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Abstract: The application of a proximal point approach to ill
posed convex control problems governed by linear parabolic equa
tions is studied. A stable penalty method is constructed by means 
of multi-step proximal regularization (only w.r.t. the control func
tions) in the penalized problems. For distributed control problems 
with state constraints convergence of the approximately determined 
solutions of the regularized problems to an optimal process is proved. 

Keywords: Proximal point methods, ill-posed parabolic control 
problems, distributed control, penalty methods. 

1. Introduction 

In this paper the proximal point approach coupled with the penalty technique 
is developed for solving ill-posed convex parabolic control problems with state 
constraints. The investigation is concentrated on problems governed by linear 
parabolic equations, the objective functional and the sets of admissible controls 
and states are assumed to be convex. 

Usually, convergence of numerical methods for such problems is studied 
under the additional assumption that the objective functional is strictly (or 
strongly) convex w.r.t. the control, or that the optimal control possesses the 
bang-bang property. We refer here to Alt, Mackenroth (1989), Glashoff, Sachs 
(1977), Hackbusch, Will (1984), Knowles (1982), Lasiecka (1980, 1984), Mack
enroth (1982-1983, 1987), Malanowski (1981), Troeltzsch (1987). 

The first results, connected with the use of the penalty technique for con
trol problems have been obtained by Lions (1968) and Balakrishnan (1968A, 
B). For further applications see Lions (1985). Penalization of the state equa
tion permits to handle the control and state variables as independent ones. In 
Bergounioux (1992, 1994), for convex elliptic and parabolic control problems 
with state constraints, penalty methods have been used in order to prove the 
PYi<:::t.PnrP nf T.l'l.P"rRnP"P mnlt.inliPr<::: nnrlPr wPRk nnalifirl'l.t.inn hvnnt P<::: T Rll 



6 A. KAPLAN and R. TICHATSCHKE 

these investigations strong convexity of the objective functional was one of the 
essential conditions. 

T he paper here deals with convex parabolic control problems without the 
additional assumptions mentioned above. So, the problem may be non-uniquely 
solvable, moreover, we do not exclude that the set of optimal controls can be 
unbounded. Using the scheme of multi-step regularization developed in Kaplan, 
Tichatschke (1994) for abstract convex variational problems, a partial proximal 
regularization (w.r.t. the control only) of the family of penalized problems is 
performed. This provides well-posedness of the auxiliary problems as well as 
weak convergence of t heir approximately detennined solut ions to an optimal 
process and convergence of the corresponding values of the objective functional 
to the optimal value of the original problem. 

In comparison with the T ikhonov regularization, the use of the proximal 
regularization ensures an essentially better s tability of the auxiliary problems 
and hence a faster convergence of SQP -methods. 

For convex elliptic control problems an ancLlogous approach has been re
alized in Hettich, Kaplan, Tichatschke (1994,, 1997). In the last two decades 
proximal point technique has been successfully developed for solving variational 
inequalities with monotone operators, including convex optimization problems 
and saddle-point problems. Eckstein and Bertsekas (1992) have shown a rela
tionship between the proximal point method and the Douglas-Rachford splitting 
method, pointing out new application fields, espE:cially in mathematical physics. 
Nevertheless, besides the papers mentioned here, we do not know of the publi
cations in which the proximal point technique was applied to control problems. 
Therefore, t he main point of this paper is the cheoretical investigation of the 
proximal-penalty approach for solving ill-posed optimal control problems by 
means of decoupling the state and the control. 

2. Formulation of the control problem 

Let n c IRn(n :S 3) be a bounded domain with a boundary an of the class C 2 , 

n be locally situated on one side of an, and 

Q n x ]o,T[, E =an x JO,T[. 

In the sequel we use the following noLation for functional spaces: 
L2 (0, T; Z) -- space of functions with range in a Hilbert space Z, square inte
grable on (0, T), 

( 

T ) 1/2 1 llv(t) l l ~dt 

II · llo,Q- norm of an element in L2 (0, T ; L 2 (n)): 
C([O, T]; Z) -space of continuous functions on [0, T ] with range in Z, 

vii r1 l · ) max < < v(t 
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H 8 (D), H 0(D) -standard Sobolev spaces, L2(D) = H 0 (D), II · ll s,n -norm in 
H 8 (D); II · llo,s,n- norm in L2(0, T; H 8 (D)) for s ~ 1; 
(-, ·)n- inner product in L2(D); 
X~ H- continuous embedding of the space X into H. 

