very good results. 

Keywords: similarity-based methods, kNN, optimization, fea
ture selection, classification, approximation, associative memory. 

1. Introduction 

Recently, a general framework for similarity-based methods has been introduced 
(Duch, 1998). This framework is extended here, leading to new versions of 
similarity-based methods, including neural-like realizations. In pattern recogni-
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of similarity-based methods, in statistics many clusterization methods belong to 
this group, in artificial intelligence the instance-based reasoning, memory-based 
reasoning or case-based reasoning methods (Mitchell, 1997) evaluate similar
ity to a set of prototype objects, and in neural networks many models are in 
fact variants of SBM. As a first step towards a general computational intel
ligence theory, integrating many learning methods withi a single framework, 
various procedures and choices involved in creating similarity-based models are 
described here. These models operate on the same principle: given a set of ob
jects create from them a set of reference objects {R} and introduce a similarity 
measure allowing to relate new query object X to the reference ones. 

Four basic problems that such models may solve are: assign X to predeter
mined specific classes, map X to some numerical values, complete the missing 
features of X, or create clusters that are in some respect homogenous. The 
first of these, supervised classification, has perhaps the widest applications, and 
therefore the outline of the SBM framework is presented from this perspective. 
Mapping problems - approximation and extrapolation -may be treated as clas
sification with an infinite number of classes. Having selected a set of the most 
similar reference vectors to a given vector X a number of interpolation proce
dures may be applied to synthesize an approximate mapping. The same is true 
in the third case, completion of missing values. Known elements of the object X 
are used to find similar reference vectors and the missing parts are completed 
using approximation or classification procedures. SBM may thus serve as a basis 
for associative memories. Finally, clusterization or unsupervised classification 
problems require evaluation of similarity and thus also belong to the SBM. All 
of these methods may be useful in control problems. 

A review of many approaches to classification and comparison of performance 
of 20 methods on 20 real world datasets has been done within the Statlog Eu
ropean Community project (Michie et al., 1994). More recently, the accuracy 
of 24 neural-based, pattern recognition and statistical classification systems has 
been compared on 11 large datasets by Rhower and Morciniec (1996). No con
sistent trends have been observed in the results of these large-scale studies. For 
each classifier one may find a real-world dataset, for which the results will be 
excellent, and another one for which the results will be quite bad. Therefore, in 
real world applications a good strategy is to find the best classifier that works for 
given data. Frequently, simple methods, such as the nearest neighbor methods 
or n-tuple methods (Rhower and Morciniec, 1996), are among the best. When 
selecting from the simplest classification models one sho ld add different types 
of optimization parameters and procedures developing the model in the most 
promising direction in the space of all possible models belonging to the SBM 
framework. 

Some of the best classification algorithms applicable to pattern recognition 
problems are based on the k-nearest neighbor (k-NN) rule (Krishnaiah and 
Kanal, 1982). Each training data vector is labeled by the class it belongs to 
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nearest to the unknown (query) vector X are found, and the class of vector X 
is determined by a 'majority rule'. The probability of assigning a vector X 
to a class C;, i = 1, ... , K is p(C;IX; k) = N;jk, where N; is the number of 
nearest vectors belonging to class C;, "L:J< N; = k. If k = 1 a single nearest 
neighbor determines the class of an unknown vector, i.e. p(C;IX ) = 0 or 1. 
The asymptotic error rate of the k-NN classifier in the limit of large k and 
large number of reference vectors becomes equal to the optimal Bayesian values 
(Krishnaiah and Kana!, 1982). In real situations, the number of reference vectors 
is limited and small values of k may work better, therefore k should be optimized 
for each dataset. 

Because the k-NN method is so simple it is frequently used as a standard 
reference for other classificators (surprisingly, very few computer programs for 
k-NN are around). Computational complexity of the actual classification is 
high, demanding for n reference vectors calculation of ,...., n2 /2 distances and 
finding k smallest distances among them. Although Laaksonen and Oja (1996) 
claim that "For realistic pattern space dimensions, it is hard to find any varia
tion of the rule that would be significantly lighter than the brute force method" 
various hierarchical schemes of partitioning the data space or hierarchical clus
terization are quite effective in reducing the complexity of search from O(n2 ) 

to O(nlogn). Even without any speedup of computations the datasets with 
several thousand of training patterns do not present any problems on modern 
personal computers. The search for the nearest neighbors is easily panitlelizable 
and training time (selection of optimal k) is relatively short. Nearest neighbor 
methods are especially suitable for complex applications, where large training 
datasets are available. They are also used in the case-based expert systems as 
an alternative to the rule-based systems (see Waltz, 1995, for more than 200,000 
reference patterns and millions of vectors for classification) . 

Only one neural model proposed so far is explicitly based on the nearest 
neighbor rule: the Hamming network (Lippmann, 1987, Floreen, 1991) com
putes the Hamming distances for the binary patterns and finds the maximum 
overlap (minimum distance) with the prototype vectors, realizing the 1-NN rule. 
Although other similarity-based methods presented here have natural neural
network type realizations we will concentrate more on presentation of the general 
framework rather than on the network implementation issues, since at this ini
tial stage of the theoretical development implementation issues are of secondary 
importance. We will not spend much time on the actual methods of learning, 
based here on parameter optimization, neither. Other approaches to learning 
(Mitchell , 1997) may be useful in more complex situations. In the next section 
the general framework for SBM is presented and many novel elements outlined 
at each step of the classification process. The framework accommodates well
known classification methods and leads to new, unexplored methods. Examples 
of new methods and relations with known classification models, including some 
neural network models, are elucidated in the third section. Discussion and ref-
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2. A framework for the similarity-based methods 

Here, N is the number of feat ures, K is the number of classes, vectors are in 
bold face while vector components are in italics. 

The following steps may be distinguished in the supervised classification 
problem based on similarity estimations: 
1) Given a set of objects (cases) {OP}, p = 1, ... , n and their symbolic la
bels C(QP), define useful numerical features X} = X1(0P), j = 1, ... , N char
acterizing these objects. T his preprocessing step involves computing various 
characteristics of images, spatia-temporal patterns, replacing symbolic features 
by numerical values, etc. 
2) Find a measure suitable for evaluation of similarity or dissimilarity of objects 
represented by vectors in the feature space, D(X, Y ). 
3) Create a reference (or prototype) vectors R in the feature space using the 
similarity measure and the training set T = {XP} (a subset of all cases given 
for classification). 
4) Define a function or a procedure to estimate the probability p(CiiX; M), 
i = 1, ... , K of assigning vector X to class Ci. The set of reference vectors, 
similarity measure, the feature space, and procedures employed to compute 
probability define the classification model M. 
5) Define a cost function E[T; M] measuring the performance accuracy of the 
system on a training set T of vectors; a validat ion set V composed of cases that 
are not used directly to optimize model M may also be defined, and performance 
E[V; M] measuring the generalization abilities of the model assessed. 
6) Optimize the model Ma until the cost function E[T; Ma] reaches minimum 
on the set Tor on the validation set E[V; Mal· 
7) If the model produced so far is not sufficiently accurate add new proce
dures/parameters creating a more complex model Ma+l· 
8) If a single model is not sufficient, create several local models M~l) and use 
an interpolation procedure to select the best model or combine results of a 
committee of models. 

