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Abstract: Decision makers often have to deal with a program-
ming problem where some of the quantities are unknown. Thev will
usually estimate these quantities and solve the problem as it then ap-
pears - the ‘approximate problem’. Thus, there is a need to establish
conditions which will ensure that the solutions to the approximate
problem will come close to the solutions to the true problem in a
suitable manner. The paper summarizes such results for multiobjec-
tive programming problems. The results are illustrated by means of
the Markowitz model of portfolio optimization. In order to show how
probabilistic constraints may be dealt with using this framework, a
shortfall constraint is taken into account.
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1. Introduction

Decision makers often have to deal with a programming problem where some of
the quantities are unknown. Then it is usual to estimate these quantities and to
solve the problem as it then appears - the ‘approximate problem’. The hope is
that the solution to the approximate problem will be a good approximation of
the solution to the true problem. Thus there is a need for conditions ensuring
that this hope is justified, conditions as to the nature of the true problem and
as to the behaviour of the estimates.

Many papers have been published on the approximation of optimization
problems. Especially, the stability theory of parametric programming vields
many helpful results, both in respect of one objective function and in respect of

several objective functions (see Bank et al., 1982, Robinson, 1987, Sawaragi et
Al 00 Dnnet rnd Ohavian Iavweiad 10002 10000
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Estimated quantities produce, in effect, a random approximate problem.
This means that there must be additional considerations in order to enable
the deterministic results to be adapted to this random setting. In the ‘almost
surely’ (a.s.) setting this problem has been mainly dealt with in the context of
stochastic programming and Markovian decision processes, where an important
role is played by objective functions that are integrals with respect to probability
measures. Meanwhile, various quantitative and qualitative results are available
for cases with a single objective function (Langen, 1981, Robinson and Wets,
1987, Kall, 1987, Dupacova and Wets, 1988, Wets, 1989, King and Wets, 1991,
Rémisch and Schultz, 1991, 1993, 1996, Vogel, 1994a).

However, the problems are often such that conditions which guarantee the
almost sure convergence of the estimates can hardly be assumed. Then it will
be necessary to look for concepts of weaker convergence, for instance conver-
gence ‘in probability’. Here a demand for appropriate convergence concepts
of random functions and random sets is the first to arise. Salinetti and Wets
(1981, 1986) investigated the Kuratowski-Painlevé-convergence of random sets
and the epi-convergence of random functions (for the ‘a.s.”, ‘in probability” and
‘in distribution’ cases). On the basis of these concepts it is possible to derive
stability results ‘in probability’ for the single objective case that are similar to
the deterministic form (see Vogel, 1994a, b).

In the multiobjective case there are several stability results for deterministic
parametric programming problems (see Naccache, 1979, Papageorgion, 1985,
Sawaragi et al., 1985, Penot and Sterna-Karwat, 1986, Vogel, 1992) which con-
sider the ‘semicontinuous’ behaviour of the sets of eflicient points and the so-
lution sets. These results may be employed to derive statements about the a.s.
setting. It is the aim of the first part of the present paper to summarize the
results for the a.s. case and to discuss the assumptions. The Markowitz model
of portfolio optimization, which is here extended by a shortfall constraint, serves
as an illustrative example.

However, the attempt to derive results for the single objective case from the
semicontinuous behaviour of the sets of efficient points will only achieve results
about the continuity of the optimal value. The reason is that the lower (or up-
per) semicontinuity of a multifunction reduces to continuity if the multifunction
is single-valued. Penot and Sterna-Karwat (1989) filled this gap in the deter-
ministic setting. They introduced and investigated the ‘order semicontinuity’
of the sets of efficient points and thus obtained multiobjective generalizations
for statements on the semicontinuity of the optimal value function. In order to
carry over these results to the random setting, the second part of this paper
will investigate random versions of the order semicontinuity in more detail. 1t
will offer statements for the a.s. setting and then show how results for the ‘in
probability’ case may be derived. Note that the way of proof which is followed
in this part could also be used to derive ‘in probability’ versions of the assertions
made in the first part of the paper. Again, the results will be illustrated by the



Random approximations 705

The paper is organized as follows. The mathematical model is provided in
Section 2. The Markowitz model which is to serve as an illustration is explained
in Section 3. In Section 4 the results on the semicontinuous behaviour of the
constraint sets, the sets of efficient points, and the solutions sets (in the a.s.
setting) are summarized and there is a discussion of conclusions to be drawn for
the Markowitz model. Section 5 has as its subject the ‘a.s.” and ‘in probability’
order semicontinuity. Section 6 summarizes the results.

In this paper the focus is on a deterministic original problem because of the
applications dealt with. Note that most of the results may also be proved for
the original random problems.

Finally, it should be mentioned that for a deterministic original problem
convergence in probability and convergence in distribution (for the diverse kinds
of convergence considered here) can be shown to coincide.

2. Mathematical model

Suppose that we are given the deterministic multiobjective programming prob-
lem

(Fo)  min fo(x)
where I', C RP is a nonempty closed set and f,|RP — R". Minimization is
understood with respect to the usual partial ordering 7 < ” in R", which is
generated by the cone R,

We consider random surrogate problems
(Po(w)) min f,(z,w)
z€l, (w)

where I';,n € N, are multifunctions defined on a given complete probability
space [, A, P] with values in the o—field of Borel sets ¥7. f,|R? x Q — R" is
taken as (X @ A, £7)— measurable. (Sufficient conditions for this property are
given by Vogel, 1992).

