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1. Introduction 

In this paper we mainly discuss the second order necessary and sufficient opti­
mality conditions for local solutions of a distributed control probl eTJJ govern ed 
by the Neumann problem associated to a. semilinear ellipt ic par tial cl ifl'eren­
tial equation. Bound constrain ts on control arc considered , as well as equality 
and inequality constraints of integral type on Lbe gradient of the state. The 
main tools to deal with this objective are the necessary and suffi cient optimal­
ity conditions for some abstract optimi zation problems in Banach spaces stated 
in Section 4. These can be viewed as the natural extension of the correspond­
ing ones in finite dimension , although the lack of compactness in t roduces some 
well-known extra difficulties. The rest of the pa per is organized as follows: in 

11his research \Vas nartiall v sunnnrt.Prl hv 11irr.-r-riAn (.!pnor·.-, 1 ri o r-;' n ... ·o n ., ,..., . .., ~ . •1""'\rn.; ,.,. .. ,.... 
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Section 2 we study the existence, uniquettess and regularit.y of solut.iou for the 
state equation; in Section 3 the C2 character of the fnnctionals involved in our 
control problem is established; finally, in Section 5 we verify that our control 
problem satisfies the assumptions required the abstract optim ization problem. 

The control problem is stated a.s follows. Let r2 be a bounded open set in 
JRN with a. C1 boundary f. Let A be t he operator given by 

N 

Ay =- .~ ~ ( a;.i(x) oy), 
. OXj OXi 

t,J=l 

with a;j E C(O) satisfying 

N 

f.llii~II~N:::; ~ a;j(x)~i ~j :::; fl2II~ II~N y~ E JRN, Yx En, 
i,j=] 

for some positive constants f.tl and 1'·2. 
Let f : JR2 

---+ JR, go : JR2 
---+ lR and .rlj : JRN ---+ lR be contiuuott s fun ct ions for 

l S j S ne + n;, with n ;, ne 2 1. Let 1l.a, ·u.b E L00 (D) with 'll0 (:r) S 11.1J(;r) for 
almost every x E D. Our optimal control problem can be formulated as follows 

where 

with 

and 

Minimize J(u) 
U 0 (x) S u(:r) S 1/.0(:r) a .e . ;C E 0 , 
Gj(u) = 0, l S j S ne, 
Gj(u) S 0, ne + I S j S ne + n; 

J(u) = )~ 9o(Yu(x ),·n(;z;))clx, 

f(yu, u) inn 
0 on r, ( 1) 

REMARK 1 The continuity assumption on the coefficients o.;.i . and the C 1 reg­
ularity of the boundary of the dornai:n w·ill allow us to cons'ideT quite general 
integral constraints G1 (see condition (7) below), thanks to the reqv.lo:rdy re.mlt 
given in Proposition 1. Notice that we do not irnpose a;.j = aji· Neve'f'iheless. 
if the coefficients a;j are only bounded a.n.d the bov.ndary r is Dtpsch:itz, sorn.e 
res·nlts (similar to those obtained here) wn be derived, ass'ttm.ing ·rn.c1Te Testricted 
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2. State equation 

Let us begin by recalling the following resul t on the exist.ence, uniqueness and 
regularity of the solu tion for the NeumaJJn problem associated to fl lim~ar elli pti c 
partial differential equation, see Mateos (2000) for the proof: 

P ROPOSITION 1 Let p belong to (l ,+oo), .f E (W 1 ·P' (D))' with 7/ = rS and 

g E Ti\1 - f.•P(r). Then there exists a unique variat·ional solution y E ll' 1•r>( f2 ) to 
the Neumann's pToblem 

{ 
Ay + y = I 

OvAY = g 

in n 
on r. 

Moreover, the following estimate is satisfi ed. 