We consider the parabolic equation 

ay 
at (x, t) + Ay(x, t) = u(x, t) a. e. in Q, 

y(x,O) = 0 in D, 

y(x, t) = 0 on E, 

where the elliptic operator A is given by 

n a ( ay) Ay =- L 8- aij(x, t){)": + ao(x, t)y, 
i,j=1 X, XJ 

(1) 

(2) 

(3) 

(4) 

with aij E C 2 (Q), a0 E C 2 (Q) such that for all (x,t) E Q,~ E lR11 and some 
do> 0 

n n 

ao(x, t) ~ 0 and L aij(x, t)~i~j ~doL ~;. (5) 
i,j=1 i=1 

For each u E U = L2(0, T; L2(D)) Problem (1)-(3) is uniquely solvable, and its 
solution Yu belongs to 

(see, for instance Lions, Magcnes, 1968, vol. 1.) . The space W endowed with 
the norm 

IIYIIw = (IIYII~,2,n +II~~ 11
2 

) 
112 

O,Q 

(7) 

is a Hilbert space. Moreover (ibid., Theorem 1.3.1), 

W ~ C([O,T];Hd(D)), 

and the operator T : Tu = Yu is continuous as a mapping from L2 (0, T; L2 (D)) 
into C([O,T];HJ(D)) (see Lions, Magenes, 1968, vol. 2.). 

In order to formulate the control problem we introduce the space 

1 dy . 
Y = {y E L2(0, T; H 0 (D)) : rl+ +Ay E L2(0, T; L2(D)), y(x, 0) = 0 m D} (8) 
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which coincides algebraically with W : Indeed, regarding the smoothness of 
aij, a0 , t he inclusion W C Y is obvious, and the inclusion Y C W is a conse
quence of the fact that Yu E W for each u E U. 

Using the inequality 

IIYIIw :S ciiY IIY Vy E Y, 

which follows from the Lp-estimates for the solutions of parabolic equations (see 
Ladyshenskaja, Solonnikov, Ural'zewa, 1968, Theorem 4.9.1) , one can easily 
show that the spaceY with the norm 

IIYIIY = I I~; + Ayll 
O,Q 

(9) 

is a Hilbert space, too; moreover, 

Y '---' C([O, T]; HJ(st)) . 

The approach suggested will be presented with the following model problem 

Problem (P): 

minimize J(u) IIYu(T)- Ydl16.n subject to u E Uad, Yu E G, 

where Uad and G are convex and closed sets in t:1e spaces L2(0, T; L2(S1)) and 
Y, respectively; Yd E L2(S1) is a given function and it is supposed that {u E 
Uad : Yu E G} =/= 0. 

Due to the continuity of the mapping 

T: L2(0, T; L2(S1)) ----> C([O, T]; HJ(st)) 

the functional J is continuous on L2(0, T; L2(0.)) . Therefore, if Uad is bounded, 
Problem (P) is solvable, but in general, non-uniquely solvable. If Uad is un
bounded, it may happen that the set of optimal controls be empty or unbounded. 

We introduce the space 

Y x L2(0, T; L2(S1)), 

endowed with the natural norm: For z = (y , u) wi1;h y E Y, u E L2(0, T; L2(S1)) , 

liz II::::= (IIYII~ + llull6,q) 112
. 

3. Regularized penalty method (RP-method) 

We consider the following 
Method (Multi-step regularization) 
Let {ri} , {Ei}, {xi} and {5i} be positive seque:1ces with 

and u 0 E Uad· 
Step i: Given ui-l E Uad· 

(10) 
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a) Set ui,O := ui-1 , s := 1. 
b) Given ui,s- 1 , let 

(yi,s,ui,s) = argmin{llli,s(y,u) : (y,u) E G x Uad} (11) 
with 

Wi,s(Y, u) = lly(T)-Ydll6,n+~ II ddy + Ay- ull
2 

+Xi llu- ui,s- 1 11~ Q .(12) 
r, t o,Q 2 ' 

Compute an approximation (yi,s, ui,s) E G x Uad of (yi,s , ui ,s) such that 

II(Yi,s,ui,s)- (yi,s,ui,s) ll =:::; !:!:__ (13) 
- Xi 

c) If llui,s- ui,s-1 llo,Q > Di, sets:= s + 1 and repeat b). 
Otherwise, set ui := ui,s, s(i) := s, i := i + 1, and repeat Step i. 

Of course, the stopping rule (13) is not yet practicable. But, as it will be 
shown below, the functional Wi,s is strongly convex on 3. This usually permits 
to satisfy (13) by means of a stopping criterion of an algorithm, minimizing wi,s 
on G X Uad · 

As it has been mentioned in the introduction, penalization of the state equa
tion enables to handle with y and u as independent variables. But, of course, 
this complicates the discretization procedure: For instance, applying finite ele
ment technique, one has to use elements of higher than first order. Concerning 
the application of high order finite element approximations to optimal control 
problems, see Lasiecka (1995) and Hendrickson (1995). 

We do not suggest here a penalization of the state constraints. Such kind of 
penalization was applied, for instance, in Neittaanmaki, Tiba (1995) . 

4. Convergence of the RP-method 

For shortness, in the sequel we will use the following abbreviations: 

z = (y, u), z* = (y*, u*), zi,s = (Yi ,s, ui,s) etc. 

Let 

( 

2 ) 1/2 

lzl = II ~~ + Ay- u ll + lluii6,Q 
O,Q 

We start with some preliminary statements. 

