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1. Introduction

In this paper we mainly discuss the second order necessary and sufficient opti-
mality conditions for local solutions of a distributed control problem governed
by the Neumann problem associated to a semilinear elliptic partial differen-
tial equation. Bound constraints on control are considered, as well as equality
and inequality constraints of integral type on the gradient of the state. The
main tools to deal with this objective are the necessary and sulficient optimal-
ity conditions for some abstract optimization problems in Banach spaces stated
in Section 4. These can be viewed as the natural extension of the correspond-
ing ones in finite dimension, although the lack of compactness introduces some
well-known extra difficulties. The rest of the paper is organized as follows: in
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Section 2 we study the existence. uniqueness and regularity of solution for the
state equation; in Section 3 the C? character of the functionals involved in our
control problem is established; finally, in Section 5 we verify that our control
problem satisfies the assumptions required the abstract optimization problem.

The control problem is stated as follows. Let 2 be a bouuded open set in
RY with a C! boundary T. Let A be the operator given by

N
9 9y
Ay =— Z - (flij(x)a,—&_i),

ij=1 7

with a;; € C(Q) satisfying

N
#l"f"ﬁRN < Z aij(2)&:é; < iizlfiu'fg,v VEeRY, vaeq,

i,j=1

for some positive constants g, and po.
Let f:R?* =R, go: R* — R and g; : RN — R be continuous functions for
1 < j € ne+ ny, with nj,n, > 1. Let u,.up € L(Q) with w,(2) < uy(x) for

almost every o € . Our optimal control problem can be formulated as follows

Minimize J(u)

Ug(z) S ulz) <uy(r) ae x €l
Gj(u) =0, 1 <j<ne,

Gj(u) <0, ne+1<j<n.+n;

(P)

where
J(u) :js;go(y,,(;u).-u(:.ef))d.‘u,

with

Qv alu 0 on [, ()

1l

{ Ay = [(Yu,u) in§2

and
G;(u) :]!:!gj(VTu(:::))d;rr.

REMARK 1 The continuity assumption on the coefficients a;;. and the C' reg-
wlarity of the boundary of the domamn will allow us to consider quite general
integral constraints G; (see condition (7) below), thanks to the regularity result
given in Proposition 1. Notice that we do not impose a;; = aj;. Nevertheless,
if the coefficients a;; are only bounded and the boundary I' is Lipschitz. some
results (similar to those obtained here) can be derived. asswming more restricted
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2. State equation

Let us begin by recalling the following result on the existence, uniqueness and
regularity of the solution for the Neumann problem associated to a linear elliptic
partial differential equation, see Mateos (2000) for the proof:

PROPOSITION 1 Let p belong to (1,+0c). f € (W'P'(Q)) with p/ = ;J_’—]- and

g€ wr P(I"). Then there exists a unique variational solution y € WP(Q) to
the Newmann's problem

Ay+y = [ inQ i
{ O,y = g onl. @

Moreover, the following estimate is satisfied.

Iobwisiey < € (I koo + ol b )

where C is a constant only depending on p. the dimension N. the coefficients
a;j and the domain §.

REMARK 2 As usual, by a variational solution of problem (2) we understand
that y satisfies the variational equality

Z/a,}(i)an i ('.!)dt-} / y(z)p(z) de

1_‘,"‘

={ ‘P)(H"-f-’tmrxn-‘l-f"m 49 70) by o 1y

for all o € WP (Q), where (") yrxx de nm‘(s the duality product between the
space X and its dual X', 5 : WHP'(Q) — W#P () is the trace operator and
W=5P(I) = (Wr?(T)).