(2) 

wheTe C is a constant only depending on p, the dimension N , the coeffi cients 
aij and the domain n' 
REMARK 2 As us1utl, by a variational sohl.tion of pmblern (2) we ·nnderstand 
that y satisfies the var·iational equality 

N i' a c i' uy u tp L aij(x)-. -. (x )-. (x) dx + y( x)tp (x ) dx 
·. ' .1 • 0 OXi ox] . n 1,J = 

= (!, '-{J) (l~fl o~i (ll))' X 1+ L p ' (!1) + (.rJ , "f'fJ) W - +. ·I' (r) X ),1' +. 1,' (r' ) 

for all 'P E Tt\11 ,p' ( n)' where (.' . ) X ' X X denotes the dua lity pmduct between the 

space X and ·its dual X' , ~l : W 1·P' (D) _, Tl'f. ,p' (r ) is the trace operator and 
w - f., p(r) = (Tvf. ,v' (r))'. 

T n order to deal with the state equa Lion ( I) ami to ob1.<1 in ~~ C 2 relat ion 
control-state, we assume that the funct ion f belongs to C2 (JR(2

) and sa tisfi es 

of ? 
-,::;-(y, u) S -~LL < 0, 'r:f(y, ·n) E JR.- . 
uy 

Under this hypothesis, we cau prove the followin g theorem 

(3) 

THEOREM 1 For eveTy 1L E L00 (D) there e:cists a uniqv,e vaTiationo.l solntion 
y, E W1·P(0) for all p E (1, + oo) of the ]JTohlem (1 ) . Mo rcoveT: the mapping 
G : L00 (D) -+ W1·P(f2) 'is of class C2 joT all p E ( I, +oo) . If ·n, h E L00 (D) 
Yu = G('lL) and Zh = G'('n)h, then Zh 'i.s ihe solut'ion of 

of of 
-,::;-(y, ,1L) z+ -;::;-(Yu, 'lL )h inn 
UJ/ U1L (4) 
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Finally, if we take h1 ,h2 E L00 (D), zi = G'('n)hi and z12 = G"(n)[h1 ,h2 ].. we 
have 

(5) 

Proof. For a bounded function j , the existence of a unique solution Yu 
in H1 (D) is classical. Moreover, by using the mono tonicity of f with respect 
toy and a standard technique (see Stampacchia, 1965), it can be proved that 
Yu E L00 (D). In the general case, the result follows from the previous case via a 
truncation method. Since Yu, u E L00 (D), theu f (yu , n) E L00 (D) C (W 1•r' (D))' 
for all 1 < p < oo, the regularity result for linear equation s (Proposition 1 ), 
assures that Yu E W 1·P(D) for all 1 < p < oo. Hen ce, the mappiJJg G is well 
defined. To check that G is of class C 2

, we take 

endowed with the norm 

(recall that 

where v(x) = (v1(x) , ... ,vN(x)) denotes the unit outward normal vector tor 
at x.) 

Let us now define the function F : V(A) x L 00 (D) -. L 00 (D), F(y, u) = 

Ay- j(y,u). It is an exercise to show that F is of cl ass C 2 . Moreover 

~F (y,u) =A- ~f (y,u) is an isomorphism from V(A) to L 00 (D). Taking into 
uy uy 
account that F(y,u) = 0 if and only if y = G(1t), we can apply the implicit 
function theorem (see for instance Cartan , 1967) to deduce that G is of class 
C 2 and satisfies 

F(G(u), u) = 0. (6) 
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3. Functionals involved in the control problem 

As we have pointed out from the b eginning, t he aim of this work is to deduce 
second order optimali ty conditions for problem (P) . In order to deal wit h this 
task, we will assume that go E C 2 (JR2

) , g1 E C 2 (1RN) for each j = L . .. , n e + n 1, 

and 

for some exponent r E [1, + oo) and {L 2 > 0. 
Vle now study the differentiabili ty of J and G7. 

THEOREM 2 The functional J: L00 (D. ) --> lR is of class C 2 Moreover, for every 
u, hE £=(n) 

J'(u)h = k ( i: (Yu., u) + cpou ~~ (y 11 , 'IL)) h dx 

and for every u, h1 , h2 E L00 (!l) 

J"(u)h1h2 = 

(8) 

(9) 

where Yu. = G(u) , cpou E W 1·P(D) for all p E (I, +oo) is the ·nnique sol11.tion of 
the problem 

{ 

* of ago A cp = -;:;-(Yu,1L)cp + --;;) (y,,v) in n 
vy vy 

OvA.cp = 0 onr, 
(10) 

where A* is the adjoint operatoT of A 

A*cp =- t _!__ (aji (x) ocp ) , 
. . OXj ox, 
t,J = l 

and Zi = G'(u)hi, i = ] , 2. 