All these steps are mutually dependent and involve many choices described 
below in some details. The final classification model M is build by selecting a 
combination of all available elements and procedures. A general similarity-based 
classification model may include all or some of the following elements: 
M = {X (O), ~(·, ·), D(·, ·), k, G(D), {R }, {Pi(R)}, E[·], K(·), S(·)}, where: 
X ( 0 ) is the mapping defining t he feat ure space and selecting the relevant fea
tures; 
~1 (X1 ; Yj) calculates similarity of features Xj, Yj, j = 1, ... , N; 
D(X , Y ) = D( {~1 (X1 ; Yj)}) is a function that combines similarities of features 
to compute similarities of vectors; if t he similarity function selected has metric 
properties, the SBM may be called the minimal distance (MD) method. 
k is the number of reference vectors taken into account in the neighborhood 
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G(D) = G(D(X, R)) is the weighting function estimating contribution of the 
reference vector R to the classification probability of X; 
{R} is a set of reference vectors created from the set of training vectors T = 
{XP} by some selection and optimization procedure; 
Pi (R ), i = 1, ... , K is a set of class probabilities for each reference vector; 
E[T; M] or E[V; M] is a total cost function that is minimized at the training 
stage; it may include a misclassification risk matrix 'R(Ci,Cj), i,j = 1, ... ,K; 
K ( ·) is a kernel function, scaling the infi uence of the error, for a given training 
example, on the total cost function; 
S(-) is a function (or a matrix) evaluating similarity (or more frequently dissim
ilarity) of the classes; if class labels are soft, or if they are given by a vector of 
probabilities Pi(X), the classification task is in fact a mapping. The S( Ci, Ci) 
function allows to include a large number of classes, "softening" the labeling of 
objects that are given for classification. 

Various choices of parameters and procedures in the context of network 
computations leads to a large number of similarity-based classification meth
ods. Parameters of each model are optimized and a search is made in the space 
of all models Ma for the simplest and most accurate model that accounts for the 
data. Optimization should be done using validation sets (for example in cross
validation tests) to improve generalization. Starting from the simplest model, 
such as the nearest neighbor model, qualitatively new "optimization channel" 
is opened by adding the most promising new extension, a set of parameters or 
a procedure that leads to the greatest improvements. Once the new model is 
established and optimized, all extensions of the model are created and tested 
and a better model selected. The model may be more or less complex than 
the previous one (since feature selection or selection of reference vectors may 
simplify the model). The search in the space of all SBM models is stopped when 
no significant improvements are achieved by new extensions. 

The steps involved in setting up a SBM model are presented below in a 
detailed way. Examples of well-known classification models and new models 
that result from the SBM framework are given in the next section. 

2.1. Feature space and similarity of features 

Frequently the database contains a numerical description of the objects and the 
preprocessing step involves only rescaling or standardization of the input data. 
Features used should allow to assign a new vector X to one of the classes with 
high reliability. The number of features created by the X(O) mapping should 
be as small as possible to avoid the "curse of dimensionality" (Bishop, 1995). In 
some cases a group of features of the same type may be aggregated and replaced 
by a single feature, using, for example, the linear combination Xi = 2:1 SjtXt. 

The Sj t scaling coefficients in this combination may be estimated in two ways. 
The first method is based on inexpensive local approach (Aha, 1998), which tries 
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for example the percentage of correctly classified t raining samples using only the 
Xi feature. The second method is global, treating Sjt as adaptive parameters 
that are optimized simultaneously using the total cost function E[T; M]. In 
the multi-layer perceptron (MLP ) network with two hidden layers the first layer 
should essentially perform aggregation and may sometimes be replaced by a 
linear layer. A more sophisticated approach, used in Support Vector Machines, 
is based on non-linear projection of feature vectors (Scholkopf et al., 1998). 

In some methods the feature Xj taking the symbolic value Xj = Tki is 
treated directly using an appropriate similarity function ,6. i ( Tk 1 , Tt 1 ) that may 
be defined as follows. Define a characteristic class function: r m(X) = 1 if 
X E Cm, otherwise r m(X) = 0. The vector X with feature Xj = Tkj is denoted 
as X(Xj = Tk1 ). The number of vectors belonging to the class m with Xi = Tk 
is Nm(Xj = TkJ = L:x r m(X(Xj = Tk,)) and the total number of such vectors 
is N(Xj = Tk1 ) = I:m Nm(Xj = Tki ). The ratio of these two numbers estimates 
the probability p(CmiXi = Tk,) = Nm(Xi = Tk,)/N(Xj = Tk1 ) that given the 
symbolic value Tk1 of feature X i the whole vector belongs to the class Cm. 
Symbolic features that have similar probabilities should have high similarity: 

m 

where a is an arbitrary exponent. The similarity of the two symbolic values of 
feature j is the highest (or dissimilarity is the lowest, l:ii ( Tk1 , Tt1 ) = 0) if both 
values Tk1 , Tt1 predict the same probabilities. The generalized Value-Difference 
Metric (VDM) for vectors with symbolic values is defined as: 

(2) 

Since many classification methods require numerical inputs it is convenient 
to replace symbolic with numeric values. Replacing symbolic feature Xi with 
K-dimensional vector of probabilities p(CiiX(Xi = Tk,)), i = 1, ... , K allows 
to compute the same similarity values: 

K 

l:ij(Tk1 ,TtJ'" = L lp(CmiXj = Tk,)- p(Cml}j = TtJie>· (3) 
m=l 

Thus, ,6. i ( ·, ·) is a Minkowski distance function in K -dimensional space. Note 
that since for two classes p(CdX) + p(CziX) = 1 only one probability p(CdX) 
is sufficient to compute similarity: 

(4) 

The number of numerical features is the same as the number of symbolic fea
tures. For more than two classes (K > 2) the absolute value in the sum above 
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growth of the dimension of the feature space the Value-Difference Metric (2) 
should be used directly (Wilson and Martinez, 1997), or other methods that 
do not preserve probabilistic estimations of similarity may be used (Aha, 1998, 
Grqbczewski and Duch, 1999). 

2.2. Similarity measures and feature scaling 

Calculation of similarities is most often reduced to the Euclidean metric for 
continuous inputs and the Hamming metric for binary inputs. In a more gen
eral approach let us first define one-dimensional feature similarity functions 
D..j(Xj, }j), for example: 

D..j(Xj, Yi) = Xi - Yj a simple difference 

D..i (Xi, Yi) = I Xi - Yi I an absolute value of the difference 

D.. . (X . , Y.) = Xi - }j renormalized difference 
1 1 1 maxi -mini 

X·- y. 
D..j(Xj, Yj) = 1 1 standardized difference 

4aj 

D..i(Xi, Yj) = o(Xi, }j) overlap difference 

(5) 

(6) 

(7) 

(8) 

(9) 

where in the last case Kronecker delta is used. Feature similarity may also 
be computed as the probabilistic value differences (2). Similarity is defined in 
this case via a data-dependent matrix with the number of rows equal to the 
number of classes and the number of columns equal to the number of features. 
Generalization for continuous values requires a set of probability density func
tions Pii ( x) , with i = 1, ... , K, j = 1, ... , N. This distance function may be 
used for symbolic values and combined with other distance functions for con
tinuous attributes. 

Generalized Minkowski metric involves two exponents, a and (3, although 
frequently a single exponent a = (3 is used. Typical distance function compute: 

N 

D(X,Y)13 = LD..j(Xj,Xj)" (10) 
j 

D(X, Y) = maxb..j(Xj, Yj) Maximum Value. (11) 
J 

Scaling factors weighting one-dimensional similarity functions allow to include 
different contributions of different attributes and are very useful global param
eters. Minkowski distance with the scaling factors is defined as: 

N 

D(X, Y; s)/3 = L Sjb..j(Xj, Yj)"'; Sj 2: 0. (12) 

Euclidean metric corresponds to a = (3 = 2, which is completely isotropic, 
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parallel to the axis than to the directions between the axis. In fact, the unit 
contour is a circle for Euclidean distance, a square with vertices in (0, ±1) and 
(±1, 0) for Manhattan, approaching a square with vert ices at (±1, ±1) for large 
a = (3, and a concave 4-arm star for a = (3 going to zero. 

