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Abstract: The problem of designing a near optimal configura­
tion of a system of one-way and two-way routes is investigated. Each 
arc of the network can be designed as either a two-way arc or a one­
way arc in one of the two directions. The traffic speed on a one-way 
arc is faster than the speed on a two-way arc by a given factor. The 
problem is to design a network which minimizes total travel time 
between all pairs of nodes by the proper selection of one-way and 
two-way arcs. Efficient implementations of the metaheuristic tabu 
search are designed for solving this network design problem. These 
approaches are tested on a set of network problems with encouraging 
results. 

Keywords: network design, tabu search, metaheuristics. 

1. Introduction 

In recent years, network design problems have received increasing attention, see 
Marcotte (1983) and Magnanti and Wong (1984). The specific issue of designing 
a network with some of the links being one-way routes and some two-way routes 
was presented in Drezner and Wesolowsky (1997). The reader is referred to 
Drezner and Wesolowsky (1997) for a review of related papers. 
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Network design problems arise in several applicat ions, varying from indus­
trial installations requiring the transport of materials to communication net­
works. In this paper we address the problem of designing optimum configura­
tions for a one- and two-way routes system. Our problem is defined as follows: 
A network of roads is given. Each road can be designed either as a two-way 
street or a one-way street. The objective is to optimize the configuration of one­
way streets in a network for a given efficiency ratio for one-way travel. Making 
streets or routes one way is well known to increase t he capacity of the artery, 
while at the same time increasing the travel distances for some flows. Many 
congested urban areas, for example, employ one-way streets. One-way t raffic is 
also useful in many industrial installations requiring t he transport of materials. 
Communication networks also use one-way flows. The model can be applied in a 
wide variety of congested traffic, shop-floor flow and communication situations. 
Drezner and Wesolowsky (1997) were the first ones to study this problem. They 
designed various heuristic procedures for its solution. 

The aim of this study is two-fold: (i) to solve this new problem using a meta­
heuristic such as tabu search, and (ii) to put forward efficient implementations 
of tabu search. To achieve these objectives, we provide new, better results for 
a set of test problems, and suggest novel approaches to the implementation of 
the tabu search. 

In the next section we define the problem. In the following sections we 
describe the tabu search technique in general and the specific parameters used 
in our analysis. We conclude with reports on the experimentation results for 
some test problems. 

2. Notation and definitions 

Let us introduce the following notations: 
n number of nodes in the network. 

m number of arcs in the network. 
S the set of all arcs. Each member in Sis defined as an ordered pair ( i, j) 

of nodes. Each arc is defined twice in both directions. The cardinality 
of Sis 2m. 

dij defined for all ( i , j) E S is the length of the arc ( i, j) when it is a 
two-way street. It is possible that d ;j -:J dji· 

a is the factor by which distances are multiplied when an arc is turned 
into a one-way street (a < 1). ~ is the factor by which the speed is 
increased when a two-way street is t urned into a one way street. 

Wij is the number of vehicles traveling from origin i to destination j. 
W is the set of all origin-destination pairs (i,j) for which Wij > 0. 
Zij for (i,j) E Sis a variable defining a particular one-way configuration 

for the network. Zij = 0 if the arc from i to j is not available, and 
Zi; = 1 if the arc is available. 
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Sij(Z) is the shortest distance from i to j for a network defined by Z. 
F(Z) is the objective function for a given Z: 

F(Z) = L WijSij(Z). (1) 
(i,j)EW 

An efficient procedure for the calculation of F(Z) is detailed in Drezner 
and Wesolowsky (1997). If there is no feasible route between two 
nodes, F(Z) is returned as a large number. 