Proof. Let us consider the function Po: C(D) x L00 (!l) --> lR defin ed by 
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Due to the assumptions on 9o it is straightforward to prove that Fo is of class 
C 2 . Now, applying the chain rule to .!(11.) = .Fo(G(11.), v.) a11d using Theorem ] 
and the fact that W 1·P(D) c C(O) for every p > n we get that J is of class C 2 

and 

J'(u)h= in (%0
(yu ,u)zh+ i:(Yu,1L)h) dx . 

Taking 'Pou as the solution of (10), we deduce (8) from previous identity and 
( 4). Let us remark that the assumptions on f and 9o and the Proposition 1 
imply the regularity of 'POu· The second derivative can be deduced in a similar 
way, using Theorem 1 once more. • 

THEOREM 3 For each j , the functional G1 : U >O(D) --> IR is of class C2 . More­
over, for every u, hE L00 (D) 

Gj(u)h =in 'Pju ~~ (yu, u)hdx 

and for every u , h1, h2 E L00 (D) 

G'j(u)h1h2 =in [vz2 ~
2

:~ (Y'yu) Y'zl 

(ll) 

(12) 

( 
EP f 8

2 f 8
2 f ) ] +'Pju fJy2 (yu, u)z1z2 + fJyau (yu, u)(z1h2 + Z2hl) + OU2 (yu , u)h1h2 dx 

where Yu = G(u), 'Pju E H11·P(D) for all p E (1 , +oo) is the unique solution of 
the problem 

in n 
(13) 

on r , 

and zi = G'(u)hi, i = l, 2. 

Proof. Given p > r + 2 (see condition (7) ) , it is enough to consider the 
function of class C 2 F1 : Hf 1,P(D) --> IR defined by 

Fj(Y) =in gj(Y'y(x)) dx. 

Taking into account Theorem 1, we know that Yn E W 1 ·P(D) for each p E 
(1, +oo ). Moreover, thanks to the assumption (7), 

~9j (Y'yu) E LP(D) Vp E (1, +oo); 
UTJi 

hence. Prooosition 1 can be used in order to deduce that 'Piu is well defined and 
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REMARK 3 The solttt'ion of eq·na.t·ion {IS) must be interpreted in the j(Jl/ow'ing 
variational sense 

4. First and second order optimality conditions for opti­
mization problems 

Tn this section we present some resul ts on the optimality conditions for abstract 
optimization problems that have been mainly obtained by Casas a nd Tri:iltzsch 
(1999). 

Let us consider the following optimi zation problem 

{ 

Minimize J(1t) 
(Q) Ua(x) ::; u(x)::; 1Lu(x) a.e. :1: E !1, 

Gj(u) = 0, 1 ::; J::; ne, 
Gj(u) ::; 0, ne + 1 ::; j ::; ne + n i 

where ua, ub E L00 (D) and J, Gj : L00 (D) ----> JR. are given funct ions, I ::; j ::; 

n e + ni . 
We will assume that u is a local solu t ion of (Q), i. e. there ex ists a real 

number p > 0 such that for every feasible poin t of (Q), with llv.- ii ll L ""' (n) < p, 
we have that J(u)::; J(u). 

For every E: > 0, we denote 

De:= {x En: Ha(x) + E:::; 'ii.(x)::; 1Lu(:l:)- c}. 

We make the fo llowing regularity assumpt ion 

{ 
3c11 > 0 and {h j };Eio C L

00
(D), with supphj C n"" ' such that. ( !4) 

c;(u)hj = 6ij, i,j E lo , 

where 

Io is the set of indices corresponding to active constrain ts. We also denote the 
set of non active constrain ts by 

L = {j ::; n e + ni I G j ( u) < 0}. 