In order to deal with the state equation (1) and to obtain a C* relation
control-state, we assume that the function f belongs to C%(R?) and satisfies

d ; ;

a—i(y, u) < —py <0, Y(y.u)€ R (3)
Under this hypothesis. we can prove the following theorem

THEOREM 1 For every u € L*(Q) there exists a unique variational solution

yu € WHP(Q) for all p € (1,+00) of the problem (1). Morcover. the mapping

G : L®(R) — WhP(Q) is of class C? for all p € (1,+x). Ifw, h € L®(Q)

Yu = G(u) and z, = G'(u)h, then z, is the solution of

af of .
z = T \Yu,u)z == (Yu:' in £
! A 30 (Y )z + Pu (yu.-1w)h in (4)



466 E. CASAS, L.A. FERNANDEZ and M. MATEOS

Finally, if we take hy, hy € L®(Q), z; = G'(w)h; and z;5 = G”(u)|hy, hs]. we
have

5 0 9% f d
ten = Lz + S wnz + 3w wmn

{ . = % ' (5)
+ayau(yu1u)(k]h;2 - ‘-'Zh-l) inQ

I 8»AZ12 = 4 on I

Proof. For a bounded function f, the existence of a unique solution v,
in H(Q) is classical. Moreover, by using the monotonicity of f with respect
to y and a standard technique (see Stampacchia, 1965), it can be proved that
Yu € L*(Q). In the general case, the result follows from the previous case via a
truncation method. Since y,,,u € L=(Q), then f(y,,u) € L=(Q) C (W' (Q))’
for all 1 < p < oo, the regularity result for linear equations (Proposition 1),
assures that y, € WhP(Q) for all 1 < p < oc. Hence, the mapping G is well
defined. To check that G is of class C?, we take

V(A)={ye W"P(Q): Aye L®(Q), d,,y =0}
endowed with the norm

lyllviay = lyllwre) + 1Ayl L= @)
(recall that

N

Byay(a Z m)—(w;(m)

where v(z) = (v1(z),...,vn(z)) denotes the unit outward normal vector to T’
at x.)

Let us now define the function F' : V(A) x L*®(Q) — L>=(Q), F(y,u) =
Ay — f(y,u). Tt is an exercise to show that F is of class C?. Moreover

g—F(y,u) =A- {—9—-(31, u) is an isomorphism from V(A) to L* (). Taking into
Y Y

account that F(y,u) = 0 if and only if y = G(u), we can apply the implicit
function theorem (see for instance Cartan, 1967) to deduce that G is of class
C? and satisfies

F(G(u),u) = 0. (6)
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3. Functionals involved in the control problem

As we have pointed out from the beginning, the aim of this work is to deduce
second order optimality conditions for problem (P). In order to deal with this
task, we will assume that go € C?(R?), g; € C2(R") for each j = 1....,n.+n,,
and

N

. (|99
g a—m(n)l+§

9j
< | Omi O )

) <p(l +lnl")  ¥peRY (7)

for some exponent r € [1,+0c) and 3 > 0.
We now study the differentiability of J and G;.

THEOREM 2 The functional J : L®(Q) — R is of class C%. Moreover, for every
u,h € L*(£)

J'(u)h = fn (%(yu,u)+<pm%(yu.u)) hds ®)

and for every w,hy, hy € L(£2)
J"(u)hihy =

g0 g0
/ a ) (ym”')zlzz o —— aya {yﬂ,u)(x.]h') + ~2h]) '+‘ (Ju ”-)h]h;l‘ {!])

82 8‘2 32
+Pou ( By {(yu,u)zlzz Wa{;('y‘“ u)(z1ha + zhy) + 5%(?}-‘1-"):‘*-!?@)] da

where y, = G(u), wou € WWP(Q) for all p € (1,+00) is the unique solution of
the problem

‘o = f 990 ,
{ Atp = (.Uu w)p + — By (yusu) n Q) (10)

Q.0 = [] on T,
where A* is the adjoint operator of A

N
0. o d p
Lg= Z Ox; (“'“( )3:,)
and z; = G'(u)h;, 1 =1,2.
Proof. Let us consider the function Fy : C(2) x L>(2) — R defined by

L e, [ ST (Y s QT L, oo et
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Due to the assumptions on gq it is straightforward to prove that Iy is of class
C?. Now, applying the chain rule to J(u) = Fo(G(u),u) and using Theorem 1
and the fact that W1P(Q) C C(Q) for every p > n we get that J is of class C?
and

b= [ (2% 990, .
J(u)h-/ﬂ(ay (yu, )z + 7 (yu,w)h | dz.