Methods of selecting optimal scaling factors for feat ures were reviewed by 
Wettschereck et al. (1997a) , where a five-dimensional framework to characterize 
different methods of scaling features has been proposed. Scaling is the simplest 
way of pre-processing the features. The scaling factors facilitate feature selection 
in an automatic way. Admit ting only s1 = 0, 1 allows for simplified optimization 
of the scaling factors for feature selection. 

Using the scalar product and the norm: 

N 

(XIY) = I:Xj}j; IIXII 2 =(XIX) (13) 
j=l 

several other distance functions can be defined: 

(XIY) 
Dc(X, Y) = 1- IIXII IIYII Cosine distance (14) 

2(X IY) 
Dd(X, Y) = 1 - IIXII 2 + IIYII 2 Dice distance (15) 

(X IY) 
DJ(X, Y) = 1- IIXII 2 + IIYII 2 _ (XIY) Jaccard distance (16) 

Dc(X,Y) = ~j(Xj , }j) generalized Canberra distance. (17) 
~i(Xj, -}j) 

Additional parameters that may be introduced in similarity measures are 
either global or local (different for each reference vector). In some applications 
(for example in psychology) similarities are not symmetric. The simplest exten
sion to non-symmetric similarity function is obtained by introducing different 
scaling factors, depending on t he sign of Xj- Yj, for example: 

Dn(X,Y;s)" 
N 

= L(max(O, Sj+(Xj- Yj ))- min(O, s1_(Xi- Y1)))", 
j 

(18) 

where two separate scaling factors SJ+, Sj- ~ 0 are used. This function provides 
2N adaptive parameters. The Mahalanobis distance (Bishop, 1995) is obtained 
by applying a linear transformation to the input vectors. Alternatively, a metric 
tensor Gij = Gji is introd ced, providing N (N + 1)/2 adaptive parameters: 

N 

D(X, Y; G)2 = >' Gii(Xi- Yi)(Xi- Y7). (19) 
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Any adaptive system may provide a distance function for similarity-based 
methods. For example, a typical MLP network may be trained on the differ
ences of pairs of vectors {X- Y}, learning to predict the distance between 
the classes IIC(X ) - C(Y)II· The output of the neural network is then used 
in k-NN or other similarity-based method (see Chiu and Kavanaugh, 1997, 
where a similar idea is pursued). A better way is to give an MLP both X and 
X - Y = {di(Xj)- di(Yj)} as input vectors, where di(·) is a set of the feature 
pre-processing functions (in the simplest case scaling factors). A non-symmetric 
similarity function D(X- Y; X), smoothly changing between different regions 
of the input space, is obtained iteratively: for each training vector its k near
est neighbors are selected using initial similarity estimation, and after the first 
epoch of neural training the process is repeated using the new similarity func
tion. Thus, MLP mappings may be used to create similarity functions most 
appropriate for a given data. 

Minimization of in-class distances and maximization of between-class dis
tances is used in some statistical methods (for example Fisher's discrimination). 
A distance function with such properties should be useful in similarity-based 
methods. A function of this sort is based on a combination of sigmoidal func
tions in each dimension: 

Kj 

di(Xj; p) = dJ(Xj; aj, bj, cj) = L ajla(bjlXj + Cjl), (20) 
1=1 

where Kj determines the number of steps in the smoothed sigmoidal step func
tion (Fig. 1). Using this transformation with the Minkowski metric a network of 
nodes computing such distances may be applied for classification or prediction, 
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Figure 1. Sum of 3 sigmoidal functions provides a useful distance function al-
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like any other neural network. It also could be used for extraction of logical 
rules from data, either fuzzy rules or - within the limits of high slopes - crisp 
logical rules. So far these ideas have not been tried in practice. 

Calculation of distances may also be parameterized in a different way around 
each reference vector, providing a large number of adaptive parameters. Local 
coordinate systems with their origin placed at the reference vectors may provide 
either local scaling factors or local metric tensors. In specialized applications 
(for example in speech or handwritten letters recognition) invariant similarity 
measures are used - the "elastic matching" is defined by the shortest distance 
between two objects that are distorted in all possible ways while preserving their 
identity (class). Simard et al. (1993) introduced a simplification of this idea by 
measuring the distance between the tangent planes for the prototypes. 

2.3. Feature selection 

Scaling factors in the similarity function (12) allow for feature selection and 
feature scaling but since the global optimum of a cost function may be difficult 
to find (Duch and Grudzinski, 1999b) simpler feature selection procedure may 
be useful. Many methods of feature selection and estimation of optimal scaling 
factors for features were reviewed by Wettschereck et al. (1997). These methods 
either iteratively optimize the scaling factors on the performance basis or assign 
fixed scaling factors by calculating mutual information between the values of 
features and the class of training samples or by summing probabilities (estimated 
through frequencies) of training vectors with non-zero values of features for 
a given class (per category feature importance). These scaling factors after 
binarization are used to select features. 

Several simple feature selection procedures have been developed and tested 
specifically for the similarity-based methods (Duch and Grudzinski, 1999b ). In 
the feature-dropping algorithm features are removed consecutively, one at a time, 
and the best-first search (BFS) strategy is used. To achieve good generalization 
the leave-one-out test is performed on t he training file and the change in accuracy 
is noted. Feature leading to the highest improvement of classification accuracy 
on the training file is selected as the least important and removed from the input 
set. If there is no improvement the feature that leads to a minimal degradation 
is selected. At each step all the remaining features are evaluated. At the end of 
the selection procedure all features are ranked according to their importance. 

An approximate ranking of features is done at a lower cost. Assuming that 
features are independent and the effects of feature removal are additive only 
one test for each feature is done to determine the ranking. To make the method 
more robust features are ranked after averaging the results of crossvalidation 
tests with a single feature removed. An alternative is to perform the BFS 
feature-dropping algorithm using only a subset of features identified as promis
ing during the approximate evaluation, for example using those features that 
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such as the beam-search, may be used if the number of features is not too large. 
After calculation of feature ranks crossvalidation tests with first M best features 
are performed for M = 1, ... , N. Usually, the best results are obtained with 
those features that on average were found useful (did not increase the accuracy 
after being dropped). 

Search strategies may also be used for feature weighting. The cost func
tion is simply the number of classification errors. Since features have real
valued weights, they have to be initially quantized, either with fixed precision 
or precision that is steadily increased during the progress of the search proce
dure. Non-gradient optimization methods that may be used for optimization of 
discontinuous cost function are expensive and may require a large number of 
function evaluations for convergence. Search methods for feature weighting are 
worth trying. Three such methods have been developed (Duch and Grudzinski, 
1999b): adding features starting from a single one, dropping features starting 
from all features and tuning the scaling factors, using the search procedure with 
systematic increase of the precision of the scaling factor's quantization. 