To avoid restricting the model to closed-valued multifunctions we, addi-
tionally, assume that the graphs I',,,n € N, belong to A ® ¥?. In our set-
ting multifunctions with measurable graphs are measurable, i.e. I','(4) :=
{weQ: Ty (w)NA#0} € A for every closed set A € X7,

I', and T’ (w) may be specified by inequality constraints:

T,:={re€RP:gi(z) <0,j€ J},
Ip(w) = {1’ ELP: g;jt(l'vw) £0,je ]}

where gJ|RP — R'; gJ|RP x Q — R'is (X ® A, X1)- measurable, and J is a
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When a single component of f, or f, (or other vector-valued functions or
elements of R") is dealt with, the same letter is used without bold-face and the
corresponding index is added: f2 denotes the j-th component of f,,.

The sets of efficient points (or efficiency sets) for the original problem (F,)
and the approximate problems (P, (w)) are explained by

E,:={ye fo(ro) Ay € f(To) with(y <y Ay #y)},

En(w)={yefa(Th(w)w): A ¥ € fu(l,(w).w)
with (¥ < yAy #y)}

where f,(T',) stands for {f,(z) : 2 € T} and (s (w),w) for {f.(v.w) : 2 €
Fn(w)}.

By S, and S,, we denote the corresponding solution sets

Ser={z€T,:Az€T, with (f,(%) < fo(2) AL, (T) # fu(2))},

Spw)={zel,(w):Az e, (w) with (f,(7,w) < (v.w)
A fu(Fw) # £ (ew)).
Moreover, we introduce the sets of weakly efficient points

Woi={y € £,(I's) : Ay € £,(T,) withy <y} and

Wa(w) = {y € fu(Tn(w),w) : B ¥ € fu(Tn(w),w) with § < y}.

which, in the single objective case, also reduce to the optimal value. and the
corresponding ‘weak’ solution sets

SY = {x €T, :BT €T, with £,(z) < f,(w)},
S¥(w) := {x € Ta(w) : A F € Tp(w) with £, (&,w) < fu(2,w)}.

(By (a'...a")T < (b'...b")7; ¢',b' € R; we mean o' < b Vi€ {l....,7}.)
By definition, the sets of efficient points are contained in the sets of weakly
efficient points and the corresponding relation holds for the solution sets.

Eventually, we introduce the multifunctions F,, with
Fr(w) = {fa(z,w) : 2 € Ty(w)} = fu(Th(w),w).

Firstly, we have to guarantee that the necessary measurability conditions are
fulfilled. We start with an auxiliary result.

LEMMA 2.1 Let I',, be closed-valued for P-almost all w and measurable. Fur-
thermore, let fi(-,w) be lLs.c. for P-almost all w and all j and [ be
(P @ A, X")—measurable. Then the multifunctions F,0 — 2% qn e N, with
ﬁ'n(w) = fo(ln(w),w) + R, are closed-valued for P-almost all w and measur-
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Proof. We consider a fixed n and omit the index n. Under our assumptions
the epigraph multifunction w — Epi f(-,w) is measurable and almost surely
closed-valued. Hence, because of F(w) = Epi f(-,w)N (I'(w) x R ), the conclu-
sion follows. O

In a former paper (Vogel, 1992) we have shown that the multifunctions
En, Wy, S, and S}* have measurable graphs whenever either the functions
f.(+,w) are continuous and the sets I',(w) are compact for almost all w or the
functions f,(-,w) take (with probability one) only values in a set with finitely
many elements, which is of interest when probabilities occur among the objective
functions. This result can be proved in a unified way and extended, suppos-
ing that the multifunctions F, as defined in Lemma 2.1 are closed-valued and
measurable.

LEMMA 2.2 Let £, be (X7 ® A,X")—measurable and Graph ', € A © ¥XP. Fur-
thermore, assume that Fy, is closed-valued for P-almost all w and measurable.
Then the multifunctions E,,W,, S, and S,‘,‘ have measurable graphs.

Proof. Again, we consider a fixed n and omit the index n.

Let Q := {w € Q: F(w) is closed}, A := {4NQ, A € A} and consider the
following multifunctions on [Q x R?, A ® £7]. From the definition of efficiency
we have

S(w) = {z € T(w) : (f(z,w) — R} )N F(w) = 0}
with
R7, = R \{0}.

We introduce the multifunction ® with ®(w,z) := (f(a,w)— I?’i' }ﬂﬁ‘(w] and
obtain

GraphS {(w,2):we, v€lN(w),d(z,w) =0}

GraphI'n (dom ®)¢

Il

where (dom ®)¢ denotes the complement of the domain of .
Furthermore, let G(w, z) := (f(z,w) — R, ) N F(w). Then

®(w,2) = G(w,2)\({f(z,w)} N F(w)).

G is closed-valued and measurable, and {f(-,-)} N F(-) is empty or single-valued,
hence closed and measurable. Consequently, ¢ is measurable by Theorem 4.5
and dom & is measurable by Proposition 2.2 (Himmelberg, 1975). Thus, Graph
SeA®XP.

