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Stability of matrix families is an important research subject in robust con-
trol, and has received much attention in the past few years, see Horn and John-
son (1985), Bhattacharyya et al. (1995), Barmish (1994), Ackermann (1993),
Bartlett et al. (1988), Kaczorek (1993), Ackermann (1991, 1992), Anderson
et al. (1995), Polyak and Kogan (1995), Wang (1997, 1998a, 1998b), Wang and
Yu (2001a), Duan et al. (2001), Wang and Yu (2001b).

The robust stability problem with linear uncertainty structure has been com-
pletely resolved by the celebrated Edge Theorem of Bartlett, Hollot and Huang
(1988). Multilinear uncertainty structure is a special class of nonlinear uncer-
tainty structure, see Ackermann (1991, 1992), Anderson et al. (1995), Polyak
and Kogan (1995), Wang (1997, 1998a, 1998b), Wang and Yu (2001a), Duan
et al. (2001), Wang and Yu (2001b). It is more complicated than the lincar
uncertainty structure, but has some intrinsic properties in robust stability anal-
ysis, see Ackermann (1992), Anderson et al. (1995), Polyak and Kogan (1995),
Wang (1998a, 1998b). This is due to the fact that a multilinear function is a
linear function of some variable when all other variables are fixed. Ackermann
(1992). Anderson et al. (1995), Wang (1998a) have investigated robust stability
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problem with multilinear uncertainty structure, revealed some interesting phe-
nomena, and established some easily testable criteria. In this brief paper, we ex-
ploit the multilinear uncertainty structure and by using some matrix properties,
we show that, for a family of matrices with multilinear uncertainty structure,
D-stability of the entire matrix family can be guaranteed by D-stability of its
vertex matrices.

Consider the matrix family

m

F= {fo(ql|‘}21-vnqi)Ai | qi e [2;\?;’,]! = lszs'-w[} (1)
i=1

where A; € C"*", i = 1,2,...,m are fixed matrices, and fi(q1,q2,.... @), i =
1,2,---,m are multiaffine functions of the uncertain parameters q;,qa,...,q.
Denote the vertex set of F as

LLtS

Fy = {Zfi(QIs‘I?.....QI)Ai | gi € {g‘.,q,-}, = 1,2,...,1} (2)
i=1

and suppose that all matrices in Fy are normal matrices.
The set of all eigenvalues of a square matrix A is denoted as eigen[A]. For
a family A of square matrices, define

cigen[A] = {eigen[A] | A € A}. (3)
The convex hull of a set A is denoted as conv[A].
THEOREM 1

eigen[F] C convleigen[Fy]]. ()

Proof. For any A € eigen[F], we must show that A € conv[eigen[Fy]]. Since
A € eigen[F), there exist ¢} € lg,,@), 1 = 1,2,..., L such that A is an eigenvalue
of YL, fi(a},q9,...,q0)Ai = Ag. Namely, there exists = € C", = # 0 such that

Apx = M. (5)
Without loss of generality, suppose the eigenvector z is normalized, i.c., 27z = 1
(the superscript H denotes conjugate transpose). Then

A=defly=u Aoz = 1”[2 fildd, a3, - -,GF)A;] 2. (6)

We now prove that

m
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First, note that fi(q1,¢3,...,4}), 1 =1,2,...,m are affine functions of ¢;. So,
S fila,gd, ..., q))A; is also an affine function of ¢;. Thus, there exists
n € [0,1] such that

m
Z fi(q?,(]g, #ei 'q?)Ai
1=1

m

= (Y filgpdds o oaDA) + A=Y @ dy o)) ®)
=1 i=1

Second, when ¢f = g, or 7y, fild},q2,45, .., qP), i = 1,2,---,m are affine
functions of ¢3. So, ZZ":I fi(al,q2,45, . .. ,q?)Ai is also an affine function of ¢s.
Thus, there exists p; € [0,1] (for g ) and p2 € [0,1] (for g;) such that

m m

Zfi(gla(]g’an- . 7{]10)‘41 = Ml(zfi(gligzﬂqgv' . 'qIU)AL)

i=1 i=1

+ (1= ) (Y filgy Tondy - a)A) (9)
=1

Efi(—(ququa)» .. a(I?)Al = ,“'2( Zfi((_]b_(lwqga s qlo)Al)

