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Abstract: Decision makers often have to deal with a progralll­
ming problem where some of t he quant it ies are uulmown. T hey will 
usually estimate these qnauti ties and solve t he probl en1 as illhen ap­
pears- the 'approximate problem'. Thus, there is a need t·. o esLJb lic;]l 
conditions which will ensure t hat the solu tions to the approx im ate 
problem will come close to the solu t ions to t he t rue problem in <I 
suitable manner . The paper summ ari zes such results for rnn ]t·inbj t>c­
tive programming problems. The resul ts are illustrated by mea JJ S of 
the Markowitz model of portfolio optimization. Tn ord er to show how 
probabilistic constraints may be dea lt with usin g t hi s f'nnn cwork , a 
shortfall constraint is taken in to account . 
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1. Introduction 

Decision makers often have to deal with a pmgramrning problem where some of 
the quantities are unknown. Then it is usual to estim ate t hese quantiti es and to 
solve the problem as it then appears- the 'approx imate probl em'. The hope is 
t hat the solu tion to the approximate problem will be a good approxim ation of 
the solution to the true problem . T hus there is a need for condition s CJI Suring 
that thi s hope is justified , conditions as to the nature of t he t rue problem and 
as to the behaviour of the estirn8tes. 

Many papers have been publi shed on Ll1 e approximation of opti111i :wtion 
problems . Especially, the stabili ty theory of parametri c program rning yields 
many helpful results, both in respect. of on e object ive fun ct ion and in respect of 
several objective functions (see Ba11k et a l. , I 982, Robinson, 1987 , Sawaragi et 
o:~ l 1 QQt; P nn r d -n l-o r l C'f- rn•,-..-. T/ n .. ~n••·-.4 1()0,.; "1 (\(,() \ 
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Estimated quantities produce, in effect, a random approximate problem. 
This means that there must be additional considerations in order to ennble 
the deterministic results to be adapted to this random setting. In the 'almost 
surely' ( a.s.) setting this problem has been mainly dealt with i u tiJe context of 
stochastic programming and Markovian decision processes, where au important 
role is played by objective functions that are integrals with respect to probability 
measures. Meanwhile, various quantitative and qualitative results are avai lable 
for cases with a single objective function (Langen, 1981, Robinson and Wets, 
1987, Kall, 1987, Dupacova and Wets, I 988, \Vets, 1989, King and Wets, 199 1, 
Romisch and Schultz, 1991, 1993, 1996, Vogel, 1994a). 

However, the problems are often such that conditions which guarantee the 
almost sure convergence of the estimates can hardly be assumed. Then it will 
be necessary to look for concepts of weaker convergence, for instance conver­
gence 'in probability'. Here a demand for appropriate convergence concepts 
of random functions and random sets is tbe first to arise. Salinetti and Wets 
(1981, 1986) investigated the Kuratowski-Painleve-convergence of random sets 
and the epi-convergence of random functions (for the 'a.s. ', 'in probability ' and 
'in distribution' cases). On tbe basis of these concepts it is possible to derive 
stability results 'in probability' for the single objective case that are similar to 
the deterministic form (see Vogel, J994a, b). 

In the multiobjective case there are several stability results for deterministic 
parametric programming problems (see Naccache, J 979, Papageorgiou, 1985, 
Sawaragi et al., 1985, Penot and Sterna-Karwat, 1986, Vogel, 1992) which con­
sider the 'semicontinuous' behaviour of the sets of efficient points and the so­
lution sets. These results may be employed to derive statements about the a.s. 
setting. It is the aim of the first part of the present paper to summ arize the 
results for the a.s. case and to discuss the assumptions. T he Markowitz model 
of portfolio optimization, which is here extended by a short fall constraint, serves 
as an illustrative example. 