Taking g, as the solution of (10), we deduce (8) from previous identity and
(4). Let us remark that the assumptions on f and go and the Proposition 1
imply the regularity of ¢g,. The second derivative can be deduced in a similar
way, using Theorem 1 once more. n

THEOREM 3 For each j, the functional G; : L(Q2) — R is of class C*. More-
over, for every u,h € L*(Q)

v = [ 0.2
Gj(u)h_/n(pju au(yu,u)hda: (11)
and for every u, hy, hy € L*°(Q)
2.
G (u)hyhy = f [v,z?%i;(vu)vzi
or 0 oy 82 12
+@ju (8_y2(yuvu)zlz2 + M(yuau)(zl’h? T 22."11) + @(yn:u]hihz)] dx

where y, = G(u), @;, € WHP(Q) for all p € (1,+00) is the unique solution of
the problem

7]

* af . g5 . ;
A Piju = a_y(yu: w)pju — rit'u(-g;.}iLVT w)) in €2 (13)
OussPiu = 0 on I,
and z; = G'(u)h;, 1 =1,2.

Proof. Given p > r + 2 (see condition (7)), it is enough to consider the
function of class C? Fj : W?(Q) — R defined by

Fi(y) :/ng(Vy[:c)) dx.
Taking into account Theorem 1, we know that y, € W"?(Q) for each p €

(1,400). Moreover, thanks to the assumption (7),

S2(V) € L7(@) Ve (1, +o0)

hence. Proposition 1 can be used in order fo deduce that g;, is well defined and
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REMARK 3 The solution of equation (13) must be interpreted in the following
variational sense

N s
a(roku, 81!) t _/aj ; i ol
i,jz]/naj,(x)a_—xr_(.r)a(n,)da =l Oy(y"_.u)p;;."v da
N
Jgx i
-+ ——(Vyu)=—(x) da
Z | 70, V@

for all p € WhP (Q).

4. First and second order optimality conditions for opti-
mization problems

In this section we present some results on the optimality conditions for abstract
optimization problems that have been mainly obtained by Casas and Troltzsch
(1999).
Let us consider the following optimization problem
Minimize J(u)
ua(z) € ulz) L w(v) ae x €,
Q) Gi(u) =0, 1< j<n,,
Gj(u) <0, ne+1<j <n.+mn;
where uq, up € L®(2) and J,G; : L=(Q2) — R are given functions, 1 < j <
Yiw 4+ Mis
We will assume that @ is a local solution of (Q), i.e. there exists a real
number p > 0 such that for every feasible point of (Q), with [lu — @/~ () < p.
we have that J(@) < J(u).
For every € > 0, we denote

Q. ={z € Q:uy(x) +& <iifz) < wylw) — e}
We make the following regularity assumption

Jea > 0 and {h;};er, € L*(€2), with supph; C €., . such that (14)
G;(ﬁ)hj = 5§j, i,j € Iy,

where
Iy = {j <ne+n; [G:(ﬂ) — 0}

Iy is the set of indices corresponding to active constraints. We also denote the
set of non active constraints by

I = {j < n. +n;|G;(z) < 0}.