Feature selection may be combined with regularization of the classification 
model. To lower the complexity of the model the cost function should include 
an additional penalty term, such as the sum of all s]. Unrestricted optimization 
will of course lead to a very small values of all factors, therefore one should fix the 
scaling factor of the most important attribute at 1, optimizing over all other 
attributes (renormalization of the scaling factors is an alternative, but more 
complicated, solution). Features, for which the product of the scaling factors 
si maxik IXji) - x jk) I is small may be deleted without a significant loss of accu
racy - after additional optimization of the scaling factors accuracy may even in
crease. In the framework of Wettschereck et al. (1997a) these methods use feed
back, do not change feature representation, use global weights, do not use task 
specific knowledge and perform both feature selection and feature weighting. 

Features may be selected globally, for all classification models or for all 
classes, leading to one set of features. For models that specialize in discrimi
nation between pairs of classes or between a given class and all others, optimal 
features should be selected independently. 

2.4. Missing values 

The Value-Difference Metric treats the missing values like any other symbolic 
values, but if the missing feature is not symbolic it cannot be used directly. 
Ad hoc procedures based on replacing the missing values with class averages, 
the most frequent values, arbitrary constants, or ignoring these values, should be 
avoided. In statistics analysis of independent surveys in which some questions 
are not answered by some respondents and some questions are not asked in 
some surveys is known as the "multiple imputation" problem (Rubin, 1996). 
Assumptions about normal distributions used in the multiple imputation theory 
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Methods belonging to the SBM framework, such as the nearest neighbor 
method, may be used as associative memories in a natural way. Any part of 
the input vector X = (Xd , Xu) may be used to estimate the unknown input 
values Xd once the classification model is created. In the simplest case the 
undefined part Xu is predicted interpolating the values of nearest neighbors 
for the dominating class. Optimization of the model to increase classification 
accuracy in the Xd subspace should improve the results of Xu prediction. 

An iterative technique of finding the missing values is recommended. In the 
first step a classification model M is created using the training vectors that do 
not contain missing features or using the largest subspace of features without 
missing values. This initial model is then used to calculate the probability of 
unknown values Xu by maximization of: 

(21) 

i.e. searching for the maximum of the probability given by the model M in the 
subspace of undefined features, with fixed point in the xd subspace. 

At a later stage, once all elements of the initial model are defined, feature 
selection and feature weighting procedures may be added. These procedures are 
closely connected with the definition of similarity measures. 

2.5. Selection and weighting of reference vectors 

SBM models may use all training data as the reference vectors. Reducing the size 
of the reference set leads to models of lower complexity, speeds-up classification 
and minimizes memory requirements (this is important not only in real-time 
applications - optimization of some parameters may require many evaluations 
of the cost function). It also helps to improve generalization capabilities of the 
classification system, especially for noisy data. Moreover, eliminating redundant 
cases and leaving only the most interest ing prototypes may sometimes allow 
to understand the structure of the data, providing an alternative to the rule
based classifiers. Systems designed for on-line learning, where the number of 
the incoming vectors may in principle be infinite, must use partial memory (see 
Michalski, 1999), selecting the best prototypes. 

Three groups of reference set selection algorithms may be distinguished: 
clusterization based algorithms, algorithms start ing from the whole set, and 
algorithms starting from the empty set. K-means, dendrograms or other clus
terization techniques may be used to select a relatively small number of initial 
reference vectors close to the centers of data clusters. Classification accuracy is 
checked on the remaining set and each wrongly classified vector is moved from 
the training to the reference set. Variants of this approach may use a validation 
set to determine best candidates for the reference set. 

An alternative approach to selection of reference vectors that does not re-
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that have all k nearest vectors from the same class are then removed from the 
reference set (k should be relatively large here, for example, k = 10). Re
moved vectors are far from cluster borders; all test vectors that fall in their 
neighborhood will be anyway unambiguously classified. This approach leads to 
a "hollow" cluster representation, leaving in the reference set only those vec
tors near the cluster borders. Variants of this approach may start with a large 
number of neighbors k' to remove vectors near the centers of clusters first, and 
decrease k' to the final k value in a few steps. Noisy data contain some training 
vectors that are surrounded by neighbors from different class; to remove them 
from the reference set the vectors that have all k - 1 neighbors from the same 
class and a single neighbor from another class should also be removed. 

Another useful algorithm to select good reference vectors near class borders 
starts from the empty reference set. For every training vector X that belongs to 
the class C(X ) it finds k nearest vectors from classes Ci =j:. C(X ). Those vectors 
are moved to the reference set. This algorithm also leaves in the reference set 
only vectors near the class borders. 

In the SBL-PM (Similarity-Based Learner- Partial Memory) algorithm in
troduced recently (Grudzinski and Duch, 2000) training vectors are sequentially 
removed and the prediction accuracy of the system on the whole training set 
is calculated after each removal. If the accuracy drops below a user-defined 
threshold, relative to the result of the leave-one-out test on the whole training 
set, the removed vector is placed in the reference set; otherwise it is eliminated. 
Unfortunately, because of the high computational costs this method may be 
used only for relatively small datasets or with classification models that have 
few adaptive parameters only, such as the k-NN method. More sophisticated 
methods, for example GIGA, using genetic algorithm for selection of the refer
ence set (Fuchs, 1996), have even higher computational demands, but the results 
are not necessarily better. 

In the on-line version of the method the system has to decide whether a new 
training case, coming from the input stream, should be added to the reference 
set (partial memory of past cases). An obvious approach, used in the IB2 
procedure (Aha et al., 1991) is to check whether each new instance recei.ved 
is correctly classified using the reference set created so far and add it to this 
set only if it leads to an error. To make this algorithm more resistant to noise 
one may introduce a "candidate reference" vector, that is included only on 
the preliminary basis. Candidate reference vectors are then checked during 
subsequent learning: if they contribute to correct classification they are kept, 
but if their presence leads to errors they are removed. 

Active selection of reference vectors may eliminate many training vectors 
from the reference set. Further optimization of their positions should decrease 
the training error. The reference vector R in the neighborhood of a training 
vector X should be updated as follows: 
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Here, rJ is the learning rate, slowly decreasing to zero during training, and 
Kronecker 8 is 1 if the class C(X) = C(R) or 0 otherwise. Various rules for 
moving centers R are used: moving only the nearest neighbor, moving all k 
neighbors by the same amount, using distance-dependent ry , decreasing rJ during 
training etc. (Laaksonen and Oja, 1996). One can also optimize a subset of 
vectors, for example only those that are close to t he center of clusters. 

Virtual Support Vectors (VSV) may be added to the reference set to improve 
classification rates. The simplest approach is to interpolate between existing 
training vectors and to add VSV between vectors of different classes that are 
near to each other. In cases when data clusters belonging to different classes 
are far from each other VSV help to shift decision borders between classes, 
improving generalization. If the clusters mix with each other or are very close 
VSV are not created at all because the vectors from different classes will be 
closer than a minimum threshold value. 

Reference vectors R that are far from the query vector X should obviously 
have smaller contribution to the classification probability. Radial Basis Function 
(RBF) neural networks (Bishop, 1995) using Gaussian or inverse multiquadratic 
transfer functions are a particular example of the soft weighting minimal dis
tance algorithms, where the number of prototypes included is not restricted, 
but the weighting function provides an effective cutoff. The conical radial func
tion is favorite among fuzzy logic practitioners: zero outside the radius r and 
1- D(X, R)/r inside this radius. Classification probability is calculated by the 
output node using the formula: 

I:mEC; G(X;Rm,r) 
p(C;IX; r) = I:m G(X; Rm, r) ; 

G(X; R,r) =max ( 0,1- D(~, R)) (23) 

Here G(X; R, r) is the weight estimat ing contribution of the reference vec
tor R at some distance D(X, R). An almost constant weight value up to a 
distance r is provided by a sigmoidal function a(D(X, R)- r), falling to zero 
for larger distances (slope of the sigmoid may be used as an additional parameter 
here). 