However, the attempt to derive results for the singl e objective case from the 
semicontinuous behaviour of t be sets of efficient points will only ach ieve results 
about the continuity of the optimal value. The reason is that the lower (or up­
per) semicontinuity of a multifunction reduces to continuity if the multifunction 
is single-valued. Penot and Sterna-I<arwat (I 989) filled th is gap in the deter­
ministic setting. They introduced and investigated the 'order semicontinuity' 
of the sets of efficient points and thus obtained multiobjective generali zations 
for statements on the semicontinuity of the optimal value function. Tn order to 
carry over these results to the random setting, the second part of this paper 
will investigate random versions of the order semicontinuity in more detail. It 
will offer statements for the a.s. sett ing and then show how results for the 'iu 
probability' case may be derived. Note that the way of proof which is followed 
in this part could also be used to derive 'in probability ' versions of the asser tions 
made in the first part of the paper. Again, the results wi ll be illustrated by the 
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The paper is organized as follows . The mathematical model is prov ided in 
Section 2. The Markowitz model wh ich is to serve as a n illustratioJJ is ex plained 
in Section 3. In Section 4 the resu lts on the semi contiuuous behav iour of t he 
constraint sets, the sets of efficient poin ts, and t he soluti ons sets (in the a .s . 
setting) are summarized and there is a. d iscussion of conclusions to be d rawn for 
the Markowitz model. Section 5 has as its subject the 'a.s.' and ' in probability' 
order semicontinuity. Section 6 summarizes the results. 

In this paper the focus is on a determ inist ic or igin al problem because of the 
applications dealt with . Note that most of t he resu lts may also be proved for 
the original random problems. 

Finally, it should be mentioned t hat for a determ inistic original problem 
convergence in probability and convergence in distribution (for t he d iverse kinds 
of convergence considered here) can be shown to coin cide. 

2. Mathematical model 

Suppose that we are given t he deterministic mul tiobjective programming prob­
lem 

where fo C RP is a nonernpty closed set and fuiRP -) R1
. Mini m ization IS 

understood with respect to the usua l part ial ordering " :::; " in Rr, which 1s 
generated by the cone R+ . 

We consider random surrogate problems 

min fn(x,w) 
xEf,(w) 

where r n, n E N, are m ul tifunctions defined on a given complete probabili ty 
space [!1, A , P] with values in t he (} - fie ld of Borel sets I;P. f ,IR1J X n -) Rr is 
taken Js (I:P ® A , L:r)- measurable. (Sufficient conditions for th is property are 
given by Vogel, 1992). 

To avoid restricting the model to closed-valued multifunctions we, add i-
tionally, assume that the graphs r n) n E N, belong to A ® L;P. 1 n our set-
ting multifunctions with measurable graphs are measurabl e, i.e. r ;-; 1 (A) ·­
{w E 0: f n(w) n A f. 0} E A for every closed set A E I;P. 

fo and fn(w) may be specified by inequali ty constraints: 

fo := {x E RP: g?,(:r):::; O,j E J} , 

rn(w) := {x E RP: g~(x,w):::; O,j E .!} 

where ggiRP-) R 1; gf.j RP x !1-) R 1 is (L:P ® A, I:1)- measurable, and .J is a 
._.... . ~ . -
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When a single component of fo or f 11 (or other vector-va lt1 ed functions or 
elements of Rr) is dealt with , the sam e letter is used withou t bolcl-f<lce and t!Je 
corresponding index is added: f~ denotes the j-th component off"' 

The sets of efficient points (or efficiency sets) for t he original problem (Po) 
and the approximate problems (Pn(w )) are explained by 

Eo:= {y E fo(fo) :1-J y E fo(f o) with (y S y 1\ y -/:- y )} , 

En(w) := {y E fn(fn (w),w): 1-J Y E fn(fn(w),w) 

with (y :::; y/\y f:. y)} 

where f0 (fo) stands for {f0 (x) : x E f 0 } and fn( f n(w), w) for {fn(:r,w) : :t: E 

r n(w)}. 
By 50 a nd Sn we denote the corresponding solution sets 

Sn(w) := {x E fn(w) :1-J x E fn(w) wit h (fn( .i, w) S f,(:~ : , w ) 

1\ fn(x,w)-/:- f,(:~:.l<-•))} . 

Moreover, we introduce the sets of weakly ef-Ficient points 

Wo := {y E fo(fo) :1-J y E fo(fo) with y< y} and 

Wn(w) := {y E fn(f,(w),w) :1-J y E fn(fn(w),w ) withy < y} , 

which, in the single objective case, also reduce to the opt im al valne. and the 
corresponding 'weak ' solution sets 

s;;v := {x E fo :1-J x E ro with f0 (:1: ) < fo(w)}, 

S.:;'(w) := {x E fn(w) :1-J x E f n(w) with f,(x, w) < fn(:c,w)} . 

(By (a1 . .. arf < W ... br?'; ai, bi E R; we rneau ai < vi Vi E {1 , . .. , r }.) 
By definition, the sets of e ffi cient points are contained in the se t.s of wea kly 

efficient points and the corresponding relation holds for the soluti on se ts. 
Eventually, we introduce the multifun ct. ions F~, with 

Fn(w) := {fn(x,w): X E fn(w)} = f,(fn (w) ,w ). 