Eventually, taking into account that

~ ™ fs N -~ e T - —
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we can proceed in the same way in order to show the measurability of GraphE.
If we consider S" and W, we replace R’ by int R'jr and ¢ by $y- with

dw(w,z) = (f(z,w)— int R,)N F(w)
= G(w,z)\(bdy({f(z,w)} — R}) N F(w)).

The boundary multifunction bdy is measurable because of Theorem 4.6. by
Himmelberg (1975). |

Lemma 2.1 and Lemma 2.2 together imply the quoted results (Vogel, 1992),
because, first, functions which are measurable with respect to w and continuous
in x satisfy the measurability conditions of Lemma 2.1 according to Propositon
2C by Rockafellar (1976) and, second, if there is a finite set V,, with

P{w : f,(z,w) € V, Vo € RP} =1,

then F,, is closed-valued and, F, being measurable, also measurable.

Moreover, lower-semicontinuous objective functions with measurable
epigraphs, i.e. normal integrands, are (£” @ A, ¥")-measurable (Rockalellar,
1976, Theorem 2A) and can hence be treated in this framework.

3. The Markowitz model of portfolio optimization

Suppose that an investor has a certain amount of money which is assumed to
be one unit and he can choose between p different assets A;...... 4,. Here,
p* denotes the random return at the end of the planning period if the whole
amount of money would be invested in asset A,. By 2% we denote the fraction
of the money the investor will spend for Ay, short sales are not allowed. Hence
ifSszmznmm
i=1

In the classical Markowitz model two objective functions are taken into ac-
count. The investor will maximize the expected return and minimize the re-
turn’s variance, which is used as a surrogate for risk. In order to show how
probabilistic constraints fit into our framework, we will, additionally, take a
shortfall constraint into account, i.c. the probability that the retirn does not
fall under a given target return « should be not less than (o > 0, 5 € (0,1)).

Thus, we can use the following mathematical model. The retums p' are
supposed to be random variables, defined on [Q, A, P] with values in [R',%!]
and such that Ep' > 0 and D?p" exists for all i € {1,...,p}. Furthermore, we
suppose that the random vector p, p = (p',....p")". depends continuously on
w, which is for instance satisfied, if [, A] is identified with [R”,X7]. In our
minimization-framework the objective functions take the form

o T — = = B -Ds T « T
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where z := (z',...,2”)T. E,D?, and B denote the expectation operator, the
variance operator and the covariance matrix of p, respectively. The constraints
are given by

p

To:{l‘ERf':Zmigl, z> Zz'p >a) > n}.

1=l i==]

I', can be rewritten in the following form, where g,(z) < 0 means that the
shortfall constraint is satisfied for the decision vector a:

T, =T N {z € R : go(x) <0} with

P
rgl) ={x € R": Zﬂ <1,z >0} and

=1

o) = 71— / X (2)APo(2),

Ry

M(z) = {z=(2},...,2")T : Z:zrizi > al.

=1

P, denotes the probability measure which is induced on [R”, ¥7] by the (true)
random vector p, and X () is the characteristic function of M (x):

P
1if z € M(z),i.e.,

XM(z)(Z) = Z
0 otherwise.

However, the distribution of p, which is needed in the objective function and
in the constraints, is usually unknown and has to be approximated. Of course,
the approximation of this distribution is a crucial step: there are attempts to
exploit technical analysis, fundamental analysis, experts’ forecasts, etc. How to
obtain good estimates is a separate question and would go beyond the scope of
this paper.
To have examples, let us assume that
i) our estimates are based on independent ‘forecasts’ p;, 7 = 1.....n, for p
(forecasts of experts or forecasts based on scenarios) and

ii) the rewards p have a nonsingular normal distribution (this assumption is
not very realistic, but often used) and only the expectation vector and
covariance matrix have to be estimated (for instance relying on technical
analysis or scenarios).

In both the cases we will use the surrogate random objective functions

al 7z m . o " -
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ki
with the sample mean p, = ;ll > pj and the sample covariance matrix
j=1

n

Bo=—— 3 (0;~ 5u)(o;— )"

n—1
Jj=1

(Some authors use the biased maximumn-likelihood estimate for B, which dif-
fers from B, only by the factor Z=L. For our asymptotic assertions this is
meaningless. )

Differences occur in the treatment of the shortfall constraints: in the first
case we will deal with

] n
gn,1{(z) =n— ~ Z.X.-w(:)(ﬂj)
=1

which means replacement of P, by the ‘empirical measure” based on py.....p,.

In the case of normally distributed returns, 27p follows a normal distribu-
tion with expectation " Ep and variance 27 Bz. By replacing these parameters
with the above estimates, we obtain

I (k—:i‘.T_. LT b
= | —1 Fat B0 >0
gnir(@) =1 " +‘°(7‘—‘"er.@) e

n otherwise

where ¢ denotes the distribution function of a standard normal variable:

d(z) = # / e~ dt.

Here we did not indicate the dependence on the elements w of €, but. since
the p; are random variables, the functions fl, f2, g, and g,.;; are functions
of z and w. Then, f} and f? are continuous in a: and measurable, hence they
satisfy our measurability conditions.