(14) 

(15) 

LEMMA 4.1 On the space 3 relation {15) defines a new norm I · I, which is 
equivalent to the norm II · 11 ::::: 

(16) 

Proof The right hand side inequality in (16) is obvious, and 

lz l
2 II~~ + Ay - ull:.o + lluii6,Q 
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proves the left hand side inequality. 0 

LEMMA 4.2 The functional Wi,s is continuous and stTOngly convex on 3 . 

Proof Due to Lemma 4.1, continuity of lly(T)--Ydll o,n on 3 ensures continuity of 
Wi,s· Now, let us prove strong convexity. To this end, we rewrite the functional 
as follows: 

w .i ,s(Y, u) 2 (1 Xi)lldy 11 2 lly(T) - Ydllo,n + Ti - 2 -dt + Ay- u o,Q 

+Xi ll dy +Ay-ull2 +Xi llu - ui,s- 111~ 
2 dt O,Q 2 ,Q 

[lly(T) - Ydll~,n + ( :i - ~i) II~{ + Ay- uii:.Q (17) 

+~i l lui ,s-lii~,Q - Xi faT (u(t),ui,s-l(t))ndt] + ~il(y,u)l2· 

Because of Ti < 1, Xi :::; 2 the term in t he square brackets is a quadratic func
t ional with a non-negative quadratic term in (y, u), hence, it is a convex func
tional. Therefore, taking into account Lemma 4 .1, W i,s is strongly convex on 
the space 3 with the norm II · 11 :::: or I · I· 0 

The following result is an enlargement of the non-expansivity property of 
the proximal mapping in the case of partial prox-regularization. 

Let Z be a Hilbert space with a norm ll ·ll z; Z1 be a closed subspace of Z and 
P : Z --> Z 1 be the orthogonal projection operator. We consider the problem 

minimize <I>(z) = a(z, z)- J!(z) subject to z E K , (18) 

where a(·,·) is a continuous, symmetric and positive semi-definite bilinear form 
on Z x Z, J! is a linear, continuous functional on Z and K c Z is a convex, closed 
set. Further, suppose that b(- , ·) is a second contiuuous, symmetric bilinear form 
on Z x Z such that 

0 :::; b(z,z) :::; a(z,z) for z E Z, (19) 

and, with some (3 > 0, 

b z , z + Pzl l2 ~ f3 11z 1 for all z E Z. (20) 



Regularized penalty method for parabolic control problems 11 

By 

lzl~ = b(z, z) + I I Pzll~ (21) 

another norm is defined on Z, which is equivalent to II · II z according to the 
obvious relation 

(M + 1)llzll~ 2: lzl~ 2: .BIIzll~ 

· h M > b(z,z) w1t _ supz;e0 ~· 

LEMMA 4.3 For each a0 E Z and 

a1 = arg min {<P(z) + ~IIPz- Pa0 ll~ : z E K} 

(x E (0, 2] is kept fixed) the following inequalities are true for all z E K: 

and 

la1
- zlz < la0

- zlz + TJ(z), 

with 

otherwise 

If, moreover, 11Pa1
- Pa0 llz 2: 8 2: TJ(z), then 

17
2 (z)- 82 

la1 
- zlz ~ la0

- zlz + I 0 I . 2 a - z z 

(22) 

(23) 

(24) 

This lemma was proved in Hettich, Kaplan, Tichatschke (1997) for x = 2. The 
modification of the proof for arbitrary x E (0, 2] is quite evident. 

Now we come back to the control problem. 

4.1. The case of a bounded set Uad 

Assume there exists a point u E Uad such that 

Yu = Tu E int G (in Y). (25) 

LEMMA 4.4 Let (y*, u*) be an optimal process of Problem (P), v E (0, t) be 
an arbitrary number. Suppose that (yi,s, ui,s), (yi,s, ui,s) are defined by {1 1) and 
(13), where in the function {12) the previous iterate ui,s- l is replaced by an 
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arbitrary point ui,s-l := u E Uad· Then there ex1st two constants d(v) and d1 , 

independent ofi, s ~ 1, ui,s-r, {Ei}, {ri} and {xi}, such that 

(26) 

and 

(27) 

with 

2 1 dy 

II 11

2 

Ji(Y, u) = lly(T)- Yd llo,n + ri dt + Ay - ·u o,Q · (28) 

Underline that I· I is defined by (15), and the controlling sequences {ri}, {Ei}, 
and {xi} are chosen according to the RP-method. 

Proof The existence of the points (Y·i,s, ui,s) and (yi,s, u·i,s) is guarant eed 
by Lemma 4.2. Now, we introduce the following notation: 

Tmax 

{ 
infwEoG II Tu- wilY 

+oo 

max ll z(u)- z(u)ll:=: , 
uEUad 

z(u) = (Tu, u), 

if ilG =J. 0 
if ilG = 0 ' 

· II o.i,s II = arg n11nvEGXUad Z - · V :=; • 

Note that Tmax > Tmin if {Tu: u E Uad} naG =I= 0. In case of yi,s fl. G we define 
the points 

hi,s E { z(u)+A(zi ,s _z(u)): A ~ o}n{aG x Uad} 

and (if hi,s =J. wi,s) 

ki,s E { z (u) +A ( zi,s- wi,s) : A~ 0} n {hi,s + f.l· (hi,s- w ·i,s) : J..1. ~ 0} . 

