Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We introduce and establish some basic properties of the tame rational functions. The class of these functions contains all the rational functions with no recurrent critical points in their Julia sets. For tame non-exceptional functions we prove that the Lipschitz conjugacy, the same spectra of moduli of derivatives at periodic orbits and conformal conjugavcy are mutually equivalent. We prove also the following rigidity result: If h is a Borel measurable invertible map which conjugates two tame functions f and g a.e. and if h transports conformal measure m[sub f] to a measure equivalent to m[sub g] then h extends from a set of full measure m[sub f] to a conformal homeomorphism of neighbourhoods of respective Julia sets. This extends D. Sullivan's rigidity theorem for holomorphic expanding repellers. We provide also a few lines proof of E. Prado's theorem that two generalized polinomial-like maps at zero Teichmueller's distance are holomorphically conjugate.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
163--181
Opis fizyczny
Bibliogr. 25 poz.,
Twórcy
autor
- Institute of Mathematics, Polish Academy of Science, ul. Śniadeckich 8, 00-950 Warsaw, Poland
autor
- Department of Mathematics, University of North Texas, Denton, Tx 76203-5118, USA
Bibliografia
- [1] M. Denker, M. Urbański, On Sullivan's conformal measures for rational maps of the Riemann sphere, Nonlinearity, 4 (1991) 365-384.
- [2] P. Grzegorczyk, F. Przytycki, W. Szlenk, On iterations of Misiurewicz's rational maps on the Riemann sphere, Ann. Inst. Henri Poincare, Phys. Theor., 53 (1990) 431-434.
- [3] M. Lyubich, On a typical behaviour of trajectories for a rational map of sphere, Dokl. Akad. Ukr. S.S.R., 268 (1982) 29-32.
- [4] M. Urbański, On Hausdorff dimension of Julia set with an indifferent rational periodic point, Studia Math., 97 (1991) 167-188.
- [5] M. Denker, M. Urbański, Relating Hausdorff measures and harmonic measures on parabolic Jordan curves, Journal für die Reine and Angewandte Mathematik, 450 (1994) 181-201.
- [6] M. Urbański, On some aspects of fractal dimensions in higher dimensional dynamics, in: Problems in higher dimensional complex dynamics, preprint SBF 170, Ghttingen, 3 (1995) 18-25.
- [7] M. Denker, D. Mauldin, Z. Nitecki, M. Urbański, Conformal measures for rational functions revisited, Fund. Math., 157 (2-3) (1998) 161-173.
- [8] C. M c M ulle n, Hausdorff dimension and conformal dynamics II: Geometrically finite rational maps, preprint, Berkeley 1997.
- [9] M. Martens, The existence of σ-finite invariant measures. Applications to real one-dimensional dynamics, SUNY Stony Brook IMS preprint 1992/1.
- [10] M. Urbański, Geometry and ergodic theory of conformal nonrecurrent dynamics, Ergod. Th. & Dynam. Sys., 17 (1997) 1449-1476.
- [11] M. Urbański, Rational functions with no recurrent critical points, Ergod. Th. & Dynam. Sys., 14 (1994) 391-414.
- [12] F. Przytycki, On measure and Hausdorff dimension of Julia sets for holo-morphic Collet-Eckmann maps, in: International Conference on Dynamical Systems, Montevideo 1995, Pitman Research Notes in Math. Series, 362, Longman, (1996) 167-181.
- [13] W. Thurston, Three-Dimensional Geometry and Topology, Lecture Notes, Princeton University, 1978-1979.
- [14] A. Douady, J. H. Hubbard, A proof of Thurston's topological characterization of rational functions, Acta Math., 171 (1993) 263-297.
- [15] A. Zdunik, Parabolic orbifolds and the dimension of maximal measure for rational maps, Invent. Math., 99 (1990) 627-649.
- [16] E. Prado, Teichmiiller distance for some polynomial-like maps, SUNY Stony Brook IMS, preprint 1996/2, revision 1997.
- [17] D. Sullivan, Quasiconformal homeomorphisms in dynamics, topology, and geometry, in: Proceedings of the International Congress of Mathematicians, Berkeley 1986, Amer. Math. Soc., (1986) 1216-1228.
- [18] F. Przytycki, Sullivan's classification of conformal expanding repellors, preprint 1991, to appear in the book: F. Przytyck i, M. Urbański, Fractals in the Plane-Ergodic Theory Methods.
- [19] R. Bowen, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lect. Notes Math., 470 Springer, Berlin 1975.
- [20] M. de Guzman, Differentiation of Integrals in R', Lect. Notes Math., 481 Springer-Verlag, Berlin 1975.
- [21] M. Shub D. Sullivan, Expanding endomorphisms of the circle revisited, Ergod. Th. & Dynam. Sys., 5 (1985) 285-289.
- [22] R. Cowen, On expanding endomorphisms of the circle, J. London Math. Soc., 41 (1990) 272-282.
- [23] C. McMullen, Families of rational maps and iterative root-finding algorithms, Ann. Math., 125 (1987) 467-493.
- [24] M. Urbański, Parabolic Cantor sets, Fund. Math., 151 (1996) 241-277.
- [25] F. Fisher, M. Urbański, On invariant line fields, preprint 1997.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0001-1523
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.