Under this assumption we can derive the first order necessary conditions for
optimality satisfied by @. For the proof the reader is referred to Bonnans and
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THEOREM 4 Let us assume that (14) holds and J and {G;}j-™ arc of class

C" in a neighbourhood of @w. Then there exist real numbers {), ’_1 1™ such that
X 20, ne+1<j<n.+n;, \j=0ifjel; (15)
Netni B
(J'(a) + Z AiGi(@),u—a) >0 for all ug < u< w, (16)
j=1

Since we want to give some second order optimality conditions useful for the
study of the control problem (P), we need to take into account the two-norm
discrepancy; for this question see for instance Toffe (1979) and Maurer (1981).
Then we have to impose some additional assumptions on functions J and Gj.
(A1) There exist functions ¢,v; € L?(), 1 < j < n. +n;, such that for every

he L*(Q)

]QB z)dr and G'(a)h = / Yi(z)h(z)de, 1 <7 <ne+n;. (17)

(A2) If {hx}2, C L™(Q) is bounded, h € L®(Q2) and hi(x) — h(x) a.e. in Q,

then
T+ M, +7 -
[J"(@ Z NGY(@)hE — [J"(@)+ Y NG (@)h*. (18)
=1
If we define

Ne+1i ..+

L(u,\) = + > A\Gj(u) and d(z Z Ai(z),  (19)
j=1

then
aL

_I
au(u Nh = [J'(@) + Z:: NG Gi(a)lh —-/ d(z)h(z)dz Yh € L*>(2).(20)

From (16) we deduce that

0 forae. x € such that u,(z) < @(z) < wy(x),
d(z) =4{ >0 forae z€Qsuchthatd(z)=u,(z), (21)
<0 forae. x€ Qsuch that @(a) = uy(x).

Associated with d we set
={z € Q:|d(z)| > 0}. (22)

Given {)xj};-‘;T"“ by Theorem 4 we define
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with
Gi(@)h =0if (j < me) or (j > ne, G;(@) =0and A; > 0);

G5(@)h <0 if j > n,, G;(i) =0 and X =0

B >0 if ﬁ(l) = uu(:""):
h(z) = { <0 if i(2) = up(z).

In the following theorem we state the necessary second order optimality
conditions.

THEOREM 5 Let us assume that (14). (A1) and (A2) hold. {)\; e I are the
Lagrange multipliers satisfying (15) and (16) and J and {G;}7" e of class
C? in a neighbourhood of @. Then the following inequality is sm‘:sﬁr:d

32
52 (@ Mh? >0 VheCo. (25)

Now 1 is a given feasible element for the problem (Q) satisfying first order
necessary conditions. Motivated again for the considerations on the two-norm
discrepancy we have to make some assumptions involving the L>(2) and L%(£2)
norms,

(A3) There exists a positive number p > 0 such that J and {G| are of
class C? in the L>(92)-ball B, (i) and for every § > 0 there omst% € (0,p)
such that for each u € By(@), ||v — @~y < €, h,Ju, hy € L=(2) and
1 € j € ne + n; we have

n, rH

[ |[8%L, -. &L
Hg@-(m) (@, A)] < 61hl22 0,
|7/ ()| < MoallhliLa), |G (w)h| < M|kl 20, (26)
[J"(u)hihe| < Moa|lhillLz@)llhzll L2 ()
\ IG;’(“)"“Ihﬂ < ‘n")rj.2"hl||L3([!)||".*'2HL'-'{Q).
Analogously to (22) and (23) we define for every 7 > 0
={z €Q:|d(z)| > 7} (27)

and
Ci = {h e L®(Q) satisfying (24) and h(z) =0 ac. 2€Q7}. (28)

The following theorem provides the second order sufficient optimalitv con-
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THEOREM 6 Let @ be a feasible point for problem (Q) satisfying the first order
necessary optimality conditions, and let us suppose that assumptions (14). (A1)

and (A3) hold. Let us also assume that
oL =
9u 5 (@, A)h? > 8|2y VheEC] (29)

for some & > 0 and 7 > 0 given. Then there exist ¢ > 0 and o > 0 such
that J(@) + aflu — ﬂ“iz(g) < J(u) for every feasible point u for (Q). with
||’U'. = EHL"“(Q] <,

5. First and second order optimality conditions for prob-
lem (P)

In this section we assume that @ is a local solution for problem (P). We denote
by 7 = G(u) the state associated to the optimal control and by 3; = ;s the
function satisfying (13) for u = ii. Notation introduced in Section 4 will be
used.