Obviously, the points hi,s and ki,s are uniquely determined , and, due to the 
similitude of the triangles with vertices ki,s' hi.s' -<~ ( u) and wi,s ' hi,s' zi,s' we ob
tain 

< (29) 
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In the standard manner the Gateaux-differentiability of the functional 

1 II dy A 112 Xi II i 8 1112 ---:- -d + Y - U + - U - u ' - O,Q 
r, t o,Q 2 

in the space 3 with the norm 1·1 can be established. Regarding the definition of 
(Yi ,s, ui,s ), we obtain by means of Proposition II.2.2 in Ekeland, Temam (1976) 
that, for all (y, u) E G x Uad, 

(30) 

Setting y = y*, u = u* in (30), in view of~+ Ay*- u* = 0 and the obvious 
inequality 

llu - ui,s-1112 - llui,s - ui,s-1112 
O,Q O,Q 

~ 2 faT (ui '8 (t)- Ui,s-1 (t) , u(t) - Ui' 8 (t))ll dt, (31) 

one can conclude that 

~i II d~:,s + Ayi,s- ui,s II:,Q ~ lly*(T)- Ydll~,ll + ~i llu* - ui,s- 1 II ~,Q. (32) 

Thus, 

Now, regarding the boundcdncss of Uad, ri < 1, Xi ~ 2, limi_,= i;" = 0 and 
condition (13), inequality (33) yields 

(34) 

(throughout the whole paper the constants ck do not depend on (i, s)). The 
estimate (27) follows immediately from (34) and the equivalence of the norms 

II · II =: and 1·1· 
Due to (34) and 

IIYIIw ~ c IIYIIY for ally E Y, 
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one gets 

II :Yi,sllw < c2, IIYi,s llw < C2 with C2 = ccr. 

Inequality (32) ensures also that 

II d~:,s + Ayi,s - ui,s llo,Q < C3r;/2. 

Taking into account that d~:·· + Afji,s - ui,s == 0. this leads to 

II:Yi,s- fji,s lly < c3r;/2 

and, due to II:Yi,s - fji,sl ly = ll.zi,s - zi,s ll:::: , we obtain 

11
-i,s _ ,_i,s II 1/2 z z 

3 
< c3ri . 

Because .zi,s E:: G x Uad, the estimate 

follows from (38) and from the definit ion of wi,s. 
Denote by 

ZJ {z= (Tu,u): zEGxUad} 

the set of feasible processes and 

zi,s = (:1/i,s' ui,s) = arg min { ii z ·i,s - z ll~' : z E ZJ}. 

Because Z 1 is convex and closed in 3 , such an element zi,s exists. 

(35) 

(36) 

(37) 

(38) 

(39) 

If fji ,s fl. G and wi,s -1 hi,s, then on account of hi,s E Zf , we obtain from (29) , 
(38) and (39) that 

ll.zi,s- zi,s ll::::::; ll zi,s - hi,sll:::: 

:=; ll .zi,s - Zi,s ll :::: + llzi•s- hi,s ll:::: < (40) 

If fji ,s tf_ G, but wi,s = hi,s, estimate (40) follows from (38) , (39) and Tmax > 
Tmin · 

In case fji,s E G, the inequality 

ll.zi,s - Zi,s 11:::: < C3r;/2 ( 41) 

is an immediate consequence of (38) , and so (40) is also true. 
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By inserting y = yi,s, u = ui,s into relation (30), one gets 

and hence, 

211 d-i,s . . 112 ---:- _Y_ + A;i;?·s _ u'·s 
r, dt o,Q 
::; 1\Yi,s(T) _ Yi,s(T)\1 \Jy·i,s(T) + yi,s(T) _ 2ydll 

0,0 0,0 

+Xi \\ui,s - ui,s llo,Q iiui,s - ui,s-lllo,Q . (42) 

Because of Y <---+ C([O, T]; HJ(O)), (35), (40), ri < 1, Xi ::; 2 and the bounded
ness of Uad, inequality ( 42) leads to 

II d~:·s + Ayi,8- ui,sll ::; C4rT/4_ 

O,Q 

(43) 

Using (43) instead of (36), the estimates (37)-(39) can be improved (w.r.t. the 
order) and we obtain 

\l
-is ,_i,s\1 3/4 Z' - Z < C4T· 

2 t ' 
(44) 

(45) 

Thus, similar to (40), the inequality 

can be established. 
A multiple repetition of this operation (using in each step the current esti

mates) leads to the conclusion that, with arbitrarily fixed v E (0, :!) and some 
constant c( v), the estimates 