Because of {(z,w) € R? @ Q : xy)(pw)) = 1} = {(z,w) : 27 p(w) > a},
the (£ @ A, X')-measurability of x¢.y(p(-)) and hence of g, s is guaranteed.
B being regular, the approximations B,, are regular for almost all realizations
of p, and hence g, j; is continuous in a.

We still have to consider g, ;(-) with respect to lower semicontinuity for a
fixed sequence zi,...,z, of realizations of pi,...,pn. Let 2; be a discoutinu-
ity point of xar(.)(2j). For xar(z,)(z;) = 1 there is nothing to show. Then,
XM(z;)(2;) = 0 means 2] z; < . Hence, there is a neighbourhood U {a;} of x;
with 2T2; < aVz € U{a;}, ie. Xma)(z) = 0Va € U{a;}.

This implies upper semicontinuity of x¢.y(2;) and, consequently, g, ;(-) is
lower semicontinuous for all realizations of the rewards.

Summarizing, in both cases, the assumptions of Lemma 2.1 and Lemma 2.2
are satisfied, hence measurability of the sets under consideration in this paper
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4. Convergence of the constraint sets, the sets of efficient
points and the solution sets

4.1. Notions of convergence

In the first part of this section the results on the semicontinuous behaviour al-
most surely will be summarized which may be derived from results for multiob-
jective deterministic parametric programming problems. We start by explaining
the suitable convergence notions. Let f,|R” — R" and a closed sel X' € R” be
given,

DEFINITION 4.1 A sequence (£,)nen of (E7 @ A, X7 )-measurable functions is
said to be
i) a lower semicontinuous approrimation almost surely to f, on X (abbrevi-
ated f,=%21,) if
Yy € {1 yoonsTl: Plw:iVa, € X Y(ap)nen witha, — x,:
liminf f(x,.w) < fi{e,)} = |
n—oo
it) an upper semicontinuous approvimation almost surely to f, on
X ( n“-)(&’fo) ﬁf "‘fnj—;'-s‘ - fo-.
iti) continuously convergent almost surely to f, on X (£, ===1,) if

fn.i a.s. f Afna.-—nw f

Continuous convergence a.s. is the natural generalization of continuous con-
vergence for a sequence of deterministic functions. ‘In probability’ versions of
the above convergence notions are discussed by the author in Vogel (1991a, b)
and, applied to multiobjective programming and taking into account a conver-
gence rate, in Vogel (1992). They come into play when only convergence in
probability can be guaranteed for the estimates.

At a first glance the notions of Definition 4.1 may seem unwieldy, but for
l.s.c. (u.s.c., or continuous) objective functions f7 there are pointwise sufficient
conditions (Vogel, 1994a, Theorem 5.1) which can be used in several applications
(Vogel, 1994b). We recall the ‘continuous’ version (here C'7 denotes the class of
compact subsets of R?).

LEMMA 4.1 Let fJ be continuous on X for all j € {1,.... r}. Then the condi-
tion
Vie{l,....r} Ve, € X Ve>0 FU{ap} e C”:
; 3 JTINRY _
P{w:limsup sup | fl(z,w) = fl(x,)] > €} =0
n—o0 gell{x,}
implies £, ¢ f,.

As to Lh(—: multifunctions, in this section we use the following convergence
notions, which in the deterministic case reduce to upper semicontinuity and
lower semicontinuity in the sense of Sawaragi et al. (1085).

T TR ) 1 1 1 1 i r mn
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DEFINITION 4.2 A sequence (G)nen of multifunctions with measurable graphs
is said to be
i) upper semiconvergent almost surely to G, (G,*=2G,) if

P{w : limsup Gp(w) C G,} =1,

11) lower s;;z?;omergent almost surely to G, (G,=%2G,) if
P{w : liminf Gp(w) D G,} =1,

1) convergr;;;oafmost surely to G, if Go2=%25G, A G, =25G,,.

The limes inferior and the limes superior in Definition 4.2 are understood in
the Kuratowski-Painlevé sense:

limsup G, := {& € R? : I(wn, Jken with lim z,, =2
n—oo k—oo

and x,, € G, Vke€ N},

liminf G,, := {x € R?: I(xn)neny with lim 2, =2
n—0o

n—oc

and 2, €G,Vn> 1, }

where (@n)neN denotes a sequence of subsets of RP.

4,2, Constraint sets

Firstly, we consider the constraint sets. The following result may be derived
from Theorems 3.1.1 and 3.1.5 by Bank et al. (1982).

THEOREM 4.1 i) Let gl i=&8507 Vj € J. Then I, 2=%8 T,
it) Let the following conditwns be satisfied:

a) gilgkssgl VjeJ,
& T, Ccf{:c:gf,':x:]<[] vje J}.
Then T'p =247,

Before we turn to the efficiency sets, we shall have a look at the Markowitz
model. With I“S,l) being fixed, the interesting point is the behaviour of g¢,, ; and
Gn,i11-

We start by investigating (gn.7)nen. Making use of former results (Vogel,
1992, Section 6), we can conclude, that, given a continuous distribution of the
rewards, (gn,1)nen Is continuously convergent a.s. to g, s, hence I', =225,
For condition b) of ii) a result which is due to J. Wang (see Vogel, 1992, Propo-
sition 10), may be employed. A logarithmic concave probability distribution

of p and the emstence of an 2, € TS with P(z,Tp> ) > n imply that also

- len e ] ~ o
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the assertion also holds for the larger class of quasi-concave measures. Thus,
distributions which are of interest when modelling the random returns, e.g. non-
singular normal distributions, lognormal distributions, and Pareto distributions,
are admitted.