One may also use variable r equal to the distance to the k-th neighbor and 
the weighting function for the vectors inside this radius. If rk is the distance to 
the k- th neighbor and r k ;::: r;, i = 1, ... , k - 1 then a conical weighting function 

G(D) = 1- Dfo:rk, o: > 1 (24) 

has values G(O) = 1 and G(rk) = 1- 1/o:. For large o: the cone is very broad 
and all vectors receive the same attention; for o: approaching 1 the furthest 
neighbor has weight approaching zero. Therefore, an SBM model with optimized 
o: cannot be less accurate than the model that uses similarity to k prototypes 
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Wettschereck et a!. (1997) propose the hyperbolic weighting scheme: 

p( CIX; M) = _L_R~EO::::::k(-'---X-'-) o_(_C(_X_),:-:-C........,) 1=/--( D........,( X_ , R.,.....)_+_t:) 
LREOk(X) 1/(D(X, R) + t:) 
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(25) 

where Ok(X) is the neighborhood of X containing k reference vectors R and 
t: is a small constant used to avoid dividing by zero. 

2.6. Estimation of classification probability 

Classification models require a function or a procedure to estimate p(C;IX; M), 
probabilities of assigning vector X to class C;. If the estimations do not sum 
to 1 they should be renormalized. Some methods may predict only the most 
likely class, in effect assigning probability 1 to this class and 0 to all others. In 
the k-NN method probabilities p(C;IX) = N;jk, where N;::; k is the number of 
neighbors belonging to the class C;. 

There is no guarantee that probabilities obtained from classifiers will give the 
accuracy of results above the base rate (majority rate). Classification models 
that are too complex frequently overfit the training data, especially if optimiza
tion of model parameters is done on the training set only. A simple way to 
correct these probabilities is to introduce an additional linear model. In the K 
class problem the order of the classes is chosen in such a way that the majority 
class has the highest label. Probabilities p( C;IX; M) for i = 1, ... , K - 1 are 
rescaled by parameters "'i: 

Pi(X) = "'iP(C;IX; M), 
K-l 

PK(X) = 1- L Pi(X), /1,; E [0, 1] 
i=l 

(26) 

For "'i = 1 nothing is changed and original probabilities are used; for "'i = 0 
all vectors are assigned to the majority class. Since this is a linear model it 
is easily optimized in the least-mean square sense. For two classes an explicit 
formula for the optimal Pl(X),pz(X) may be written. 

2. 7. Cost function definition 

Knowing the formula for classification probabilities a cost function E[T; M] may 
be defined. It should include an estimation of the empirical risk of misclassifica
tion R( C;, Ci), an estimation of the similarity (or dissimilarity) of the predicted 
classes S ( Ci, Cj), a kernel function K ( ·), scaling the influence of the error on 
the total cost (for a given training example), and an appropriate regularization 
term to avoid overfitting. The empirical risk matrix R( Ci, Ci) measures the 
risk of assigning the class Ci when the true class is Ci. In most cases risk and 
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conceptually they are quite different. A high risk may be assigned to misclas
sification of two quite similar classes. In the simplest case 'R( Ci, Ci) = 8ii or 
'R(Ci, Ci) = li- jl. 

The simplest cost funct ions measure the number of classification errors, 
reported as the error (or accuracy) achieved on some dataset. The winning 
class Cm(X), where m = arg maxi p(CiiX; M), is compared with t he true class 
C(X) and the number of errors counted: 

E(T; M) = L (1- 8(Cm(X), C(X))). (27) 

XET 

If classes are ordered in some meaningful way errors may be quantified and 
instead of the Kronecker delta the sum of the differences (Cm(X)- C(X))2 or 
more generally of similarities S(Cm(X), C(X)), 

E(T;M) = L S(Cm(X),C(X)) (28) 
XET 

is minimized over all parameters and procedures involved in determination of 
C(X). For S( Ci, Ci) = 1- Dij the cost function (27) is obtained, but a domain 
expert may provide specific similarity values. 

Minimization of functions counting the number of classification errors is 
difficult because these functions are discontinuous. A "soft" evaluation of the 
cost 

K 

E(T;M) = L L:n(ci,C(X))S(p(CdX;M),Pi(X))) (29) 
XET i=l 

allows to use inexpensive gradient methods to optimize parameters and pro
cedures defining the model M . The soft dissimilarity function S(p(CiiX; M), 
Pi(X))) measures the difference between the predicted and the assumed prob
ability Pi. Most often a quadratic function of the difference (p( ci IX; M) -
8(Ci, C(X)))2 is used. T he error function becomes then the standard mean 
square error (MSE) function. Entropy-based and other cost functions are some
times used as an alternative to MSE function (see Haykin, 1994). In general, 
the minimum of the MSE does not correspond to the minimum of the classifi
cation error. Only in the hard limit, when probabilities are zero or one, these 
two minima are identical. 

A regularization term penalizing high complexity of the classification model 
may be added to the cost function. Regularization is quite effective in neu
ral networks (Bishop, 1995), where it allows to enforce "smoothness" on the 
mappings performed by a system based on a large number of homogenous pa
rameters (weights). Regularization lowers the number of effective parameters 
of the model and prevents overfitting of the data, thus improving the general-
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performance on the validation set, rather than directly on the training set, is a 
form of regularization. Noise added in a controlled way to the data may reg
ularize the model (Bishop, 1995). A bootstraping technique used in statistics 
(Breiman, 1998) is also an effective regularization technique. 

Kernel function plays a different role than dissimilarity or risk functions. 
A kernel function K(D), for example a Gaussian function K(D) = e-D

2 
/
2u

2
, 

measures the influence of the reference vectors on the total error. D = D(X, R) 
measures here the distance of the vector X to the nearest reference vector R or 
to a set of all reference vectors Rref. In local regression based on the minimal 
distance approaches (Atkenson et al., 1997) the error function is simply 

(30) 
m 

where ym are the desired values for xm and F(Xm; M) are the values predicted 
by the model M. If K(D) has a sharp high peak around D = 0 the function 
F(X; M) will fit the values corresponding to the reference input vectors almost 
exactly but will admit larger errors for other values. This may be regulated 
by changing the dispersion a of the Gaussian kernel function. This is not the 
same as the weighting function G(D) which is used to estimate the influence of 
distance on contribution to classification probability. In classification problems 
kernel function will determine the size of the neighborhood around the known 
cases in which accurate classification is required. 

2.8. Optimization and additional parameters/procedures 

Optimization method that should be used to minimize the cost function E[T; M] 
depends on the type of model used. To improve generalization a validation set V 
may be used, composed of vectors that are not in the training set and not in the 
test set. To avoid overfitting of the model to the training data the E(V; M) cost 
function should be minimized instead of the E(T; M). The reference vectors 
for the model M are selected using the training set T only, but features are 
selected and parameters are optimized to minimize E(V; M). For example, the 
leave-one-out error is minimized when the sum runs over all training examples 
X E T except for one vector XP. The model M does not contain this XP vector 
in the reference set while p( Ci IXP) is computed. The averaged error for all 
p = 1, ... , n should be minimized - this is quite simple in the k-NN method, 
where the only parameter optimized (k) has integer values. 