Various heuristic approaches of the greedy type are studied in Drezner and 
Wesolowsky (1997). The recommended procedure is termed there as "the mod­
ified algorithm". In this paper we refer to it as the "greedy" heuristic. The 
main steps of the greedy heuristic are as follows : 

The Greedy Heuristic 

1. The starting solution is all two-way streets. 
2. Each arc i-j can assume three values: (i) two way street, (ii) one way 

from i to j, and (iii) one way from j to i. The direction of each arc can 
be changed in two ways. There are therefore 2m individual changes in arc 
directions. The 2m possible changes are checked starting from a randomly 
selected arc. Arcs are checked consecutively in a circular way until the arc 
preceding the one we started with is reached. 

3. Each time a better solution is found, it is accepted as the next solution 
and a new iteration begins. 

4. If none of the 2m possible changes produces a better solution, the algo­
rithm terminates. 

3. Tabu search methods 

Tabu search methods were proposed by Glover (1986). Tabu search concepts 
are derived from artificial intelligence where intelligent uses of memory help in 
exploiting useful historical information. 

Tabu search heuristic, like descent (or greedy) heuristics, is a local search 
method that proceeds by examining some neighborhoods of the current solution. 
Unlike the descent method where the search terminates when there is no further 
improvement, tabu search allows the search to exploit inferior solutions as well as 
infeasible ones. This flexibility helps the search in getting out of local optimality 
when taking uphill moves or crossing infeasible regions. To avoid cycling, tabu 
search imposes some sort of tabu status to those attributes recently involved in 
the choice of the new solution. 

To date, tabu search methods have proved successful in producing good re­
sults to several combinatorial optimization problems, namely scheduling, graph 
coloring and graph partitioning, telecommunication path assignment, vehicle 
routing, quadratic assignment, location problems, and others. The obtained 
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references see Reeves, 1993; Glover et al., 1993; Osman and Laporte, 1996; and 
the book by Glover and Laguna, 1997). 

3.1. The basic tabu search procedure 

3.1.1. Initialization: 

• Generate an initial solution, Z. 
• Set the best current solution Zbest = Z. 
• Define a neighborhood N(Z). 
• Define the tabu list and set values for the tabu size. 
• Set the counter iter = 0 (current iteration). 

3.1.2. The tabu list 

• The tabu list contains a list of tabu moves. 
• The length of the tabu list is termed "tabu size" . 
• When a move is performed (for example, Zi j is changed from 0 to 1), 

Zi j = 0 is added to the tabu list. 
• A more efficient procedure is to record for each state (for example, Zij = 0) 

the last iteration number for which it was changed from 0. A state is in 
the tabu list if the difference between the current iteration number and 
the recorded value is not greater than the tabu size. 

3.1.3. Selection strategy: 

1. Evaluate F(Z') for Z' E N(Z) in a random order as the order in the 
greedy heuristic. 

2. If F(Z') < F(Zbest) for any Z' E N(Z), terminate the iteration (i.e., do 
not proceed to check whether there are even better solutions in N(Z)), 
set Zbest = Z* = Z', and go to step 4. 

3. Else, choose among the admissible solutions Z' E N(Z) the best one. Let 
the best one be z•. (An admissible solution is a solution whose move is 
not in the tabu list.) 

4. Set Z = z• and iter = iter + 1. 
5. Update the tabu list and go to Step 1. 

3.1.4. Stopping criterion: 

A suitable stopping criterion such as a limit on the number of iterations is 
required. 

3.1.5. Diversification (optional): 

Apply some forms of diversification on well defined solutions. A diversification 
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These tabu search steps seem to be straightforward to implement. However, 
the success of the method is dependent on having a good insight of the problem. 
There are a few questions which usually help in devising a successful implemen­
tation. The success of tabu search methods depends on the choice of the tabu 
size, the definition of the neighborhood, how diversification schemes are devel­
oped and employed, the way previous solutions are identified, the efficiency of 
the computer program, and above all a good understanding of the problem. For 
further details on these issues, see Dammeyer and Voss (1993), Kelly, Laguna 
and Glover (1994), Glover (1989, 1995), Salhi (1996), Thomas and Salhi (1998), 
Battiti (1996) . 