For (gn,1r)neny we proceed in the following way: as already mentioned,
2T B,z (x # 0) is positive for almost all realizations of (py,....p,), hence G IT
depends continuously on x and the estimates. This, by the strong consistency
of p, and B, implies continuous convergence. Concerning condition b) of ii),
the above considerations hold as well.

4.3. Efficiency sets

The following result may be derived from Theorems 4.2.1 and 4.2.2 by Sawaragi
et al. (1985).

THEOREM 4.2 Let the following assumptions be satisfied:

c—a.s. c=a.s. ¢
n Rl’ 09

zz) T, &5T

i) IK€CP: Plw:In,(w)Vp>n,: T, CK}=1.
Then we have E,*=%5W, and,
given that P(E,, # 0) = 1 for almost all n, also E,'=%5F,.

Unfortunately, in general, we do not have W, = E,, thus in the surrogate
problems the efficiency set may be ‘too big’.

Conditions implying equality are summarized by Vogel (1992, Proposition
2). For the Markowitz model none of them applies immediately. We have,
however, the following result:

PROPOSITION 4.1 Let P, be quasi-concave and assume that Ep' # Ep’ Vi # j
and that B is a positive definite matriz. If then there is an x, € Iy, with
P(z,Tp> a) > n, the equality W, = E, holds.

Proof. Quasiconcave measures and probabilistic constraints in terms of convex
functions imply a convex constraint set I', (Wets, 1989, Prékopa, 1995, Vogel,
1992).

Suppose that there is a y, € W,, which does not belong to E,. Then there
exists a y; € f(I',) such that y] < i V; € {1,...,r} and y/* < yl for at
least one j,. To y, and y; we find 2z, € I', and z; € I', with y, = f(2,) and
yi1 = f(z;) and consider a) := Az, + (1 — N)ay, A € (0,1) albil](ny With B
being positive definite, f2 is strictly convex, hence f2(z,) < y2 and f2(x) < Y2
for all z that belong to a suitable neighbourhood U{zy}. If fl(x)) < y) we
have a contradiction to the a.ssumpt,ion that Yo € W,,.

Now, suppose that fl(z\) = yl = y]. Hence, 2, A € (0,1) belongs to a

contour line of f1. If ) is an ll]nCI point of Ty, we can find ) € U{x\} NT,
S PLEE N el 1 1.
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Eventually, we assume that all elements of G := {wy : 2y = Az, +(1 =\ }
are boundary points of I', and construct @, € T, N U{ar} with (&) < yl.
We distinguish three cases:

i) First, let 2} =0 for all A € (0, 1) and all i from an index set I C {1,...,p}.
Then &) := 2y + 3 Y. e;, where ¢; denotes the ith unit vector (0...0 1 ll..O)T

il
with 1 at the ith position and [ > 1 a suitable real number.
ii) Suppose that @}, =0 for all A € (0,1) and all i € I C {1,....p} and
P =
>z = 1. Then the set [ := {1,...,p}\I contains at least two elements. Let
i, € I be such that Ep* > Ep' Vi € I. Then we take (with 4y € I and a
suitable 8> 0) z) =z + fe;, — Pey,.

iii) Finally, suppose that g,(z,) = 0 and g,(21) = 0. Then, because of the

convexity of T'y, the inequality g,(xx) < 0 holds. Now, choose Iy = z) +

P -
B> e € TLI) for a suitable @ > 0 and a suitable index set I. If no such point
ief

exists, I', cannot have inner points, which contradicts the assumption. ]
Finally, let us consider the condition f, <*£, in the Markowitz model. Due

to the simple form of f! and fZ, the assumptions that j, and B, are strongly
consistent estimates for Ep and B imply continuous convergence.

4.4, Solution sets

Concerning the solution sets, the following result can be derived from Lemma
4.4.2 (i) by Sawaragi et al. (1985).

THEOREM 4.3 Let the following assumptions be satisficd:
1) f c=a.s, ns foa
it) T e =il
i) B,Y=es E

Then S, *=%=s

The crucial point is iii) where, again, the condition £, = W, comes into
play.

If f, is one-to-one, a corresponding result is available for S, =58, .
may be directly derived from Theorem 1.2. As the objective function in lhc
Markowitz model is not one-to-one, we will quote the following result (Vogel,
1990):

THEOREM 4.4 Let the following asswinptions be satisfied:
i) fa 5751,
%) Lsi ”5 L2551,
i) Yz, € S, Vo € Ty with x # 20 3;, € {1,....v}: fle(a) > [ (x,).
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Lemma 7 (Vogel, 1990) summarizes sufficient conditions for iii). As these
conditions do not directly apply to the Markowitz model, the following Propo-
sition will be proved:

PROPOSITION 4.2 Let I', be convex. suppose that all f1,5€ {1..... r}. are con-
vex and that one objective function f2v is strictly convex. Then i) is satisfied.