( Tm~x + 1) c(v)rJ-2v 
Tm'l.n 

( 46) 
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are valid uniformly w.r.t. (i , s) . Now, from the obvious equality 

(47) 

due to llv*(T)- Ydllo,n :S II:Yi,s(T)- Ydllo n' (~:4) , (46), and the embedding 

Y '---+ C([O, T] ; HJ(D)), we get , 

Ji( z* ) - Ji (.zi,s) < d(v)r]-2v , 

with d( v) independent from ( i , s), i.e . estimate (:W) is true. 0 

REMARK 4 .1 It should be emphasized that the ir,.equalities (32), (33) and (42) 
are established without the assumption of bovndedness of Uad · Estimate (29) 

can be preserved for unbounded U ad if Tm ax is replaced by p :::: liz( u) - .zi,s II:::: . 

THEOREM 4 .1 Assume that U a d is a bounded sEt and condition (25) is valid; 
that v E (0, i) is a fixed number and that constants d(v), d1 are defined accord
ing to Lemma 4.4. Let the positive sequences { '~·i}, { Ei} , {xi} and { 8i} in the 
RP-method satisfy the conditions 

and 

oo 1/2- v 

sup ri < 1, sup Xi :S 2, L ri 
112 

< oo, 
i=1 Xi 

00 

L~<oo 
i=1 Xi 

ri Ei fi Ei 
-- 2d(v) - - - 8., - - + J3-- < 0, 8i > - . 

1 
( 

1-21/ ( ) 2) 
2d1 Xi Xi Xi Xi 

(48) 

(49) 

Then, for an y starting point u 0 E Uad, the RP-meUwd is well-defined, i. e. s( i ) < 
oo for each i; {ui,s} , {yi,s} converge weakly in L2 (Q),Y to fi , fj respectively, 
where (y, fi) is an optimal process for Problem (P); {11 Yi'8 (T) - Ydl16,n} converges 
to J( fi). 

Proof Let us assume that s( i) < oo for i = 1, .. . , k - 1. Then, starting in step 
i = k with uk- 1 = uk- 1,s(k- 1) , due to the definition of s(i), (13) and (49) , we 
conclude 

lluk,s - uk,s- 111 o,Q > lluk,s - uk,s- 111 - lluk,s - fi k ,s II 
O,Q O,Q 

Ek 
> 8k - - > 0 for 1 :S s < s (k) . 

Xk 
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Together with inequality (26) and 

1-2v 

2d(v)~ -
Xk 

( cf. ( 49)), this implies 

17 

lluk ,s - uk,s- 1 11~ Q > 2_ [Jk(z*)- Jk(zk,s)] for 1 ~ s < s(k). (50) 
' Xk 

Let z1•0 = (T u0 , u0 ). Applying (26) and Lemma 4.3 with 

Z = 3, Z1={z=(y,u)E3: y=O}, if>=Jk, 

a(z, z) = (y(T), f;(T)) 0 

+ r1" faT ( d~~t) + Ay(t)- u(t) , d~~t) + Af;(t)- u(t)) n dt, 

b(z, z) = faT ( d~~t) + Ay(t)- u(t) , d~~t) + Af;(t)- u(t)) n dt, 

f(z) = 2 (y(T), Yd)n, K = G x Uad, a0 = zk,s-1, z = z*, X= Xk 

and 8 = 8k - i.L 
Xk' 

we obtain from (24) and (27) that 

lzk,s- z* I < lzl.: ,s- 1 - z* I + _1_ (2d(v) rk- 2v - (ok- Ek) 2) (51) 
2d1 Xk Xk 

holds for 1 ~ s < s(k). Using (13), (16) and (49), inequality (51) yields 

lzk,s- z* 1-lzk,s-1 - z* I < _1_ (2d(v) rt-2v - (ok- Ek) 2) +J3~ < 0.(52) 
2dl Xi.: Xk Xk 

Inequality (52) proves that s(k) < oo, because the middle term in (52) is inde
pendent of s. 

Now, for s = s(k), the use of Lemma 4.3 with the same data as above, leads 
to 

lzk,s(k) - z* l < lzk,s(k) - 1 - z*l + 

hence, 

lzk,s(k) - z* I < lzk ,s(k) - 1 - z* I + 
1- 2v 

2d(v)~ + J3f.k. 
Xk Xk 

(53) 
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Taking into account that the finiteness of s(1) can be proved quite analogously, 
we infer that 

s(i) < oo for each i, 

and the inequalities (52) and (53) are valid for each k . 
In view of (52), (53) and (48) , Lemma 2.2.2 from Polyak (1987) ensures the 

convergence of the sequence { lzi,s- z* l} , and with regard to (13), (16) and the 
last inequality in ( 48), the sequence {I zi,s - z* I} converges to the same limit . 