4. Various parameters for the tabu search 

4.1. The neighborhood 

Since each arc i - j can assume three values, there are 3m possible feasible solu­
tions to the problem. The neighborhood to be searched consists of 2m possible 
changes in the road structure. These consist of changing a certain arc from the 
direction it is in the present iteration to one of the other two possible directions. 

4.2. Starting solutions and stopping criterion 

Two possible schemes are proposed for generating the set of starting solutions, 
and terminating the tabu search. In each, the greedy heuristic is applied K 
times producing K solutions. To have control over the running time of the tabu 
search, we adopted the following stopping rules: 

• Each greedy solution defines a starting solution for the tabu search. The 
number of tabu iterations (a tabu iteration means moving to a neighbor) 
is set to the same number that were required for the greedy heuristic 
(a greedy iteration is finding a better solution). The number of iterations 
required for the greedy heuristic is an indicator for the complexity of the 
problem. 

• The best greedy solution, selected from the K available solutions, is used as 
the starting solution in our tabu search methods. The number of iterations 
in the tabu search is K times the number of the iterations required for 
obtaining the best greedy solution. 

Note that other measures, which are geared toward solution quality instead 
of computing time also exist. For instance, the use of non-improvement over 
the best solution after a permitted number of iterations, or no improvement 
in a certain number of successive iterations, etc. These stopping rules , though 
producing good results, can be too time consuming. The above two rules re­
quire the same total number of tabu iterations per problem and thus a similar 
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4.3. The tabu list 

Two different schemes are proposed for handling the tabu list: 

• Whenever a new best solution Zbest (including the final greedy solution) 
is found, the tabu list is emptied. We do not forbid previous tabu search 
moves leading to the best solution. We treat Zbest as if it were a starting 
solution for the tabu search. 

• The tabu list was maintained throughout the search including the itera­
tions performed by the greedy algorithm preceding the start of the tabu 
search. 

4.4. The tabu size 

The common way of defining the tabu size is to set it to a fixed value a priori 
(Osman and Salhi, 1996) or to choose the tabu size from a defined range (Skorin­
Kapov, 1990). In this study we define the tabu size in a dynamic manner by 
letting the tabu size value change at each iteration. Two ways to determine the 
tabu size at each iteration are proposed: 

4.4.1. Alternating tabu size value 

The tabu size TS is alternated between two values TSmin and TSmax regardless 
of the change in the value of the objective function. It is similar, in principle, to 
the random selection of the tabu size at every iteration. This is also similar in 
concept to the sy&tematic dynamic tabu tenure where the values alternatively 
increased and then decreased within a range (Glover and Laguna, 1997). In our 
experiments the alternating approach seems to work well. In our view, this may 
provide researchers with another facet of tabu search. 

4.4.2. Varying the tabu size 

• Two values constraining the tabu size are set. These are T Smin and T Bmax. 
• The tabu size, TS, in any given iteration is always bounded by TSmin ~ 

TS ~ TSmax· 
• Whenever a new best solution is found, or when a diversification is per­

formed, the tabu size TS is set to TSmax· 
• Each time the value of the objective function increases, TS is decreased 

by one as long as it does not go below T Smin. 
• Each time the value of the objective function decreases, the tabu size TS 

is increased by one as long as it does not exceed TSmax· 

4.5. A diversification scheme 

This module is introduced to guide the search in exploring other regions which 
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not to discover any promising solution. It may not be easy to detect the right 
timing for diversification or to define the appropriate way of diversifying the 
search. One common approach is to start from a random solution or a solution 
which has as much dissimilarity as possible with respect to other solutions. In 
this study the following diversification procedure is suggested: 