For real-valued parameters multistart gradient methods seem to be the most 
effective in optimization, if formulas for gradients of the error function can be 
derived. Some models may be efficiently optimized by organizing gradient com
putations in a neural network-like style. Real-valued parameters are provided 
by transformation of features d(Xj ), similarity measures of features .0.(-) and 
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estimating contribution of the reference vector R to the classification probability 
G(D) = G(D(X, R )). 

In some applications the training vectors may be mislabeled. This effect 
may be included by assigning probabilities of classes p;(R ), rather than class 
labels (equivalent to binary probabilities), to the training vectors. Probabilites 
assigned to the reference vectors allow for soft-weighting of the class labels. 
An interesting possibility is to treat these probabilities as adaptive parameters. 
This should allow the classifier to reach base rate errors in regions where a few 
outliers exist. A simple method to adapt these probabilities is to start from 
the initial labels, i.e. class probability p(C;IR) = 8(C;, C(R)) and modify it, 
so as to account for the neighborhood, adding just one parameter to preserve 
normalization: 

(31) 

i.e. a priori probabilities are corrected by the data. The 1 parameter should now 
be optimized. More complex models with several parameters may of course be 
considered. Optimization of class probabilities is a form of data regularization, 
leading to models that are more resistant to noise in the data. 

2.9. Ensemble of models 

An adaptive system may include several models M1 and an interpolation pro
cedure to select between different models or average results of a committee of 
models. Such averaging with boosting procedures for selection of training vec
tors leads to creation of stable and accurate classifiers (Breiman, 1998). Simple 
averaging, or linear combination of several models is most frequently used: 

N 

P(C;IX;M) = LW1 p(C;IX;M1). (32) 
1=1 

Least square minimization (LSM) procedure is used to determine W1 coeffi
cients. When creating ensembles one should use all the information available. 
Since we know for which training vectors R m each model makes an error it 
seems reasonable to use this information in making an ensemble. Coefficients of 
linear combination should depend on the distance between X and those regions 
around reference vectors R[ of the feature space where model M1 works poorly, 
therefore: 

N 

P(C;IX;M) = LLW1D(X, R [)p(C;IX;M1) (33) 
1=1 k 

should be a good choice. Identical LMS optimization is used as in the previous 
case. Probabilities are obtained after renormalization: 

(34) 
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Instead of a single model that tries to provide one distance function in the 
whole input space, several local distance functions may be defined around the 
main prototypes obtained using some initial clusterization method. This cor
responds to a local coordinate systems that may have quite different optimal 
scaling factors and orientations. 

Various procedures for combining results of different models may be defined, 
the simplest based on the selection of the submodel with the minimum distance 
from the vector given for classification, and the more sophisticated based on the 
estimation of confidence of each submodel in a given region of the input space. 
Using more than one model provides more adaptive parameters and should 
improve the results. New submodels may also be introduced in an incremental 
fashion, adding local systems in the regions of space where classification is less 
accurate. 

3. Examples of SBM models 

Many pattern recognition, machine learning and neural network models may 
be accommodated in the SBM framework. One way to use this framework 
is to start with the simplest model and develop it in the most promising di
rection by adding new optimization parameters and procedures. For example, 
starting from the simplest k-nearest neighbor method with Euclidean distance 
measure on standardized data one may consider the following improvements: 
optimization of the number of neighbors, optimization of the distance function, 
sophisticated distance functions (such as in Fig. 1), soft weighting, selection of 
features, selection and optimization of reference vectors, using several models 
and many other options. 

Each step towards more complex model decreases the bias of the classifier, 
but may increase its variance (Breiman, 1998), therefore after each step the 
model should be validated and only if the greater complexity is justified by 
higher accuracy more complex models should be accepted, otherwise a different 
type of optimization should be used. 

A few examples of known and novel methods belonging to the SBM frame
work are given below. 

3.1. k-NN mo del 

In the k-NN model p(C;I X ; M) is parameterized by p(CiiX ; k, D(·), {X }}), i.e. 
the whole training dataset is used as the reference set, k nearest prototypes 
are included with the same weight, and a typical distance function, such as the 
Euclidean or the Manhattan distance, is used. Probabilities are calculated as 
the ratio of the number of neighboring vectors belonging to the class ci to the 
number of all neighbors included, p(CiiX; M) = N;jk, and the most probable 
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The restriction to k neighbors is realized by a hard-sphere metric distance 
function D(X, xm) with radius such that exactly k neighboring vectors xm fall 
inside it. The type of the distance function D( ·) and k are usually the only 
parameters optimized in the k-NN model. For k = 1 there is no error on the 
training set, but already for k = 2 the training vector near t he class border 
may have the nearest vectors from two different classes. Therefore the error on 
the training set, equal to zero for k = 1, grows for k > 1 but may decrease for 
larger values of k. The leave-one-out test is recommended to optimize k using 
the training set data only. This type of test is particularly easy to perform in 
the k-NN method since there is no learning phase, unless the metric function 
is parameterized. For two-class problems odd k values are recommended to 
avoid ties that arise when the same number of neighbors from different classes 
is found. For the K-class problem k = 1, K + 1, 2K + 1, . . . avoids the ties 
but is a severe restriction on the choice of k. Ties may be resolved either by: 
a) rejecting cases in which tie occur; b) adding one or more extra neighboring 
vectors until the tie is broken; c) decreasing the number of neighboring vectors; 
d) randomly breaking the tie; e) selecting class with the largest a priori prob
ability; f) leaving probabilities instead of yes-no decisions; g) using Eq. (26) to 
correct the computed probabilities. 

Details of the k-NN procedure are rarely given in papers on applications and 
it is not always clear how ties are broken. In our experience the last two options 
are the most appropriate. Adding more vectors to break the tie seems to be 
reasonable, although in real applications differences in classification accuracy 
are sometimes negligible since ties do not occur if real-valued features are used. 

The simplest error function used in optimization of k and the selection of 
the type of similarity function D( ·) is: 

K 

E(X; k, D)= 2::(1- o(C(XP), C1(XP)) 
p=l 

C1(XP) ...._max p(CjiXP; M) (35) 
J 

where C(XP) is the true class of the vector XP while Cj(XP) corresponds to the 
best k-NN recommendation. This funct ion should be minimized in respect to all 
adaptive parameters of the model M (here only k and the type of D function). 
In problems where a natural similarity of classes is defined or a risk function 
has been given cost functions (29) and (28) should be used. 

3.2. r-NN models 

Instead of enforcing exactly k neighbors the radius r may be used as an adaptive 
parameter. The number of classification errors, or the probability of classifica
tion p(CiiX; r) = Nd L:1 N1, is t hen optimized using the leave-one-out method 
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network realization of this algorithm. r-NN may reject some vectors X if no 
reference vectors fall into the r radius of X or if equal probability of classi
fication for several classes is obtained, but one could also consider a method 
with variable r (increased until a unique classification is done) to avoid such 
problems. 

Introduction of variable radii ri for each reference vector instead of one uni
versal radius in the input space improves the method by further increasing the 
number of adaptive parameters significantly. Development along this line leads 
to the Restricted Coulomb Energy (RCE) classifier introduced by Reilly, Cooper 
and Elbaum (1982), which may be treated as the hard limit approximation of 
the Gaussian-based RBF network. If no neighbors are found around the train
ing vector X, the new spheres (reference vectors) are added with largest radius 
such that the sphere does not overlap with the spheres of other classes. If the 
new training vector falls into the range of a sphere of a wrong class, the radius 
of this sphere is shrinked to leave the vector outside of the sphere. Positions of 
the spheres are not optimized in the RCE algorithm - this would lead in the 
direction of LVQ algorithms (Laaksonen and Oja, 1996) - but voting methods 
for the committees of classifiers were used with success (Wasserman, 1993). 