Proof. Suppose that there are an x, € S, and an ay € I',,x; # 1, such
that for j € {1,...,7} fi(x1) < fi(2,) holds. Consider xy with 2y 1= Az, +
(1 =Xz (A€ (0,1)). With I', being convex, x belongs to I',. Because of
the convexity of f7 the relation f7(xy) < f(x,) holds. Strict convexity of fI°
implies flo(z)) < fJo(x,), hence x, cannot belong to S,. ]
Hence, in the Markowitz model for a quasi-concave measure and a positive
definite covariance matrix B the assumptions of Proposition 1.2 are satisfied.

5. Order semicontinuity

As mentioned, in the single-valued case lower or upper semiconvergence of mul-
tifunctions reduces to convergence. Hence, when specializing Theorem 4.2 to
the single objective case, only assertions on the continuity of the optimal value
function can be derived. Results that are ‘vector-valued’ generalizations of as-
sertions on the semicontinuous behaviour of the optimal value functions may be
obtained using order semicontinuity as introduced by Penot and Sterna-Karwat
(1989). We will consider corresponding random notions and discuss stability
results in our setting. Let G, C R".

DEFINITION 5.1 A sequence (G )nen of multifunctions with measurable graphs
is said to be an
i) order upper approzimation almost surely to G, (G, *—="= G,) if
P{w:G, C anlmf(G,x(w)—i—R:]} =3

ii) order lower approzimation almost surely to G, (G,2==%5 G ) if
P{w:limsupGp(w) CG,+ R} = 1.
n

— 00

If (Gn)nen is a sequence of subsets of RB” then, analogously,

G o=t G, = G, C liminf(G, + R),

n—og

@27 g, s Umsp e, € B, 4 B

n—od
An order lower approximation according to Definition 5.1 corresponds to a

‘sup-upper continuous’ multifunction in the sense of Penot and Sterna-Karwat.,
Similarly, an order upper approximation corresponds to an ‘inf-lower continuons’

.o
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by the fact that one has in each case only one side of the usual upper (lower)
semicontinuity. Both properties together in general do not imply convergence
of (Gn)nen to G,, unless the multifunctions are single-valued.

In the single-valued case the above properties reduce to upper and lower
‘semicontinuity’, respectively, and according to this relation the notation ‘order
upper (lower) approximation’ has been chosen in this paper.

It is straightforward to prove the following assertion.

LEMMA 5.1 Let Gp(w) = {yn(w)} P—a.s., n€ N, and G, = {y,}. Then
i) G, 4= G, <= limsupy, <y, a.s.

N—00

i) Gp&==28 Q) = liminfy, >y, a.s.
n—oo

With the above notions the following results may be obtained.

THEOREM 5.1 Let the following assumptions be satisfied:
3) l=a.s. o. 8. fo:
i) T uas., uzas., p
til) 3K € CP: P{w: 3n,(w) Vn > n, Tp(w) C K} =1,
w) £,(T'y) C E, + RY.
Then E,%='=2% E |

Proof. This theorem may be derived from Theorem 3.1 by Penot and Sterna-
Karwat (1989). As Penot and Sterna-Karwat deal with a more general frame-
work and partly different denotations, for the reader’s convenience we present
the short proof for our special case.

Let ' = {wen: f“(w)]fT* fo, Th(w)® T, and T'y(w) C K ¥, > n,(w)}
and consider an w € §V'.

Suppose that y,, € E,(w) for infinitely many m and nli_{rgoym = ¥, To

¥m there is an z,, € I',(w) with y,, = £, (z,,w). Because of ii) and iii)
there is a subsequence (x,,)reny with klim Tp, = o € ['p. Then, i) implies
—0

fi(z,) < likminff,{k(a:nk,w} =y} Vj€ {l1,..r}. According to iv) to f,(z,)
—00

there is a ¥, € E, with f,(z,) > ¥,, hence y, < y,. |

The following assertion corresponds to Proposition 4.1 by Penot and Sterna-
Karwat (1989).

THEOREM 5.2 Let the following assumptions be satisfied:
1} fﬂu e s fﬂl
11) [,i=es T
i) P{w Elno(u) Vo 20, : f(Tp(w),w) C Ep(w) + R} = 1.
Then E,2=4=%2 F,
Proof. Let
={weQ: fw)f, Cn(w)b T, and
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and consider an w € Q.

Suppose that y, € E,. Hence, there is an x, € ', with y, = f,(2,). Because
of ii), there exists a sequence (z,)nen With 2, — z, and z, € I'y(w) Yn > n;.
Consequently, employing i), we obtain limsup f (zn,w) < f1(z,)Vj € {1,...,7}.

n—og

Now, f,,(z,w) with n > n,(w) may be represented as f,,(z,,w) = y, +w, with
¥n € Ep(w) and w, > 0. Furthermore, let v, := f,(z,) — f(x,,w), hence
Yo = ¥n + Vn + Wy,. Because of linm i;éf(v,, +w,) > 0, we find a sequence
(Wn)nen with W, > 0¥n € N and “Iim (¥n + Wn) = Yo &

Let us consider the illustrating .\/]z::;?kowil.z model: semicontinuous conver-
gence of the objective functions and the required behaviour of the constraint
set was investigated in Section 4. We still have to consider the conditions iv)
of Theorem 5.1 and iii) of Theorem 5.2, which are usually called ‘external sta-
bility’. Sufficient conditions for the external stability are given, for instance, by
Sawaragi et al. (1985). We can employ the following result, which is formulated
in terms of the original problem (P,). but holds analogously for (P, (w)).