Suppose that { zik ,sk}, with Sk > 0 for each k, converges weakly to z = 
(y, u) E 3. Due to (46) , (48), { :zik,sk} converge~: weakly to z, too. Observing 

the convexity and the closedness of Z f and that { zik ,sk} c Z f, we conclude 

that z E z1 . 
But Lemma 4.3 yields also 

lzi,s- z* l2 lzi,s-1- z* l2 ~ ~ [Ji (z*)- Ji (zi,s)], 
Xi 

and by definition of Ji ( cf (28)) 

Ji(z*) lly*(T)- Ydll;,n = J(u*), Ji(;~i,s) ~ llfli,s(T)- Ydl l ~,n, 
hence, 

Due to the convexity and the continuity (in Y), the functional lly(T)- Ydll; n 
is weakly lower semi-continuous. Taking limit in the last inequality w.r.t. the 
subsequence { zik>sk}, we obtain 

J(u*) > IIY(T)- Ydll~,n, 
hence, z is an optimal process. Finally, Lemma. 1 in Opial (1967) ensures weak 
convergence of both { zi,s} and { zi,s } to z E :::~ . 0 

4.2. The case of an unbounded set Uad 

Now, solvability of Problem (P) is supposed. As before, we assume that there 
exists a point u E Uad such that 

Yu = Tu E int G (in Y). (54) 

Let z* = (y* ,u*) be an opt imal prozess, Tmin = infwEfJG IITu- wilY, and let 
Pi,s-1 > 0 and 

co~ max{Tmin , lly*(T)- Ydllo,n , llz(u)- .<:*lid 

be given. To simplify the further consideration, we suppose additionally that 
0 < X ~ Xi holds in the PR-method. 
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LEMMA 4.5 Let z; E (0, ~) and 

i,s-1 { U ·[[ *[[ } u E u E ad . U- U o,Q < Pi,s-1 (55) 

be arbitrarily chosen, and (yi,s, ui,s) be defined by (11) with this element ui,s-1. 
Then, there exist constants d and d(v), independent ofi,s 2 l,{ri},{t:i},{xi} 
and ui,s-1 , such that 

J ( * *) J (-i,s -i,s) d( )3 (( ) 1/2 1) 1/2 (56) i Y ,u - i Y ,u < co+Pi,s-1 co+Pi,s-1 ri + ri . 

Moreover, in case G = Y, 

Ji(y*,u*)- Ji (yi,s,ui,s) < d(v)(co + Pi,s-d2rJ-2v 

is valid. 

(57) 

Proof By inserting y = y*, u = u* into the inequalities (30), (31), which hold 
true also if Uad is unbounded, we obtain 

~II dyi,s + Ayi,s- ui,sll2 + IIYi,s(T)- Ydll~ n 
r ., dt o,Q • 

+Xi llui,s _ ui,s-1112 < c2 + p2 2 O,Q 0 t,s-1' 

hence 

Y ' -i,s -i,s 1/2 
II d-is II dt + Ay - u o,Q <(co + Pi,s-1h , (58) 

(59) 

[[Yi,s (T) - Yd[[o,n < co + Pi,s-1 (60) 

and 

[[ ui,s- u*[[o Q <Pi s-1 + G(co +Pi s-d· ' ' y ~ ' (61) 

For fji,s = Tui,s, zi,s = (fji,s,ui,s), estimate (58) yields 

(62) 

and 

II
- i s . , i,s II ( ) 1/2 z ' - z :::: < co+ Pi,s- 1 ri · (63) 
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Due t ori < 1 and (58) , the inequality 

II 
d-is d * II y , - i s y * -i s * - + Ay ' - - - A y - llu ' - u llo,Q 

dt dt O,Q 

II 
d-i,s . . II 

::; ~t- + A;if',s - u 'L,S < Co + Pi,s-1. 
O,Q 

holds. Together with~::; Xi ::; 2 and (61) thi<; leads to 

II 
dyi, s . dy* II ~, dt + A;if''

8
- dt- A y* < 3 ~~(co+ P·i,s-1 ) 

O,Q --

and 

llzi,s - z* ll2 < ~(co + Pi ,s-d

Now, from (63), (64) and t he inequality 

llzi,s - z(u)ll2::; llzi,s - .zi,sll2 + llzi,s - z* l2 +liz*- z(u)ll2 

we obtain 

ll zi,s - z(u)ll2 < liz* - z(u)ll2 + ~(co+ P·i,s-d, 

and regarding the choice of c0 , 

II o.i,s (-) II 10 ( z -zu 3 <Aco+P·i,s-d-

Let us define 

hi,s E {z(u) + ,\ (.zi,s - z(u)) : ,\ ~ 0} n {8G X Uad} 

and 

(64) 

(65) 

In case yi ,s if- G and w·i,s -1- hi ,s , the inequalit ies (65), (29) and Remark 4.1 
imply that 

II d,s h is II 1 10 ( ) II o.i ,s i s II z - ' 2 < ---- co + Pi,s-1 z --w ' 3-
Tmin.JE. 