F irstly, we have to guarantee that the necessary measurability condi t ions a re 
fulfilled. We start with an auxiliary resu lt. 

LEMMA 2.1 Let r n be closed-valued for p -almost all w and meai>'II.'('(LUle. Fur­
thermore, let f~(- ,w) be l.s.c. for ? -almost all w and all j mul .!!, ue 
(~P 0 A , ~r)-measurable . Then the mtdtifnnct·ions Fn 1S1 __, 2rc , ·n. E N , w'ith 
Fn(w) = fn(fn(w) ,w) + R''f-, are closed-valv.ed for ? -almost all wand meas'([,r-
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Proof. We consider a fixed nand omit the index n. Under our ass1m1ptions 
the epigraph multifunction w -) Ep-i f (-, w) is measurable and a.lrnost surely 
closed-valued. Hence, because of F (w) = Epi f (-,w) n (f(w) x H"t ), t l1 c conclu­
sion follows. • 

In a former paper (Vogel, 1992) we have shown that t he rnultifuu ction s 
En, Hln, Sn and s~· have measurabl e graphs whenever either the function s 
fn(-,w) are continuous and the sets f n(w) are compact for almost a ll w or the 
functions fn(-,w) take (with probabili ty one) only va lues in a set with finitely 
many elements , which is of interest when probabilities occur arnong the! objective 
functions . This result can be proved in a unified way and ex teudecL suppos­
ing that the multifunctions Fn as defined in Lemma 2.1 are dosed-valued and 
measurable. 

LEMMA 2.2 Let fn be (L:P@ A, L;'' )-rneasurable and Gmph rn E A 0 L;P . Fur­
thermore, assume that Fn is closed-val11,ed for ?-almost all w and mcas·u:rable. 
Then the rrwltifunctions En, TFn , Sn and S~' ' have measv:mble g·mphs. 

Proof. Again, we consider a fixed n and omit the index n. 
Let n := {w E 0 : F(w) is closed} , A := {A n n , A E A} and consider the 
following multifunctions on [0 x RP , A® I:~']. From the definition of effici ency 
we have 

S(w) = {x E r(w): (f(x,w)- ir;.) n F(w) = 0} 

with 

k~ := R~ \{0}. 

We introduce the multifunction if> with <P (w, x) := (f( :r, w)- R~1 ) n F'(w) and 
obtain 

GraphS {(w,x): wE 0 , X E f (w) , <P (x,w) = 0} 
Graphf n(dom<J:> )c 

where (dom <P) c denotes the complement of t he domain of c!l. 
Furthermore, let G(w, x) := (f(.1.:,w) -R+ )ni(w). Then 

<P(w, x) = G(w,x)\ ( {f(x,w)} n P (w)) . 

G is closed-valued and measurable, and {f (-, -)}nF(-) is empty or single-valued , 
hence closed and measurable. Consequently, ¢ is measurable hy Theorem 4.5 
and dom <1> is measurable by Proposition 2.2 (Himmelberg, 1975). Thus, Graph 
sEA @ L;P. 

Eventually, taking into account that 

(/ 
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we can proceed in the same way in order to show the measura bility of Graph£. 
If we consider sw and lV, we repl ace R~ by int R~ and <P by c!>w wi Lh 

<I>w(w, x) (f( x ,w) - int R~) n F(w) 

G(w, x )\(bdy( {f(x,w) } - R~) n F(w)) . 

The boundary mul tifunction bdy is measura ble because of Theorem 4.6. by 
Himmelberg (1975) . • 

Lemma. 2.1 and Lemma 2.2 together imply the quoted resul ts (Vogel, 1992) , 
because, first, functions which are measurable wi t h respect tow and continuous 
in x satisfy the measurability conditions of Lemma 2.1 according t o Propositon 
2C by R.ockafella r (1976) and , second , if there is a fi nite set 1111 with 

P{w: fn( x, w) E Vn Vx E RP } = 1, 

then Fn is closed-valued and, Fn being measurable, a lso measurable. 
Moreover, lower-semicont inuous objective functions with measurabl e 

epigraphs , i.e. norm al integra.nds, are (L:P ® A , L:' )-meas urabl e (D.ockaJellar , 
1976, Theorem 2A) and can hence be treated in t his framework . 