LEMMA 5.2 Let the following conditions be satisfied:
i) £,(T) #0,
ii) £,(I's) + RY, is closed,
iti) 3y, € R : £,(T) C yo + R
Then E, # 0 and £,(T',) C E, + R},

It is easy to see that these conditions are satisfied in the Markowitz model
for T, and T, as well.

Now we turn to the ‘in probability” sense. We propose the following defini-
tions, where U, denotes an e-neighbourhood.

DEFINITION 5.2 A sequence (G,),en of multifunctions with measurable graphs
is said to be an
i) order upper approzimation in probability to G, (G,<==E, G,) if
Ye>0VK € CP: "li_.mmP{w : [Go\(UcGn(w) + RL)|N K # B} =0,

ii) order lower approzimation in probability to G, (G, G,) if
Ve>OVK € CP: lim Plw: [Gu(w)\(UGo + RL) NK # 0} = 0.
n—oo

Relying on results by Salinetti and Wets (1981), who proved that convergence
almost surely of closed-valued measurable multifunctions implies convergence
in probability, and on former considerations (Vogel, 1994a, Section 2), we can
conclude that

o—1l—a.s o—1—prob

(Gn Go) = (Ga

G,) and

O—U—1.8 BT p?'l’)b
— -

G,).
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THEOREM 5.3 Let the following assumptions be satisfied:
i) The functions f2, j € {1,...,r}, are Ls.c. and
Vje{l,...,r} Ve >0VK e CP*!;
nlemP{w Epifi(,w)\UEpifi|N K # 0} =
11) I'y ist closed and
Ve>0VK € CP; lim Plw: Tn(w)\UTNK #0} =0,

#i) IK € CPVK ¢ C'1rJ Iim Plw:Th(w)NK c K} =1,

i) £(T,) C E, + RY. o
Then E,2=t=preb, p

The convergence condition in i) denotes a ‘lower semicontinuons approxi-
mation in probability’ to f,, and the convergence condition in ii) means that
(I'n )nen is ‘upper semiconvergent in probability’ to I',. Suflicient conditions for
the assumption i) that are relatively easy to check and apply to many real life
situations are given by the author., Vogel (1994b). *In probability’ versions of
the results of subsection 4.2 may be used to decide whether ii) is satisfied.

Before we prove the above theorem, we shall present the corresponding ‘order
upper’ part.

THEOREM 5.4 Lel the following assumptions be satisfied:
i) The functions f1, j € {1,...,r}, are w.s.c. and
Vj e {1,...,?'}V€>{]VKEC”“ :
lim P{w: [Epi(—=fi(,w)\UEpi(~f)I N K # 0 = 0},

ii) Ve > OVK € CP: lim Plw: (GAUGn(w)) NK # 0} =0,
ui) VK € CP : 1|m P{ [f Fa(w), w)\(En(w) + RN K # 0} =
Then Enw Ea.

We shall show how these results may be derived from the corresponding a.s.
assertions. In a similar way the results of Section 4 may be carried over 1o the ‘in
probability’ setting. However, using the way of proof mentioned we sometimes
need additional closedness conditions for I', or the epigraph (hypograph) of f,,
because otherwise the introduced convergence notions a.s. and in probability
for multifunctions do not fulfil desirable relations which are known for sequences
of random variables.

We start by proving two auxiliary results. The abbreviations Limsup and
Liminf denote the limes superior and limes inferior in the set theoretic sense.

LEMMA 5.3 Let {G,,n € N,} be a family of multifunctions G|} — R" with
measurable graphs.
i) If each subsequence of (G )nen contains a subsequence (G, Jren
with limsupG,, C G, P —a.s. then

k—oo

AV ATE e 1 ™ d/ o ANNTE Y AN~ T I et f1h
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holds.
i) If. additionally, G, is closed-valued. both conditions in part (i) are equiv-
alent.
iit) If and only if each subsequence of (G,,,),,,eN contains a subsequence
(Gny )ken with likrn infG,, DG, P—a.s., then
— 00
Ve >0VK € C": lim P{w: (G, )\UG( NNK#0}=0. (2)
n—odo
holds.

Proof. We abbreviate D,, ((w) := G, (w)\U:G,(w), and denote by By the closed
ball in R* with centre 0 and radius k. Furthermore, we recall that

limsup G, C G, P — a.s.

n—oo

implies

Ve>O0VK €C™: lim P | | J{w: Dme(w)NK #0} | =0 (3)

m>n

and that equivalence holds if G, is closed-valued (Vogel, 1994b, proof of Propo-
sition 2.1). In a similar way it can be proved that

liminf G, 2 G, P — a.s.
n—oo

is equivalent to
Ve >0 VK e(C":
lims P< U {w: (Co\U.Ga(w)) N K ¢o}> ()

e=ree m2n

i) Suppose that (1) is not fulfilled, i.e.
de>0 IK €C” F(np)key Ja>0 VieN:
Plw i Dy, Jw)N K # 0} > a.
Hence, P(Limsup{w : Dp, (w) N K # 0}) > a, and further

k—oo

U{w DpeW)NK#0} | >a VIEN,
k>l

which contradicts (3).
ii) Let (1) be satisfied and (onsid(‘r a subsequence (G,,)ng fen Of (Gu)nen-
To every k € N we find ny € N such that for n > ng,n € N:

Pliv-D ()N R.4M< L
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Let n := fiy,ny := max {nx_ + 1,7}, N1 := {ny,ny,...}, and
Ax:={w:D, 1 (w)N By #0}.