The number of radiuses ri may be reduced by using only a few independent 
values in selected input space areas. One could also optimize components of 
one radius (i .e. not just a total distance but separate distances for individual 
input features), but this would give the same result as optimization of the metric 
function described below. To reduce the number of parameters, variable radiuses 
should be attached only to the centers of clusters. To assure smooth transition 
between different regions of the input space interpolation of the r values from 
the nearest cluster centers is recommended. 

Although r-NN model is quite simple it does not seem to be used and little 
is known about it. Our preliminary test showed that on same datasets it gives 
better results than k-NN. A combination of these two nearest neighbor methods 
could also be considered using Eq. (32) or (33). 

3.3. Soft weighting k-NN and r-NN methods 

A natural generalization of the r-NN method is obtained by introducing the 
G(D) weighting function instead of sharply cutting off the neighbors taken into 
account at the specified radius r. The Gaussian classifier (see Wasserman, 1993, 
Krishnaiah and Kana!, 1982) also belongs to this category. In the simplest ver
sion of the RBF algorithm Gaussian functions are used and only one parameter 
- dispersion - is optimized (Bishop, 1995). Independent optimization of all N 
components of the dispersion vector has the same effect as optimization of the 
scaling factors s1 in the soft-weighted NN-r method. 

Other methods of weighting discussed in the previous section may be tried 
with the k-NN or r -NN method. The effect of weighting is more pronounced 
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and a is optimized in the G(D) = 1- Dfark function, the results should be 
close to the r-NN method, but if both k and a are optimized the results should 
be better. 

3.4. RBF, FSM, LVQ and fuzzy systems 

In RBF networks Euclidean distance functions D(X,Ri ) = IIX- Rill are as
sumed, and radial, for example Gaussian G(D) = exp( -D2

), weighting func
tions are used. Essentially, RBF is a minimal distance soft weighted method 
with no restrictions on the number of neighbors - reference vectors Ri that are 
near influence the probabilities of classification more than those that are far. 
The SBM framework suggests that there is nothing special about this choice of 
distance function and the weighting function (see the conical radial weighting 
function (23) and other possibilities of weighting). 

Optimization of the positions of reference vectors R m leads to the Learning 
Vector Quantization type of methods (LVQ, Kohonen, 1995) in which the train
ing set is used to define the initial prototypes and the minimal distance to one 
of the prototypes is used to assign the classes. From SBM perspective it is clear 
that LVQ may be combined with various weighting schemes and the probability 
of classification may be calculated using more than a single neighbor. 

The Feature Space Mapping (FSM) neurofuzzy model is based on separable 
(rather than radial) weighting functions (Duch and Diercksen, 1995). FSM may 
use many localized transfer functions, including Gaussian, conical, trapezoidal 
or rectangular functions. These transfer funct ions may again be understood as 
the weighting functions for prototypes localized in the neighborhood of a query 
vector X. Thus, FSM may be regarded either as a specific realization of the 
SBM scheme or as an adaptive fuzzy logic rule-based system. A whole class of 
the fuzzy if-then rule systems is equivalent to the soft-weighted k-NN (Kuncheva 
and Bezdek, 1997, 1999). 

An important problem with localized description of the data by RBF and 
similar methods concerns the representation of oblique probability distribu
tions of the classes. A solution creating oblique probability distributions in 
N-dimensional space using only N parameters has been described quite recently 
(Duch and Jankowski, 1999). Oblique decision borders in SBM are obtained by 
rotation of the local coordinate system in which distances are computed. It is 
sufficient to use a rotation matrix with scaling factors ~i = Si on the diagonal 
and rotation parameters ~i+l = f3i as the only off-diagonal element. 

Relation of the SBM framework to other neural models has been discussed in 
details in Duch et al. (2000a). Multi-layered perceptrons, although related more 
to discrimination rather than clusterization methods, may also be regarded from 
SBM perspective if the input vectors are normalized - this may always be done 
in an extended feature space, adding one additional feature. Weights in such 
networks play the role of reference vectors and sigmoidal transfer functions play 
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in the form: 

o-(W. X )= o-(~(IIWII 2 + II X II 2 -IIW - X ll2)) 

= o-(do- D(W, X)) 
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(36) 

where D(W, X) is proportional to the square of Euclidean distance. Using 
o-( do - D(W, X)) activation functions with different distance functions leads 
to new type of neural networks (D-MLP networks) with additional non-linear 
parameters in the distance functions. 

3.5. Neural k-NN generalizations 

Neural realization of the 1-NN rule for binary patterns is ensured by the Ham
ming network (Lippmann, 1987, Floreen, 1991). An alternative approach is to 
build a network with hidden nodes realizing the hard sphere transfer functions, 
i.e. 8(r- d(X, R )), where e is the Heaviside threshold function, r is the radius 
of the sphere and d(X, R) is the distance between the vector X and the refer
ence (training) vector R. The output units for each class Ci sum the incoming 
signals from all active hidden nodes belonging to that class. The number Ni 
of units assigned to a class Ci in the radius r from the new vector X allows 
to compute the probability of classification p(CiiX) = Ni/ "£1 N1. From the 
geometrical point of view in the input space a hard sphere is assigned to each 
reference vector, labeled by the name of its class, and the output unit counts 
how many spheres of a given class reach the point X . Neural realization of 
the k-NN method finds r for which the sum of all network outputs "£1 N1 = k. 
Formally, this can be done by introducing recurrent connections and stabilizing 
dynamics when the "superoutput" node achieves fixed value but in software 
realizations it is much simpler to select the node with maximum activity. 

A network generalization of the k-NN method provides more adaptive pa
rameters and therefore should give better results. The network should use hid
den nodes computing distances D(X - Rm), where Rm are reference (train
ing) vectors. The k nodes with the smallest distances output their class label 
h1(X; R1) = Ci and the remaining nodes output hm(X; Rm) = 0. The classes 
are numbered i = 1, ... , K . The output layer computes probabilities using the 
formula: 

O(CdX;M) = LWil · h1(X) 

O(CiiX;M) 
p( ci IX; M) = "£

1 
o( C1IX; M ) 

(37) 

The weights Wil between the output node computing probabilities for class Ci 
are initialized to Wil = S(Ci, Cl)/Cl, where the matrix S(-) estimates similarity 
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delta. Thus, each vector that belongs to the k nearest ones or that falls into the 
r radius of X and is of the class Ct contributes to the probability of the C; class 
a value S( C;, Ct). The structure of the network is shown in Fig. 2. For the cost 
function that should be optimized one may take: 

E(T; w, k) = L L R.(C;, C(X ))(p(C; IX ; M)- 8(C;, C(X )))2 (38) 
X i 

where the model M includes k and output weights as parameters and S( C;, Cj) 
is the output-class similarity function (matrix) . If we want to minimize the num
ber of classification errors output probabilities should be changed into binary 
values by the winner-takes-all procedure. 

input 

x1 

hidden 
layer output 

Figure 2. Network generalization of the k-NN method. The hidden nodes com
pute distances to reference vectors and return k values of class labels associated 
with the nodes, while the output nodes compute probabilities. 

The output weights Wit are treated as adaptive parameters. Introduction of 
soft weighting G(D(·)) allows to use gradient optimization methods. For many 
datasets this simple network should outperform many classification models. The 
results should be at least as good as the results of k-NN, which came out to be 
the best algorithm for image classification and a few other applications in the 
Statlog study (Michie et al., 1994). 