Under this assum ption we can derive the first order necessary condi t ions for 
optimali ty satisfied by fl. For the proof the reader is referred to Bonnans and 
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THEOREM 4 Let us assttme that (14) holds and J and {Gj}i'~in' a.n: of class 

C1 in a neighbourhood of u. Then there exist real numbers {:\ j }_j:;;,i"' s·u.ch that 

( 15) 

ne+ni 

(J'(u) + L ..\jGj(u) ,tt- fi.) 2::0 for allu0 :::; u :::; ub. (16) 
j = l 

Since we want to give some second order optimality conditions useful for the 
study of the control problem (P), we need to take into accouut the two-norm 
discrepancy; for this question see for instance Tofl'e (1979) and Maurer (1981). 
Then we have to impose some additional assumptions on fun ctions J a.nd Gj. 
(Al) There exist functions ¢,1/Jj E L2 (0.), l :::; j:::; ne +n;, such that for every 

hE L00 (0.) 

J'(u)h = l ¢(x)h(x)dx and G'lu)h = j~ ·t/Ji(x)h(x)d1:, 1 :::; j:::; n e + n; . ("17) 

(A2) If {hk}k=l c L00 (rl) is bounded, h E L00 (rl) a.nd hk(x)---> h(x) a .e. in 0. , 
then 

n~ +n .;. n ~:+ n·i. 

[J"(u) + L ..\jGj(u) ] h~ ___, [J"(·u) + L :\jGj'(tt)]h?. (18) 
j=l j = .l 

If we define 
n~+n i n,~+ n;. 

L(u, -\) = J(u) + L AjGj(u) and d(x) = ¢(x) + L ..\)1/Ji(x), (19) 
j = l j = l 

then 

f)£ (u, ..\)h = [l'(u) + nfL' ..\jGj(u)]h = J d(x)h(x)dx 'ih E L 00 (0.).(20) 
au j= l n 

From (1 6) we deduce that 

{ 

0 for a. .e. x E 0, such. that ua(x) < 'ii..(x) < ·nv(x), 
d(x) = 2:: 0 for a .e. a: E 0, such that ·u(x) = uu(x ), 

:::; 0 for a. .e. x E 0, sucb that 1t(x) = v.0(:r). 
(21) 

Associated with d we set 

0,0 = {x E 0,: \d(x)\ > 0}. (22) 
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with 

Gj(u)h = 0 if (j ::; ne) or (j > n e, Glu.) = 0 and :5-i > 0); 

Gj(u)h::; 0 if j > n e, Gj(7"i) = 0 and :5- j = 0; 

h( ) = { ;::: 0 if ·u(x) = 1t0 (1;); 
X ::; 0 if u( X) = 1/.b (X). 

471 

(24) 

In the following theorem we state t he necessary second order optimali ty 
conditions. 

THEOREM 5 Let us assume that (14), (Al) and (A2) hold, {5- .d j~i"' are the 

Lagrange multipliers satisfy-ing {15) and (16) and J and {Gj } j'~i" ' are of class 
C2 in a neighbourhood of u. Then the following inequality is satisfied 

cPL _ - 2 o 
ou2 (u, >..)h ;::: 0 \:fh E C11 . (25) 

Now u is a given feasible element for the problem (Q) sat isfying first order 
necessary conditions. Motivated again for the considerations on the two-norm 
discrepancy we have to make some assumptions involving the L 00 (rl) and L 2 (rl ) 
norms, 

(A3) There exists a positive number p > 0 such that J and {Gj }'j~in' are of 
class C 2 in the L00 (rl)-ball Bp('u) and for every 6 > 0 t here exists E. E (0, p) 
such that for each u E Bp(u) , llv - uii Loc (n) < E. , h, h, , h2 E L00 (n) and 
1 ::; j ::; ne + ni we have 

I 
[

8
2 
L - 8

2 
L - ] 21 2 

8u2 (v, >..) - ou2 (u, >..) h :S: bl lh llu(n) ' 

IJ'(u)hl ::; Mo,l ll hll u(n) , IGj(<t)hl :S: Mj, l ll hllu(n), 

IGj(u)h1h2l :S: Afj,2 llhl ll u (nl ll h2IIL2(n), 

Analogously to (22) and (23) we define for every T > 0 

0 7 = {x E n: ld(x)l > T} 

and 

(26) 