• The tabu size is varied as in Section 4.4.2. 
• A diversification is performed when TS = TSmin is reached. Since TS is 

increased by a down move in the objective function and decreased by an 
up move, then, in most cases, a diversification is performed when there 
are TSmax- TSmin more up moves than down moves since the last diver­
sification (or a new best solution found). An exception to this rule occurs 
when a down move in the value of the objective function occurs when 
T S = T Smax. This is very rare and may result in a diversification when 
the difference between up and down moves is less than TSmax- TSmin· 

• The diversification diverts the search back to Zbest but forcing the search 
to choose a different path from there. This different path is achieved 
by defining a forbidden list which contains the first two moves previously 
performed from Zbest· This forbidden list is augmented with new forbidden 
moves whenever we diversify back to the same Zbest. 

• The first two exchanges which are chosen after either a diversification or 
when the last new best solution was found are put in a new list which 
we refer to as the forbidden list. Note that this forbidden list is different 
from the tabu list. This list is emptied when a new best solution is found, 
initially contains the first two moves after the best new solution is found, 
and is increased by two moves at every diversification. 

• The solution is returned to Zbest while stopping the search from follow­
ing the same path which was previously selected when Zbest was initially 
found. This means that the moves in the forbidden list are not allowed to 
be used. A similar approach was successfully applied by Thomas and Salhi 
(1998) when solving the project scheduling problem with limited resources. 

• After each diversification, the tabu list is emptied except for the forbidden 
list. 

5. T he t est problems and com putational results 

We used three scenarios to evaluate the performance of the proposed tabu search 
heuristics. In the first two scenarios, the medium and small test problems given 
by Drezner and Wesolowsky (1997) are used. The third scenario is a real road 
network based on the highway system in Orange County, California. 

5.1. Investigat ional experimentation 

We tried many possible strategies in the implementation of the tabu search. 
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Drezner and Wesolowsky (1997). All these problems have the same network 
with n = 40 nodes and m = 99 arcs. The five problems differ in the value 
of a. The neighborhood for these problems consists of 198 possible exchanges. 
Evaluating the value of the objective function for each member in the neighbor­
hood took less than 0.03 seconds on a Pentium 166 MHz computer. Therefore, 
each iteration required less than 6 seconds of computer time. We performed the 
greedy algorithm K = 8 times. Therefore, if the best greedy solution is used 
for the tabu search, the number of iterations is K = 8 times the number of the 
iterations required by the greedy heuristic. We checked all the cross possibilities 
of the options for starting solutions, handling the tabu list, and determining the 
tabu size, as described above. 

5.1.1. The strategies used 

We concentrated on four main approaches: 

Fixed Using a fixed length tabu list (TS), i.e., TSmin = TSmax· 
Alt Alternating between TSmin and TSmax in consecutive iterations re­

gardless of the values of the objective function in these iterations. 
Div The tabu size was varied as described in Section 4.4.2 and a diversi­

fication performed as given in Section 4.5. 
NoDiv Varying the tabu size as described in Section 4.4.2 but without using 

diversification. 

Note that all approaches require about the same computer time because the 
number of iterations in the tabu search is set equal to the number of iterations 
in the greedy heuristic and thus was the same for all approaches. 

We concluded from these tests that: 

• Starting the tabu search from each terminal greedy solution is superior in 
most cases to selecting the best greedy solution and performing the tabu 
search with eight times the number of iterations. 

• Emptying the tabu list whenever a new best solution is better than re­
taining the history of tabu moves in the majority of cases. 

• We tested various fixed values of TS and various values for TSmin and 
TSmax· It was found that the values of 5% and 10% of the neighborhood 
size for T Smin and T Bmax, respectively, are better than other values. 

• The best performance was obtained by the alternating method. A close 
second was the diversification approach. However, most of the methods 
described above performed quite well. 