5.1. First order necessary conditions for (P)

First order necessary conditions satisfied by @ can be deduced very easily from
the abstract Theorem 4 with the help of Theorems 2 and 3.

THEOREM 7 Assume (14) is satisfied. Then there exist real numbers :\‘,.j =
l,...,n; +ne and functions §,@ € W'P(Q) for all p < 00 such that

Ai=20 ne+1<j<n+mn, 5\1‘/ 9;(Vy(x)) da = 0. (30)
1
Ay = f(_,-'(:t) i(z)) nQ (31)
Od = onl, '
P o ()
A'¢ = —(f) ) + _(T,-' i) — Z iw(a— Va;}) in Q (32)
Opup = 0 on T,
and
990 (7 il i, &4 .
—=—(7,%) + tp {y, i) | (u—a)de =0 forallu, <u<uw. (33)
du 0

Moreover_. if @0 = wou and @; = @ja for | < j < ne +n; are the solutions
of (10) and (13) respectively for uw = u . then

Ne+n;

G=go+ Y. Aid;. (34)
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REMARK 4 1. Equation (32) must be interpreted in the same sense as that
of Remark 3.
; ; : sk o Olfss _af
2. In our case, assumption (A1) is satisfied with ¢ = -é—(y, ) + ,905—('_:;, i)
u u
d o
and P; = @ja—i(ﬂ,u).
3. The regularity assumption (14) is equivalent to: There exists € > 0 such
that the set of functions {¥; : j € Io} is linearly independent in L' ().
This condition looks very similar to the corresponding one in finite dimen-
sions, with the identification G'(@) = ;.
5.2. Second order necessary conditions for problem (P)

Taking into account Theorems 2 and 3 together with the conditions imposed
over f, go, g; is not difficult to show that the assumptions for Theorem 5 are
satisfied by the problem (P). Moreover in this case we can identify

d(z) = 22 (G2), (@) + P(@) 5 ((a), lz).
So, we arrive at the following theorem.

THEOREM 8 Let the hypotheses of Theorem 7 be satisfied. Then
- g0, ., Of
W(H’Ajhz —/ (ayu( ) +y0J (J,u)) 2 dx+
9% f
,4) + @ g, i) | hzdx
2/ (Byau(J a) + 81;31 — (7, z)) 1Z do+

8290 y, U Ef 2
/ (31&2 (@,7) +¢ P = H)) h? da+
Mi+ne

ZA] (V)vm>0

for all h € L®(RQ) satisfying h(z) = 0 for almost all x € Q° and

/ ﬁjg(g},ﬁ)hdr =01if(j £ne) or (j > ne, / 9;(Vg) =0 and 5\1 > 0)
q ~0u Jo

s

/Q gﬁjg-i-hdz; <0ifn.+1<j3<n;+n. and /ng-(vm =0 and :\; =0 (36)

h(z) =2 0 if i(z) = ua(2)

L h(z) <0 if i(x) = wy(z).
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5.3. Second order sufficient conditions for problem (P)

Clearly, here we are going to apply Theorem 6. Let us see that the assumptions
for this theorem are satisfied by our problem. The main difficulty seems to be
in proving that (A3) holds. Let @ be a feasible control satisfying first order
necessary conditions (30)-(33). Given v € L%(Q), we denote o, = @ou +

netni
Z ijpj,,, where g, and ¢;, are the solutions of (10) and (13) for u = wv,
=1
respectively. Take h € L*(f2) and é > 0.
Let us verify the first inequality in (26). In fact, we will state that

L. . L. .o
‘[m(ﬂ, A) — 3—‘”2('&, /\):| he| <

i Bt . 0%
| |5 000) + 5 ) - 52 05.8) - 055 510)

(92!}0 an 9290 B = azf - _’
/52 (3&’3”(%’1}) e dyou (yv‘t)) (ayau( B+ lp@ya'u @ “'}) #|