(27) 

C~ ={h E L00 (rl) satisfying (24) and h(x) = 0 a.c. :r E iY}. (28) 

The following theorem provides the second order sufficient oDtim ali tv con-
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THEOREM 6 Let u be a feasible point foT problem (Q) sat·isfying the .first ordeT 
necessary optimality conditions, and let v.s suppose that asswnptions (1 4) .. (Al) 
and (A3) hold. Let us also assume that 

()2 .c - 2 ? ou2 (u, >..)h 2: 8l\hii£2(n) Vh E C~ (29) 

for some 8 > 0 and T > 0 given. Then there ex·ist E > 0 and o: > 0 such 
that J(u) + aiiu- uii l 2(n) :S J(u) for CVeTy feasible point 1i for (Q), with 

llu- uiiL"" (n) < E. 

5. First and second order optimality condit ions for prob­
lem (P) 

In this section we assume that ·u is a local solution for problem (P). We denote 
by fj = G(u) the state associated to t he optimal control and by <pj = cp1v. the 
function satisfying (13) for u = ·u. Notation introcl ucecl in Section Lj will be 
used. 

5.1. First order necessar y conditions for (P) 

First order necessary conditions sa tisfied by 11 ca n be deduced very easil y from 
the abstract Theorem 4 wi t h tbe help of Theorems 2 and 3. 

THEOREM 7 Assume (14) is sat-isfi ed. Then there exist ·real 'll:tt.m.ucrs 5- i,.i = 
1, .. . , ni + ne and functions [j , <p E 1V1 ·P (fl) foT all p < oo such that 

~j j' gj ('Vfi (:r) ) d:r = 0, 
n 

{ 
A~ = f(y( x), u(x )) 

OvAY = 0 
in S1 
on r , 

{ 
a f ( _ _) _ + ago ( _ _) 

n , + n ;. 

( ag ) A*<p a y ,u <p 8 y,v. - L div 
01

; ('V:V) 
y y 

J"' l 
OvA•<p 0 

and 

(30) 

(31) 

·in S1 
(32) 

on r, 

j~ ( i: (fi , il) + {f ~:~ (Y, fi)) (n - 'ii.)dx 2: 0 { OT' all 'ILu :S ·n :S l/0 . (33) 

MoTeover, if <Po = <pov. and <pj = <?ju fo r I ::; j :S ne + n i arc the sohdions 
of {10) and {13) respect·ively foT ·u. = fi . then. 

ne+n·i 

<P = <Po + ). ~j<Pj . 
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REMARK 4 1. Equation {32) m1tst be interpreted in the same sense as that 
of Remark 3. 

2. In our case, assumption (Al ) is satisfied with ¢= ~~0 (fj , ii.) + <Po ~f (y , u) 
u·n u·n 

d ·'· _ a f ( _ _) an 'Pj = 'Pj au y , u . 

3. The regularity assumption {14) is equivalent to: There exists t > 0 such 
that the set of functions {w1 : j E J0 } ·is linearly independent ·in L1 (llt )· 
This condition looks very similar to the corresponding one in fin-it e dimen­
sions, with the identification Gj (1'1.) = ·t/J 1 . 

5.2. Second order necessary conditions for problem (P) 

Taking into account Theorems 2 and 3 together with the condit ions imposed 
over f, go, gj is not difficult to show that the assumptions for Theorem 5 are 
satisfied by the problem (P). Moreover in th is case we can identify 

d(x) = a;o (y(x) , u(x)) + <P(x) ~f (y(x ), 1t(x )). 
uu u 'lL 

So, we arrive at the following theorem. 