ﬂk,;x;
Making use of P(Ax) < 3r we obtain

Ve>O0VK €C™: Y P{w: Dp, (w)NK # 0} < 00

k=1

and consequently, by the Borel-Cantelli-Lemma, Ve > 0 VK € C7 :

]imP( U {w:Dm,E(w)ﬂK;éfB})

k—oo ~
m2ng,meN;

n—o0,neN; -
mzn,meN;

= ]im‘P( U {w:Dm,g(w)ﬁK%ﬂ})zﬂ.

This, for closed-valued G,, implies limsup G, C G, P — a.s.
n—-oo,nEN";

iii) The both directions of this part may be proved like part i) and part ii)
replacing Dy, ¢ by Dy, ¢ with Dy, ((w) := Go(w)\UcGr(w). o

LEMMA 5.4 Let (Gp)nen be a sequence of multifunctions with measurable
graphs. Then

VK € CP: nli_‘ng‘J Plw:Gp(w)NK #0} =0 (5)
=

Each subsequence of (Gp)nen contains a subsequence (G, ren with

P(Lgfmf {w G ) =10}) =1 (6)

Proof. First, assume that (5) is satisfied. As in the proof of part ii) of Lemma
5.3 we can show that

o0
VKEC :) Plw:Gn(w)NK #0} < o0,
k=1
hence, by the Borel-Cantelli-Lemma,

VK e C" :P(Lgminf {w:Gu (W)NK =0})=1.

which implies (6).
Secondly, assume that (5) is not fulfilled. Hence
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consequently

P(Limsup{w : Gy, (w)N K # 0}) >« and

k—oo

P(Lgminf{w G, WNK=0})<1-a

which contradicts (6). |
Now, we are able to prove Theorem 5.3. Note that Theorem 5.4 may be
proved in a similar way.
Proof of Theorem 5.3. We consider a subsequence (E, ), .5 of (En)nen
and show that it contains a subsequence (E,, Jreny with

Enkm* E, (k— o).

Then, applying Lemma 5.1 to G, = E,(w) and G, = E, + R’,, the conclusion
follows.

We consider the sequence (f,), 5. By Lemma 2.1 in Lachout and Vogel
(1999) it contains a subsequence (fn), ey, cy With £,*=%%> f, (n € N;). To
(T'n)nen, we find a subsequence (I'y)nen.cn, With I',2 =225 T') (n € Ny).
Eventually, there is a subsequence (I’ )nenac v, With Tp(w) € K P—a.s. ¥n >
Mg, and it remains to apply Theorem 5.1. |

6. Conclusions

In this paper, we have considered multiobjective programming problems which
are approximated by random problems. We started with conditions that imply
desirable measurability properties for the approximate problem. It has been
shown that the sets of efficient points and the solution sets which belong to them
have measurable graphs if, additionally to the general measurability assumptions
throughout the paper, the objective functions are lower semicontinuous with
respect to z.

Afterwards, we have summarized conditions which guarantee that the sets of
efficient points and the solution sets of the original problem are approximated by
the corresponding approximate sets in a suitable ‘almost surely’ sense. Further-
more, we have investigated how these results may be used to derive statements
for the Markowitz model with a shortfall constraint, assuming either that there
are i.i.d. forecasts for the returns or that the returns have a normal distribution
and strongly consistent estimates for the expectation vector and the covariance
matrix are available. It turned out that, given an absolutely continuous quasi-
concave probability measure (as for example a nonsingular normal distribution),
pairwise different expected returns, a positive definite covariance matrix, and
a Slater-type condition for the shortfall constraint in the original problem, for
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are continuously approximated (almost surely). The assumptions concerning
the distribution are brought into play by the shortfall constraint.

However, it may be doubted whether in real-life situations the i.i.d. condition
or only the strong consistency of the estimates can be assumed. Therefore, we
have asked for convergence notions which can be proved to hold under weaker
assumptions on the behaviour of the estimates.

Weak consistency, which can often be maintained even for dependent samn-
ples, leads to convergence in probability. To give an example, what appropriate
convergence notions ‘in probability’ look like and by what means statements on
the convergence in probability can be derived from corresponding "a.s.’ state-
ments, we have investigated the ‘order’ behaviour of the sets of efficient points,
i.e. we have considered order lower (and upper) approximations. Roughly spo-
ken, the elements of an order lower approximation may be regarded as approx-
imate upper bounds to subsets of the efficiency set of the original problem.
Application of the results to the Markowitz model shows that ‘order semicon-
tinuity’ can be proved without the assumptions that the expected returns are
pairwise different and the covariance matrix is positive definite. This implies, for
instance, that in the classical Markowitz model (without shortfall constraints)
‘order semicontinuous’ behaviour in the a.s. (‘in probability’) sense is guaran-
teed if only strong (weak) consistency of the estimates can be assumed.
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