(66) 

Because .zi,s E G x Uad , estimate (63) yields 

i s o.i,s II 112 w ' - z 2 < co +Pi s -1 r; . (67) 
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Let, as before, ZJ = {z = (Tu, u): z E G x Uad}, 

:zi,s = argmin{llzi,s- zll:=: : z E ZJ }. 
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(68) 

Ifyi,s (j. G and wi,s -j. hi ,s, then in view of hi,s E ZJ, we obtain from (63), (66) , 
(67), _?{:::; 2 and Tmin :::; Co that 

llzi,s- :zi,slls :S llzi,s- hi,slls :S llzi,s- hi,s li=: + llzi,s- .zi,slls 

1 10 2 1/2 1/2 < ----(co+ Pi,s-1) ri +(co+ Pi,s-dri 
Trnin A 

- 1 [ 10 2 1/2 1/2] - -- --(co+ Pi,s-d ri + Tmin(co + Pi,s-1)ri 
Tmin A 

1 12 2 1/2 
:S ----(co+ Pi,s-d r; · 

Tmin A (69) 

If fji,s (j. G, but wi,s = hi,s, then 

II -i s =is II < II-i s is II < II -i s o.i,s II + II o.i,s is II z' - z' :=:- z' - w' 3- z' - z :=: z - w' :=:, 

and regarding K :::; 2 and Tmin :::; co, estimate (69) is a consequence of (63) and 
(67). Finally, if yi,s E G, then the inequality 

(70) 

follows immediately from (63) and the definitions of :zi,s and .zi,s, proving (69), 
as well. 

From inequality ( 42) (sec Remark 4.1), in view of xi :::; 2 and the embedding 
Y <-> C ([0, T]; HJ (0)), one can conclude that 

~II dyi,s + Ayi,s- ui,sll2 
r, dt o,Q 

:::; c1 lli}i,s- yi,slly (c1lli}i,s- yi,s lly + 2jjyi,s(T)- Ydllo ,n) 

+ 2llui,s- ui,s llo,Q iiui,s - ui,s-1ilo,Q. (71) 

In case G = Y (Problem (P) without state constraints), due to the inclusion 
g·i,s E G, we can use estimate (70), and together with (59), (60) and (71) this 
yields 

II d - is II Y ' -i,s -i,s 3/4 ill+ Ay - u :S c2(co + Pi,s-1h . 
O,Q 

(72) 

Now, taking into account the inequality 

II -i s =i,s II < II -i s o.i,s II z , - z 3 - z , - z :=:, 
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which follows from f)i,s E G and the definitior_ of :zi,s, and continuing as in 
the proof of Lemma 4.4 (starting below inequality (43)), estimate (57) can be 
established. 
In the general case (Problem (P) with state constraints), from (47) and the 
inequality 

lly*(T)- Ydllo,n ~ IIY·i,s(T)- Ydllo,n, 

we obtain 

Ji(z*) ·- Ji(zi,s) ~ IIYi,s(T)- Yd ll6,n- ll:ii•''(T)- Yd ll6,n 

~ IIYi ,s(T)- Yi,s(T) II o,n ( 11 Yi,s(T)- Yi,s(Tlllo,n + 2IIYi,s(T)- Ydllo,n), 

and due to (60), 

Ji(z*) - Ji(zi,s) 

~ II Yi,s(T)- Yi,s(T)IIo,n (11Yi,s(T)- Yi,s(T)IIo ,n + 2(co + P·i,s-1)) · 

Now, estimate (56) results immediately from (69), the embedding 
Y <-t C ([0, T]; HJ(D)) and 7'i < 1. o 

In the following statement the parameter ~' E (0, j-) is arbitrarily chosen and 
the constants d and d(v) are defined according t::> Lemma 4.5. 

THEOREM 4. 2 Suppose that condition (54) is .fu,lfilled. Let u0 E Uad, z1•0 = 
(Tu0 , u 0 ) , p1 > lz1

•
0

- z*l, and ex E (0, ~) - Assume that the sequence {P-i} is 
defined recursively by 

Pi+l = P·i + 2d [ 1/2 ] 1/ 4 r;; E-i - (co+ P-i)r.i + 1 (co+ 1Ji)3 ri + v 3-
Xi Xi 

(in the geneml case), or 

(if G = Y ). Moreover, assume that 

(73) 

(74) 

(i) in the geneml case the contmlling parameters of the RP-method satisfy the 
conditions 

sup.iri < 1, inf.iX·i > 0, supiXi :::; 2, sup.i1·i a. Pi ~ d2 < oo (75) 
and 

00 00 
1 L rl -a. < oo, L Ei < oo, (76) 

i = l i = l 
and for each i , 

_I [2cl (co+ p-)3 ((co+ p·)rl / 2 + 1) rl/2- (8 - ~) 2] + J3~ < 0 
2p, Xi t t t t t Xi Xi ' (77) 
8· > §___ . 

t Xi ' 
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(ii) if G = Y, the controlling parameters satisfy 
supiri < 1, infiXi > 0, SUPiXi :::; 2, 

and 
CXl CXl 
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(78) 

1 '2: rl-v < oo, '2: Ei < oo, (79) 
i=1 i=1 

and for each i, 

_1_ [2d(v) (co+ Pi)2 r;-2v - (8i- ~) 2] + J3~ < 0, 8i > ~- (80) 
2pi Xi Xi Xi Xi Xi 

Then, s(i) < oo holds for each i; the sequences {ui,s}, {yi,s} converge weakly 
in L2 ( Q), Y to u, y respectively, where (Y, u) is an optimal process for Problem 
(P); {IIYi,s(T)- Ydl16,n} converges to J(u). 