THEOREM 8 Let the hypotheses of Theorem 7 be sat·isfied. Then. 

a2£(_ ')h2 1 (a2go( _ - ) + _a2f( _ -)) -2d + 
--;::)2 u, A = ~ y, 1L '{)~ y , 1L Z X 
u1L n uy uy 

21 ( a2go ( - -) - a2f (- -))I -d -;---;- y, U + 'P -;---;- y, 1L 1Z X + 
n uyuu uyuu 

1 (a
2
go( _ _ ) _a2

f( _ - )) ! ? d + --;:}'2 y, u + 'P -;:;? y, n 1~ :r 
n uu uu~ 

(35) 

n, + n e 1 a2 . L >..1 v zh a 9;_ (\ly )\7:: dx ~ o 
i = l n ~ 

for all hE L00 (1l) satisfying h(x) = 0 for almost all x E D0 and 

in <P1 ~~ (y, u)h dx = 0 if (j :::; ne) or (.j > ne, L gi (\ly) = 0 and 5- j > 0) 

L <P1 ~~ hdx:::; 0 if n e + 1 :::; j :::; ni + n c and .In gj (\ly) = 0 and ).., i = 0 (3G) 

h(x) ~ 0 ifu(x) = ·ua(x) 

h(x):::; 0 ifu(x) = ub(x ). 
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5.3. Second order sufficient conditions for problem (P) 

Clearly, here we are going to apply Theorem 6. Let us see that the assumptions 
for this theorem are satisfied by our problem. The main difficu lty seems to be 
in proving that (A3) holds. Let u be a feas ible control satisfying fir st order 
necessary conditions (30)- (33) . Given v E L00 (fl), we denote 'Pv = cp0, + 
n e+n i 

L )._jCfjv, where <pov and 'P j v are the solutions of (JO) and (13) for v. = v , 
j = l 

respectively. Take h E £CXl (fl) and o > 0. 
Let us verify the first inequali ty in (26). Tn fact , we will state t.h at 

I [ 
cP L _ a2 L _ _ J ') I 
8u2 (v, .A) - ou2 (u, .A) h- ::; 

11(
82go( )+ ()2j( ))- ( 82go( - -) + _82f(- -)) -1111 
~ Yv,V t.p,~ Yv, v z - ~ y ,u t.p~ y , u z 1 

n uyuu uyuu uyu·u uyutL 

supposed that llv - uiiLoc (n) < E with E small enough , where 

{ Az 8 f (- -t + Of (- - )1 in fl 7)y ,uz 7)y,v. 1 
y u 

OvAZ 0 on r. 
(38) 

{ Azh 
Of 8f 

in fl 7J(Yv, v )zh + 7J(Yv, v)h y u 
OvAZh 0 on r . 

(39) 

We can carry out the argumentat ion working wi th each term in a separate 
way. Let us emphasize that the main ingredients to prove (37) are the cont inuity 
of the functional G, the C2 - regularity off and gj j = 0,], . . . , ne + n., a.Jld the 
assumptions (3) and (7) . 

Given J > 0, it is easy to es tablish for the first term of tbe left hand side of 
(37) that 
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provided t hat llv- uiiL=(n) is sufficiently small : thi s is a d irecl cnJ1 seq uenc:e of 
the continuous dependence of r.p, wit h respect to v in t he L00 (f2)-nonn , which 
can be obtained with t he help of P roposit ion 1. 

For the second term of (37), the Holder 's inequali ty leads us to 

11 ( 8
2 
90 8

2 
f ) ( 0

2 
90 - - - 0

2 
f - - ) -I --;;:;-;::;-(Yv, v ) + 'Pv--;;:;-;::;-(Yv, v) Z h - --;;:;-;::;- (y, ·u) + 'P --;;:;-;::;- (!J, ·n) z [hi 

n u yuu u yu·u uyvu uyu'll. 

+II ~2

;0 (Y, u) ll llzh- zllu(n) 
uyuu 1 oo (!1) 

Argumentation can be now completed by taking in to account t he estimations 

llzhliu(n) + llziiLz(n) :::; Cl[l hiiLz(n) and 

liz"- ziiL 2 (1l) :::; bllhiiL2 (n), 

when llv - uiiL=(n) is small. 
Foll owing the same scheme we have 

II 
()2 f - ()2 f - -II ·) + 'Pv
0 2 (y,"v)-r.p !Cl, 2 (y, ·n) llz~~.ll /,z(n) 

Y uy L'X (ll) 

+ ll 0 ~
2

~· (i7. ·dl liz,, - zll r ~ rmlb +zilr 2rn\ . 