2 32 2
/)( y‘u; +‘pugT£(ymv)) 2—(M!jﬂ af t

T ni

2

supposed that ||v = @|| () < & with & small enough, where

2 2
g0 g h? dx+

2

2% (Vy,)Vz, - vz—f(Vy)Vz

3 dz < 6||h|13 2 1q) (37)

af af

Az = 3—y(y, W)z + -a:(_j, w)h inQ (38)
O Z = 0 on I
d 0 ;

Azp = 6—;-(.%,”)3:; + a_i(yu-. 'U)h in O (39)

Opuzn = 0 onT.

We can carry out the argumentation working with each term in a separate
way. Let us emphasize that the main ingredients to prove (37) are the continuity
of the functional G, the C*— regularity of f and g; j =0,1,...,n. +n; and the
assumptions (3) and (7).

Given & > 0, it is easy to establish for the first term of the left hand side of
(37) that

”6200; A 82f; LS 0290 f= =\ ,:asz.: .".\” =
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provided that [[v — @|| = (q) is sufficiently small: this is a direct consequence of
the continuous dependence of ¢, with respect to v in the L®(Q)-norm, which
can be obtained with the help of Proposition 1.

For the second term of (37), the Hélder’s inequality leads us to

8% >*f &*go g
Pu vy UV , y, U 7 ]
Q (c'?y(")u (4, v) + Oyou (o, )) Zh (ayau(y' B+ 8 0(/0(/ > \ Il

||zh

9%go 9*go
<|lh — V) — ——(3, 4
< Ihlzc (H 0 (1) — o (51)

L2(Q)
L2 ()

5290

+ 7, ) lzn = 2l 202
of B L

-+ (,Ovm(yu,v) = (P(')yau (.‘/77") _— HZhHL?(Q)

el gl -

Ayou "’ L=(Q) ! H

Argumentation can be now completed by taking into account the estimations

) + 12l L2() < Cillh

L@ and (40)
lzn = Zll 20y < Sl1All 20y, o)

when [lv — | oo (q) is small.
Following the same scheme we have

o2 92 f 920 o —ng R
i < aygzo (ym ) + ‘lplla Jz‘(Ju U)> ~}2) < 0 J)() ('LI/,'I/) + \p 5 (,y’,“)) 5=

dao <
y? dy
d*go 9go 9
% (Yu,v) — (g, 1) 2l 2
H oy? 7 9y? L~(Q) )
D%g0,_ _ -
+‘ 5,2 (0: 1) 2 = 2l L2 120 + 2l L2 ()
Y L=(5)
i Of 5
+ i o \ Yy Y ) ™ p ‘» IM? T2(c
(p ayg (Jl l) (’”ayz(l ”) L\(Q) 9 (Q)

+ ”@22—{{7_/1_““ Nz — zZlr2enllzn + 2l r2ron.
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which together with (40)-(41) allow us to deal with the third term of (37).
We study the last term, by decomposing it as follows and using Holder's
inequality once more

&g, P
fn Vazy ané’(Vyu)Vzh~Vz§7}2i(Vy)Vz de <
< [ |va (%(vy )5 (Vy)) V| d
i) n anz l ]

dx <

_ 3293‘ = A
(Vzp — Vz)a—nz—(Vy)(Vzh + Vz)

i

9%g; 0%g; -
< IVanlifray | 58 (Vo) = 5,2 (VD)

o

Lia(Q)N?

HIVap = V| Loyl Var + VZl L)

8295 o
W(Vy)

Lu()N?

with p=2N/(N-2) (if N >2),p=3(if N=1or2)and q=pp'/(p—7').
The exponent p has been chosen such that L2(Q) ¢ (W7 (€)). Hence,
using Proposition 1, we have that

IVzalle) + IVZl| Lriq) < Callhllz2(0)- (42)

when ||v—|| . (q) is bounded. Moreover, in this case, subtracting the equations
(38) and (39) and using Proposition 1 once more, we can derive that

IVzn = VZ| o) < 8lbll2()-
Finally, we can deduce that

3293 3 c°g

o Fr) <4é

Lu(Q)N?