A single neuron provides discriminating hyperplane that may be replaced by 
one reference vector. Position of this reference vector should be adapted to the 
data. Using different Minkowski distance functions dramatically changes the 
shape of decision borders. Using one prototype R i per class (i .e. one hidden 
node) the class membership is decided by the discriminant function: 
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where () is a threshold. The three adaptive parameters, W1, W2, B, and the 
positions of two prototype vectors provide quite flexible decision borders in 
the two class problem (Fig. 3 shows an example). If more reference vectors 
are required the output node computing the discriminant function sums over 
prototypes for each class: 

(40) 
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Figure 3. Decision borders for various exponents of Minkowski distance function 
in the nearest neighbor method for a = 0.1, 0.3, 0.7, 1, 2, 8. Weight of the first 
prototype is three times larger than other weights. 

Scaling of the whole sum, instead of scaling the influences of individual 
reference vectors, is a simple way to reduce the number of adaptive parameters 
used by the system. One option worth investigation is to use a simple gradient 
optimization for weights and thresholds, and the search based techniques for 
non-linear scaling parameters. 

4. Discussion and related work 

An overview of the similarity-based framework, with discussion of various pro-
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very rich and has deep connections with many well known classification models 
developed by pattern recognition and neural network communities. Although 
this paper focused on classification methods, heteroassociation, pattern com
pletion, and approximation problems may also be treated by similar methods. 
Numerous improvements of various aspects of t he SBM framework have been 
discussed, including: a new method to convert symbolic features into numerical 
features, a method to find the missing data, novel functions for evaluation of 
similarity, methods of reference vector selection, method of improving the base 
rate, novel weighting functions , feature selection, combination of several mod
els using a priori knowledge, connection with neural networks and neural-like 
realizations of SBM. 

The major contribution of this paper is the change of focus from a single 
model to the search in space of all possible models belonging to a common 
framework. Starting from the simplest models new procedures and parameters 
are added at each stage, creating more complex models and selecting those that 
give the highest improvement of accuracy. In effect a best-first search (or a beam 
search) is performed in the space of all possible models. The final model selected 
may involve a combination of parameterizations and procedures corresponding 
to known classification model or to a new method. Although we have no space 
here to present experimental results it may be worthwhile to mention that pre
liminary implementation of the ideas presented here allowed us (Grudzinski and 
Duch, in preparation) to obtain the best results in classification of more than 
half of the 20 datasets used in the Statlog project (Michie et al., 1994) and we 
are quite confident that results that are statistically indistinguishable from the 
best ones may be obtained for the remaining datasets using SBM methods. 

The work presented here is related to many developments in computational 
intelligence, trying to integrate numerous efforts in different branches of this 
field. A survey of the nearest neighbor methods has been published (Dasarathy, 
1990) but many aspects of SBM are not discussed there. Wettschereck and 
Dietterich (1997) have tested several methods of variable k selection in differ
ent input regions (multi-model approach in our terminology), using the k-NN 
method. Surprisingly, the results for real datasets were sometimes worse than 
for k-NN with a single k, except in cases where two datasets were mixed to
gether, each requiring quite different k for good classification. Perhaps they 
have approached the problem in a wrong way since a proper combination of 
local models should always give a better result (or at least the same result) as 
a single best model does. 

Lowe (1995) introduced the Variable Kernel Classifier based on Variable
kernel Similarity Metric (VSM). In fact, his approach is a version of the RBF 
method. It is based on optimization of distance scaling factors for each feature, 
equivalent to optimization of Gaussian dispersions. His formula for probability is: 

(All 
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where p;(R m) is the probability that the reference vector R m belongs to class Ci 
and G(·) is the weighting function; this may be taken as 0 or 1, according to 
known classes, or estimated for a given k using the leave-one-out procedure. 
Optimization is done by assigning k neighbors to each reference vector. After 
gradient-based optimization k-neighbors are selected again and optimization 
repeated, if necessary. Lowe reports that deleting reference vectors from regions 
where classification is unambiguous (if all neighbors assign the reference vector 
proper class with p > 0.6) actually improved generalization slightly. Tests on 
the noisy XOR problem with 4 inputs showed the ability of VSM method to 
select relevant inputs and assign them larger weights. 

Yang et a!. (1998) introduced a constructive neural method called DistAl 
based on inter-pattern distances. A single hidden layer of hard-sphere weight
ing functions is constructed, each covering as many vectors of a single class as 
possible. This algorithm is similar to the network realization of the Restricted 
Coulomb Energy algorithm (Wasserman, 1993) but the neural units realize the 
difference between two concentric spheres of different radiuses rather than a 
single sphere (formally two radiuses, called "thresholds", are defined for each 
neural unit). The algorithm also checks for a single attribute that separates the 
largest number of vectors from a single class. Distance matrix between all vec
tors is computed once and sorted in the ascending order; each row i corresponds 
to distances from the vector X(i). Spherical functions realized by neurons of the 
DistAl network are equivalent to the reference vectors selected from the training 
set by checking each vector (row) and counting the number of training vectors 
belonging to a single class (it may be different than the class of the selected 
vector), i.e. checking in a row how many consecutive entries are from a single 
class. The vector for which maximum has been found defines the center of the 
new function and the minimal and the maximal radiuses are defined using the 
closest and the furthest vector from this center. All patterns correctly covered 
by the new function are removed from the training set and the next hidden 
neuron is defined. Since new functions may overlap with the old ones each new 
neuron has weights that are by a factor of two smaller than the previous one. 
The worst case complexity of this algorithm is of the order O(N), where N is 
the number of patterns. Although Yang et a!. (1998) report very good results 
for many datasets the decision borders of such classifier are far from natural. 

From these papers and from the preliminary numerical experiments with 
SBM methods a few conclusions may be drawn. Scaling of individual features 
is very important and can bring substantial gains in accuracy as well as reduce 
the number of features. Selection of a fixed number of neighbors works usually 
better than optimization of one radius in which the number of neighbors is 
counted. If the optimal number of neighbors is small, weighting procedures 
do not contribute significantly to accuracy. Much better results are probably 
achieved if local weighting functions are introduced, similarly as in the RBF, 
where adaptation of individual dispersions is of great importance, or if the a-



964 W. OUCH 

Hastie and Tibshirani (1996) write about adaptive k-NN classification from 
the linear discriminant point of view, advocating the use of several local metrics 
in different areas of the input space, instead of just one. Friedman (1994) 
proposed an interesting way of adapting the metric based on a tree-structure 
interactive partitioning of the data. Laaksonen and Oja (1996) proposed to 
improve the k-NN reference vectors using LVQ techniques. Atkenson, Moor and 
Schaal (1997) discuss locally weighted regression techniques, minimal distance 
methods with various metric and kernel functions applied to approximation 
problems. 

All these and many more proposals may be accommodated in the general 
framework presented here. Identification of the best combination of procedures 
and adaptive parameters should allow for improvement of results achieved by 
the nearest neighbor as well as neural classifiers. Many possibilities of creating 
fuzzy k-NN models remain to be explored (see Bezdek et al. , 1986). Performance 
of various methods described here (as well as any other classification methods) 
depends on the nature of the data given for classification and remains a subject 
of further empirical study. We have already developed and tested many variants 
of SBM methods described here and we shall deal with the empirical evaluation 
of these models separately (Grudzinski and Duch, in preparation). Our main 
goal is to develop software that will automatically construct a series of mod
els of growing complexity and growing accuracy, combini g various procedures 
described in this paper. 
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