(40) 

( 41) 
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which together with ( 40)-( 41) allow us to deal wi t h the t hird term of (37). 
We study the last term , by decomposing it as follows and using Holder 's 

inequality once more 

~ L lvzh (~:; (Vyv)- ~:~;(Vy)) \lzhldx 

+ L 1(\lzh- \lz) ~:; (\ly) (\l zh + Vz)l dx ~ 

~ IIVzhiiL,(n) II ~29i (Vyv) - ~29; (VY) II 
'f/ 'f/ L•i([l)N2 

+IIVzh- Vzllv·cm iiVz" + Vzll v·cn) II ~29i (Vy) ll ? 

TJ L'I(!]) N-

With p = 2N/(N- 2) (if N > 2), p = 3 (if N = 1 or 2) and q = pp' j(p- p'). 
The exponent p has been chosen such that L2 (D.) C (Hfl, p' (D.))' . Hence, 

using P roposition 1, we have that 

( 42) 

when llv- ull L oo (!1) is bounded . Moreover , in t his case, sub tra.c t i ng t he equations 
(38) and (39) and using Proposition 1 once more, we can derive that 

Finally, we can deduce that 

II ~
291 (Vyv ) - ~29i (Vy) ll . < J 
TJ TJ L'l(!])N 2 

for small enough llv- ull u"' (!1) uni formly with respect to u. Let us show thi s 
in detail: by the continuity of the functional G and Lhe assumption (7), given 
fi xed ij > q, t here exists a positive constant C3 such Lhat 

the exponent r being the one int roduced in (7) for every feasible poin t v . Given 
M > 0, let us introduce the sets Et1 = {x E n : II VYv(:c)ll ::::: M} and E~4 = 
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but we will not emphasize this. Here , it is important to poin t out the obvious 
inequality 

The sa.me argument holds for E~1 . 
Thanks to the regularity of gj , t he second order derivatives are uniformly 

continuous in the ball of IRN with center at the origin and radius M. Hence, 
there exists E1 > 0 such that for lh - ~I IJRN::; E1 with llrJIIJRN, II~IIJRN::; M, we 
have 

Using again the continuity of the funct ional G, t here exists E2 > 0 such tha t 
when ll v- uiiL= (O) ::; E2, then 

In !I'VYv(x)- 'ily(x)lldx::; Et ~;. 

Let us introduce another set Ef/ = {:r E n II 'VYv(x) - 'V:i/ (1:) 11 > E J }. 

Arguing as before, we derive 

In particular, the last two relations imply nL(E(t) ::; 1J-. Combining the previous 
estimations and using Holder 's inequality with s = ijjq, we get 

b 1/ s' 
/ '> (C4\ "a+ l ls rro 
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This right hand term can be taken to be less t ha n J, provided t hat. J\;J is sufll ­
ciently large. 

All the above considera tions imply that the first condition on t he continui ty 
of the second deriva tive of the Lagrangi an in (26 ) is satisfi ed . The rest of 
the conditions follows easily from the properties of t he fun ctions f and g1, 

j = 0, 1, ... , n e + ni· 

THEOREM 9 Let u be a f easible point f or pm blem (P) and let us s·uppose that it 
satisfi es the regularity assumption (14) and the firs t ordeT necessary cond·itions 
stated in Theorem 7. Let us also assume that 

1 (a2go c- -) + _82 f (- -l) 2d ~ y , u cp~ y, u z 11 x+ 
!1 vy v y 

( 43) 

for all h E L 00 (0) satisfying (36) and h (x) = 0 fu r nlmost every :.r E IF and 
some 0 > 0 and T > 0 given . Then there exist f > 0 and o > 0 such that 
J(u) +allu-ull i 2(!1) ::; J(u) f or every feasible control u with lln- ?t: II L"" (fl) <f. 

There is no difficulty in extendin g our results to more general situa tions, 
where the nonlinear term f of t he st at e equation depends 011 (.1:, !J11 , ·u.), t.he cost 
functional J is given by an integrand go depending on (J;, y.11 , 'lyn, u ) a.s well 
as the integra l constraints G1. Clearl y, in thi s case, some a ppropi a te growth 
conditions have to be imposed in order to apply t he a.bstracL framework (sec 
Section 4). 
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