(V) — (Vo)

for small enough [|v — || ;= (q) uniformly with respect to v. Let us show this
in detail: by the continuity of the functional G and the assumption (7), given
fixed ¢ > g, there exists a positive constant Cs such that

8303

< C.
on? < G,

Li(@)N?

—— (V)

agg}'
a_qg(vyv)

VYol Lrig) + IVl ra) +
L'f(mﬂ”

the exponent r being the one introduced in (7) for every feasible point v. Given
M > 0, let us introduce the sets EM = {z € Q : [|[Vy,(z)]| > M} and E} =
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but we will not emphasize this. Here, it is important to point out the obvious
inequality

1 C
m(EY) < 57 [ 1Vn)ldo < 3

The same argument holds for E.

Thanks to the regularity of g;, the second order derivatives are uniformly
continuous in the ball of RV with center at the origin and radius M. Hence,
there exists €1 > 0 such that for [[n —qllgy < €1 with [In[lg~, [7illpy < M, we

have
§ 5 1/q
RN 4m(9) '

Using again the continuity of the functional G, there exists e > 0 such that
when [|v — @[ oo () < €2, then

02gj azgj -
Ha—nz(ﬂ) ~ -577—2'(77)'

Cy
| 19(e) - Vi@l < a5y

Let us introduce another set EY = {x € Q : [|[Vy,(2) — Vi(2)| > e}
Arguing as before, we derive

exm(EM /uv% _ V§(a)ldz.

In particular, the last two relations imply m(E}T) < M Combining the previous
estimations and using Holder’s inequality with s = ¢/q, we get

(92g] 82gj € " |182%g; 829, q
y p L — 2 _ Nave
/ l ) a2 53 (V§)| dw < -/E{” 0 (Vo) o (V)| dz+
il 329J N &%, 295 ool
q

82gj 029,
Vi) — =2 (Vg
8712( Yu) i (Vy)

de <

/Q\(E,""uEzMuEg,, )

3 2 2
0* 0%g,
M 1/s gJ g; -
F\mE </ |70 - Gt

-'klovu

g 1/s
dx

- 8 ) /04\]/8 aa+1/s ~a
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This right hand term can be taken to be less than §, provided that M is suffi-
ciently large.

All the above considerations imply that the first condition on the continuity
of the second derivative of the Lagrangian in (26) is satisfied. The rest of
the conditions follows easily from the properties of the functions f and g;.
F=0, 150005 T+ M

THEOREM 9 Let 4 be a feasible point for problem (P) and let us suppose that it
satisfies the regularity assumption (14) and the first order necessary conditions
stated in Theorem 7. Let us also assume that

5290 i o 0 f |

/ﬂ ( dy? (g,a) + ‘Fa 5 (J, u)) 2idx+ (13)
62g0 R B 82f g '
2]{; (Byau(y' @) + go@y@u (7. u)) hzy,da

+./ (%g:( v'“-)'f‘(pa J;("'J‘”)) h? da+

ni+ne

(')2
SN szh o L(Vg)Vzp de > 6||h]|2(q)

AN

for all h € L®(Q) satisfying (36) and h(z) = 0 for almost every x € Q7 and
some & > 0 and 7 > 0 given. Then there exist ¢ > 0 and a > 0 such that
J(@) +allu -ﬁ]]%zm) < J(u) for every feasible control u with |ju— ||~ ) < €.

There is no difficulty in extending our results to more general situations,
where the nonlinear term f of the state equation depends on (. y,,w), the cost
functional J is given by an integrand gy depending on (&, y,, V. u) as well
as the integral constraints G;. Clearly, in this case, some appropiate growth
conditions have to be imposed in order to apply the abstract framework (sec
Section 4).
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