Proof We show that the statement of the theorem holds true if {pi} is defined 
by (73) and condition (i) is valid. The proof is quite similar for the case of (74) 
and (ii). 

Suppose that 

(81) 

for some k. At first, let us prove that s(k) < oo and 

Pl.: > lz*- zk,sl for 1:::; s < s(k). 

Applying Lemma 4.5 (with i = k, s = 1 and Pk,O =pi.:) and Lemma 4.3 (with 
the same data as in Theorem 4.1, see the proof of Theorem 4.1 starting after 
inequality (50)), we obtain from (24), (56) and (81) that for s(k) > 1 

lzk,1- z*l 

k o * 1 [ 3 ( 1/2 ) r~12 Ek 2 ] <lz' -z 1+- 2d(co+pk) (co+pk)rk +1 --(8k--) . 
2pk Xi.: Xk 

But, in view of (13), (16) and (77), this leads to 

lzk,1- z*l-lzk,O- z*l < 0. 

Thus, lzl.:•1- z*l < p~,;, and continuing in the same manner for 2:::; s < s(k), one 
can establish the inequalities 

lzk,s - z* I ~ lzk,s-1 - z* I 

1 [ 3 ( 1/2 ) r!12 
Ek 2] < -

2 
2d(co + Pk) (co+ Pk)r~,; + 1 -- (8~.:- -) 

~ ~ ~ 
(82) 

+J3f.k < 0 
Xk 

and 

zk,s - z* < Pk· 83) 
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Inequality (82) guarantees that s(k) < oo. For s 
(relation (23)) and 4.5 yield 

lzk,s(k) - z* I - lzk,s(k)-1 - z* I 

s(k), the Lemmas 4.3 

< [i1 ((co+ pk)r!12 + 1) (co+ Pk)3 r!14 + J3 :: , (84) 

hence, 

and (73) implies 

lzk+l,O ·- z*l < Pk+l · 

Therefore, s(i) < oo for all i, and 

lzi,s - z* I < Pi for each i and 0 :S s < s(i) 

is valid. 
From (75) and (73) it follows 

and due to (76) and infiXi > 0, Lemma 2.2.2 in Polyak (1987) guarantees that 
P·i ---> p < oo monotonously. Therefore, 

lz'i,s- z*l < p for all (i, s). 

Replacing Pk by pin (84) , one can obtain for each i 

Now, taking into account (76), (81) and (8.5), convergence of the sequence 
{ lzi,s - z*l} follows from the lemma just mentioned. 
The rest of the proof is the same as for T heorem 4.1. D 

The question which optimal solution is obtained in the limit by using the 
RP-method (in correspondence with the Theorems 4.1 and 4.2) is open even in 
the case of Ei = 0. 

REMARK 4.2 The conditions (73), (75)-(77) , defining the controlling parame
ters according to Theorem 4.2, are compatible. In particular, these parameters 
can be chosen as allows: 
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o take {xi}, {Ei}, {ra according to (75), (76), 
(except for- the condition supi TTa. Pi < d2); 

o choose r1 :::; r~ such that rra. P1 :::; d2; 

o with E1, r-1 and p1 given as above, calculate 81 from (77) and P2 via (73); 
o define r2 :::; r~ such that r~a. P2 < d2 etc. 

REMARK 4.3 The conditions of Theor-em 4.1 as well as Theor-em 4.2 (in case 
G = Y) permit a slow change of the pam meter-s Ei, Ti and Xi: for- instance, it 
is possible to take 

0 < .K :::; Xi :::; 2 and Ti = qf, Ei = q~ with ar-bitmr-y Q1, Q2 E (0, 1), 

and then to choose 8i accor-ding to (49) or- (74), (80). However-, the calculation 
of d( v) may mise difficulties. 

There are no principal problems in extending these considerations to other ob
jective functions of the form J(u) = IICYu - Ydll~ (where His a Hilbert space 
on 0, Q or I:, C E .C(Y, H) and Yd E H) if IICYIIH :::; constllviiY for ally E Y. 

In a similar manner convergence of the RP-method for Problem (P) con
trolled by (1) with nonhomogeneous initial and Dirichlet conditions can be 
established, provided the solution of the parabolic equation with u E £ 2 (0, T; 
£ 2 (0)) is sufficiently smooth (like in the space W) and satisfies the Lp-estimates 
in Ladyshenskaja, Solonnikov, Ural'zewa (1968). 
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