i=1 i=1
m

+(1_/14‘2)(Zfi(ﬁ17—(72»(]§»---J]?)Ai) (10)
=

Henceforth, we have

Y filadi @, a0 A
t=1

m m

= 77(Zfi(g1,f13~ o ~J1?)Ai) (L~ 77)(Zfz:(61‘.(1§’, as -v(]lO)Ai)
i=1 i=1

=1 [m(z Ale ,q?)Ai>
=1

m

# (1~ m)(z fig, 3283 q?)Ai)]
=l

m

+(1-n) [uz(z i@y, 8,98 -- - Qf’)Ai)
1=1

m
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Continuing this process, we can prove that

> filal a8, al)Ai € conv[Fy]. (12)
i=1

For notational simplicity, let
Fo={F, |i=1,2;..:5p}, p=2" (13)

Then, there exist 7; > 0,7=1,2,...,p and >-7_, n; = 1 such that

m P
Zfi(G?:Gga--—vQP)Ai=Z’hFE- (14)
i=1 i=1

Therefore

m

A=Y filadiad - ad) A
i=1

P P
= mH[ZmFi]x = Z nizt Fya. (15)
i=1 i=1

Since Fj, i = 1,2,...,p are normal matrices, there exist unitary matrices U,
1=1,2,...,p such that

Uf FuUi = diag{div, Xa, .., Ain}. (16)
Hence

of Fix = s¥ Uidiag{\ir, Mz, ..., Min JUF 2. (17)
Let

vi = Ul e = [y, piz, .. . yin)T € C™. (18)
Then

et Fix = yf diag{Xi, Miay - .., Ain }yi = iﬁy.j/\u- (19)

i=1

Since ¥ijyi; = |yij|* > 0 and

Zﬁyu =yfy; =2 U Uz =22 =1 (20)
i=1

we have
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Furthermore, since 7; > 0,4 =1,2,...,p and }_7_, 7 = 1, we have

P
A= Z?};.’L‘HFiar € convleigen[Fy]). (22)
i=1
This completes the proof. E

Given an open convex region D in the complex plane, a matrix is termed
D-stable, if all of its eigenvalues lie in D. A matrix family is termed D-stable,
if all of its members are D-stable. Hurwitz stability and Schur stability are two
special cases of D-stability when the stability regions are the open left half plane
and the open unit disk, respectively. By Theorem 1, we have

COROLLARY 1 F is D-stable if and only if Fy is D-stable.
ExAMPLE 1 Consider the matriz family

2
F= {Zfi{QL(IZ)Ai | n €[L2q€ [2»4]} (23)

i=1

where fi(q1,q2) = q1q2 — 4, fo(q1.q2) = 2q1 — ¢o; and

02 0 0.1
P — 0 01 0 (24)
-0.1 0 0.2
0.179167  0.004167 —0.083333
Ay = 0.004167 —0.029167  0.045833 (25)
—0.083333 0.045833  0.029167
It is easy to see that the four vertexr (normal) matrices in Fy are
2 -04 0 -0.2
Vi=) filan@)Ailg=1=2=| 0 =02 0 (26)
i=1 0.2 0 -0.4
2
1/'2 = Zfi(q};qE)Ax'lm:l.q;:&
i=1
—0.358333 —0.008333  0.1666G7
= | —0.008333 0.058333 —0.091667 (27)
0.166667 —0.091667 —0.058333
2
Vi = z filgr. q2) Ailg =2,g0=2
i=1
0.358333  0.008333 —0.166667
- 0.008333 —0.058333  0.091667 (28)
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2 0.8 0 04
Vn} = Zfi(?ls92)Ai|r;,=2.q2=4 == 0 0.4 0 . (29)
i=1 -04 0 08

Moreover, it is easy to see that

eigen[Vy] = {—0.4 + 0.2i, -0.4 — 0.2i, ~0.2} (30)
eigen[Va] = {—0.434412,0.127763, —0.051685} (31)
eigen[Vs] = {0.434412, —0.127763, 0.051685} (32)
eigen[Vy] = {0.8 + 0.4i,0.8 — 0.44,0.4} (33)

Hence, we see that the vertex set Fy = {Vi, Vs, V3, Vy} is Schur stable. By
Corollary 1, we conclude that the entire family F is Schur stable.
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