5.1.2. Obtaining the benchmark solut ions 

Since the optimal solutions for the medium size problems are not known, we 
conducted an extensive computation to obtain high quality solutions which we 



Selecting a good configuration of one-way and two-way routes using tabu search 733 

The alternating method was repeated one hundred times for each a to ob­
tain a good solution for each case. The results are summarized in Table 1. The 
best solution that was found by the tabu search in these one hundred exper­
iments, was run for additional 1000 iterations, using the alternating methods 
and then 1000 more iterations using the diversification method. This extensive 
tabu search resulted in the best solutions listed in Table 2. These solutions are 
used as the benchmark for comparison between various approaches, and they 
are depicted in Fig. 1. 

Greedy Tabu Search 

"' Bestt VOJecttve !teratwns Ttme (Mm.J VOJecttve ·1ota1 
Known per run Iterations 

Mm Avg. Mm Avg. Mm Avg. Mm Avg. Mm Avg. 
0.5 109080 108560 110153 119 138 0.53 0.94 108264 109277 238 276 
0.6 129122 128979 130459 105 126 0.55 0.94 128292 129322 210 251 
0.7 147165 147529 148802 89 107 0.54 0.90 147012 148085 178 214 
0.8 160608 160591 161112 51 66 0.53 0.77 160218 160836 102 132 
0.9 166379 166379 166401 12 13 0.25 0.44 166379 166379 24 27 
t Drezner and Wesolowsky (1997) 

Table 1. Results of 100 runs of the alternating method 

a Best Best Bench-
Known Greedy mark 

0.5 109080 108560 108253t 
0.6 129122 128406 128144 
0.7 147165 146775 146666 
0.8 160608 160308 160192 
0.9 166379 166379 166379 

t A better solution of 108213 
was obtained by starting with 
the a = 0.6 solution and per­
forming one greedy iteration. 

Ttme (Mm.J 
per run 

Mm Avg. 
11.36 13.53 
9.51 12.14 
8.24 10.21 
4.60 6.41 
1.12 1.53 

Table 2. Using additional iterations on the best solution of Table 1 

Since the tabu search required about 10- 15 times more computer time than 
that required for the greedy heuristic, for comparison with the results in Tables 
1 and 2 we repeated the greedy heuristic 1,000 times and report the best results 
in Table 2. Running the greedy heuristic 1,000 times required a similar run time 
to that required to get the benchmark results of Table 2. 

5.2. R esults of the t h ree scenarios 

Scenario 1: Medium size problems 

For comparison, five approaches were repeated ten times each (K = 10) (rather 
- · - -
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The Network for " = 0.9 (Objective: 166319) The Network for n = 0.8 (Objective: 160192) 

The Network for n = 0.7 (Objective: H 6666) Tbe Network for n = 0.8 (Objective: 128144) 

The Network for u = O.S (Objective: 108253) 
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problem the best solution found in these ten experiments, and the average value 
of the objective function. The results are summarized in Table 3. Run times 
are not reported because they are the same as the times reported in Table 1. 
The best value in each column is marked in boldface. These results confirm 
the results of the preliminary experiments. The alternating method was best 
(or tied for best) in six out of ten measures. The diversification method was 
best in five, the no-diversification approach was best three times, and the fixed 
approach was best in four cases each. 

<> - 0.5 <> - 0.6 <>- 0.7 <>- 0.8 <> - 0.9 
Method Mm Avg. Mm 1 Avg. Mm I Avg. Mm Avg. Mm I Avg. 
Benchmark 108213 128144 146666 160192 166379 
A It 108564 109082 129047 129523 147254 148020 160218 160821 166379 166379 
Div 108615 109163 128718 129433 147301 148111 160218 160757 166379 166379 
NoDiv 108615 109113 128853 129545 147301 148127 160218 160781 166379 166379 
Fixed (10) 108715 109061 129027 129609 147254 148204 160228 160822 166379 166379 
Fixed (20) 108594 109091 128867 129396 147288 148114 160218 160768 166379 166379 

Table 3. Ten repetitions of various tabu approaches 

The best solution reported in Table 3 was allowed to continue for twice as 
many additional tabu search iterations. The results are summarized in Table 4. 
It turns out that the diversification approach was best in four cases out of 
five, while the alternating approach was best in only three cases. The other 
approaches tied for the best result only once. 

Description Q = 0.5 Q = 0.6 Q = 0.7 Q = 0.8 Q = 0.9 
Benchmark 108213 128144 146666 160192 166379 
Alt 108330 128854 147103 160218 166379 
Div 108613 128504 147103 160192 166379 
NoDiv 108512 128794 147301 160218 166379 
Fixed (10) 108594 128974 147254 160218 166379 
Fixed (20) 108548 128867 147288 160218 166379 

Table 4. Various tabu approaches using additional iterations for the best result 

In conclusion, the alternating approach is superior when the number of tabu 
iterations is relatively small. When many tabu iterations are available, the 
diversification approach is better. 

All tabu search approaches are better than the greedy heuristic when the 
same computer time is required. The results in Table 3 should be compared 
with the best greedy result reported in Table 1. 

For each a there must be a range of a's for which the optimal configuration 
is the same. We therefore tried to use the best solution for one a as a starting 
configuration for another a. We usually obtained better than average solutions. 
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configuration was used for a = 0.5, one greedy iteration provided a better solu­
tion than the best a = 0.5 solution (see Table 2). Designing special algorithms 
by varying the value of a is left for future research. 

Scenario 2: Small problems 

We experimented with the five small problems tested in Drezner and Wesolowsky 
(1997), containing n = 14 nodes, and m = 20 arcs (see Fig. 2). The size of the 
neighborhood is therefore 2m= 40. The 5%-10% rule for the tabu size leads to 
tabu size between 2 and 4. For such a small problem these tabu sizes are too 
small. We obtained better results by using tabu sizes of 3 and 6. The results are 
summarized in Table 5. Each procedure was repeated fifty times. One run took 
about one second of computer time. In the table we give the optimal solution 
and two simulated annealing experiments that are reported in Drezner and 
Wesolowsky (1997). We report new results for the greedy algorithm, and the five 

a= 0.8 a= 0.7 

a= 0.6 a= 0.5 



Selecting a good configuration of one-way and two-way routes using tabu search 737 

Q = 0.5 Q = Ci.6 Q =0.7 Q = 0.8 Q = 0.9 
Desc. t Avg. t Avg. t Avg. t Avg. t Avg. 
Optimum 1385.0 1656.6 1859.2 1973.0 1998.0 
Greedy 4 1439.4 1 1708.0 6 1880.1 50 1973.0 50 1998.0 
Sim. An.(1) 5 1423.4 10 1690.4 7 1871.5 35 1974.1 48 1998.2 
Sim. An.(2) 12 1419.3 6 1691.4 5 1872.1 21 1977.0 39 1999.2 
Alt 17 1405.5 23 1681.3 43 1864.1 50 1973.0 50 1998.0 
Div 38 1390.9 43 1663.2 50 1859.2 50 1973.0 50 1998.0 
NoDiv 19 1405.2 27 1676.1 41 1864.2 50 1973.0 50 1998.0 
Fixed (3) 12 1422.6 30 1679.1 11 1866.7 50 1973.0 50 1998.0 
Fixed (6) 28 1396.8 36 1669.0 11 1861.2 50 1973.0 50 1998.0 
t Number of optimal solutiOns 

Table 5. Results for the small problems 

approaches tested for the medium size problem. For these particular problems, 
all methods obtained the optimal solution at least once. The preferred method 
for these small problems is clearly the diversification approach. The solutions to 
the small problems are depicted in Fig. 2. The solution to the a = 0.9 problem 
was all two-way roads. Therefore, we do not present it in Fig. 2. 

Scenario 3: Real network 

In this experiment we generated a realistic problem based on the highway system 
in Orange County, California. Sixteen communities in Orange County represent 
the nodes and twenty three arcs depict the major highways in the area (see 
Fig. 3). The coordinates and population figures for these communities are given 
in Drezner and Drezner (1998). The traffic between any two communities is cal­
culated as the geometric mean of the populations of the two communities divided 
by the shortest distance between the communities, and then rounded down to 
the nearest integer. All the computer runs for this problem were performed on 

Q = 0.5 Q= 0.6 Q = 0.7 Q = 0.8 a= 0.9 
Desc. t Avg. t Avg. t Avg. t Avg. t Avg. 
Optimum 16964.0 18320.2 18930.4 19304.6 19500.4 
Time (min) 199.14 156.17 64.47 16.41 1.80 
Greedy 0 17170.0 4 18427.2 30 18936.0 49 19304.9 100 19500.4 
Alt 20 16991.8 66 188350.9 100 18930.4 100 19304.6 100 19500.4 
Div 28 16990.6 100 18320.2 100 18930.4 100 19304.6 100 19500.4 
NoDiv 15 16992.8 100 18320.2 100 18930.4 100 19304.6 100 19500.4 
Fixed (4) 9 17002.4 63 18353.7 66 18935.2 100 19304.6 100 19500.4 
Fixed (8) 15 16992.4 100 18320.2 100 18930.4 100 19304.6 100 19500.4 
t Number of optimal solutwns 
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8r-------------------------------------------------------------~ 

3 

Fullerton Placentia 

Anaheim 10 

Figure 3. The Orange County Problem. 

Newport 
Beach 

Mission 
Viejo 

5-Freeway: Buena Park - Garden Grove - Santa Ana - Irvine - Mission Viejo 
22-Freeway: Cypress- Garden Grove- Orange 
55-Freeway: Placentia - Orange - Santa Ana- Costa Mesa - Newport Beach 
57-Freeway: Brea- Fullerton- Anaheim - Garden Grove 
91-Freeway: Cypress - Buena Park - Fullerton - Placentia - Yorba Linda 
405-Freeway: Cypress - Huntington Beach- Costa Mesa - Mission Viejo 
Eastern Corridor: Yorba Linda - Tustin - Irvine 
Imperial Highway: Brea - Yorba Linda 

a 233 MHz computer. The ratio of run times between the 166 MHz computer and 
233 MHz computer is 1.4. In Table 6 we report results for the optimal solution, 
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and five different strategies of the tabu search. Since the neighborhood size is 46, 
we first tested the range for tabu size between 2 (5%) and 5 (10%) but found the 
range of 4 to 8 better. Average run times for the greedy search range from 0.10 
to 0.27 seconds. T he average run times for the tabu search range from 0. 76 to 
5. 79 seconds. In this example the optimal solutions were also found by branch 
and bound (Drezner and Wesolowsky, 1997). The diversification approach was 
the best performer with average results within 0.2% of optimality as reported 
in Table 6. 

6. Conclusions and fut ure research 

This study investigates the optimal design of a road system which may include 
one-way and two-way routes. The objective is to minimize the total travel time 
of the system users. A tabu search technique is developed in order to find 
good solutions for this problem. New ways of handling the tabu size and a 
new diversification strategy are proposed. These implementations are tested 
on two random networks and one based on real road network from Orange 
County, California. The results obtained are encouraging. These approaches 
yield better results than those obtained by commonly used strategies employed 
in tabu search. 

The diversification approach was found to be the best one when a relatively 
large number of iterations are allowed in the tabu search. When we limit the 
number of iterations to a smaller number, the alternating approach performs 
slightly better. 

It was found that our tabu search implementation performs better than the 
simulated annealing algorithm reported in Drezner and Wesolowsky (1997). It 
is reported there that using similar run times, the greedy heuristic provided 
better results than simulated annealing. We are investigating the effectiveness 
of an improved simulated annealing and genetic algorithms for the solution of 
our problem. The results of this investigation will be presented in future papers. 
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