3. The Markowitz model of portfolio optimization 

Suppose that an inves tor has a certain amount of money whi ch is assumed to 
be one unit and he can choose between p different assets A 1 , ••• , A p. Here, 
pk denotes the random return at t he end of the planniug period if the whole 
amount of money would be invested in asset Ak . I3y xk we denote the fr act ion 
of the money the investor will spend for Ak, short sales are no t allowed . 1-Tence 

p . . 
2::: xt :::;; 1, xt 2 0, i = 1, . . . , p. 
i = l 

In the classical Markowitz model two objective fu nctions are taken into ac-
count. The investor will maximize t he expected return and minimi ze the re­
turn 's variance, which is used as a surroga te for risk. In order t.o show how 
probabilistic constraints fit into our framework , we will , additi ona ll y, take a 
shortfall constraint into account , i.e. t he probabili ty that the retm11 does not. 
fall under a given target ret urn n should be not less tba.n17 (a· > 0, 11 E (0, 1)) . 

Thus, we can use the following mathematical model. T he returns p' are 
supposed to be random variables, defined on [n , A , P] wi th values in [R1

, L: 1
] 

and such that E pi > 0 and D 2 / exists for all i E {I , .. . , p}. Furthermore, we 
suppose that the random vector p , p = (p1 , ... , pP)1', depends continuously on 
w, which is for instance satisfied , if [n , A] is identified wi th [RP, L: P]. Tn om 
minimization-framework the objective fun cti ons take the form 

...-.') , T , 'T' T""\ 
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where x := (x l, . .. , xP)Y . E , D2 , and B denote the expectation operclt.or , the 
variance opera tor and the covari ance matrix of p, respectively. Tl1e constraints 
are given by 

p p 

f 0 = {xE RP:L xi:=:; l, x2 0, P(L x'p1 2 a) 2 17}. 
i = l. ;.= 1 

f 0 can be rewritten in the following form , where g0 (:r) ::; 0 means that the 
shortfall constraint is satisfi ed for the decision vector x : 

ro = r~l) n {x E RP: 9a(x) ::; 0} wi th 

p 

r~ 1) = {X E RP : L xi :::; I ' X 2 0} and 
i = l 

9a(x ) = 1)- J XM( x)(z )dPa(z ), 
Rl' 

p 

M( x ) := {z = (z 1
, ••• , zP )T: L xizi 2 o} 

·i = J 

Po denotes the probabi li ty measure whi ch is induced on [RP, ~ 71 ] by t. Jw (true) 
random vector p, and XM( x) is the ch aracteristic fun ction of M (.1:) : 

{ 

p 

1 if z E M( x ), i. e ., I:: xizi 2 o· 
XM (x)(z ) = i = l 

0 otherwise. 

However, the distribution of p, which is needed in th e objective fuJJction and 
in the constraints , is usua ll y unknown and has to be approxim ated. Of course, 
the approximation of this distribution is a crucia l step: !.here are attempts Lo 
exploi t technical analysis, fundamental analys is, experts' forecasts, eLc: . How to 
obtain good estimates is a separate quest ion and would go beyond the scope of 
this paper. 

To have examples, let us assume th a t 
i) our estimates are based on independent 'forecasts' p1, j = I , ... , n , for p 

(forecasts of experts or forecas ts based on scenarios) and 
ii) the rewards p have a nonsingul ar normal distribution (thi s assumption is 

not very realistic, but often used) and only the expectation vector and 
covariance matrix have to be estimated (for instance relyiitg on techni cal 
analysis or scenarios). 

In both the cases we will use the surrogate random object ive fllll ctions 

'" 1 , ' 'T' 



710 

n 
with t he sample mean Pn = ~ L;p1 and t he sample cov<t ri ance rna.Lri x 

j = l 

1 ~ - - T 
B n = n _ 1 L)Pj - Pn )(Pi - p,) · 

j=l 

S. VOGEL 

(Some authors use t he biased maxim1un-likelihood estimate for B , wlii ch dif­
fers from Bn only by t he factor "~ 1 . For our asym ptotic assert ions this is 
meaningless .) 

Differences occur in the trea tment of t he shortfall constrain ts : in the first 
case we will deal wi th 

l n 

9n,J (X) = T/ - :;;, L XM(x)(Pi ) 
j = l 

which means replacement of P o by the 'empiri cal measure' based 0 11 p
1

, ••• ,fJn · 

In t he case of normall y distributed returns, x'l'p foll ows a uon rw l d istribu­
t ion with expectation xT Ep and vari a nce :1:TB:r . By replacing t hese parameters 
with the above estimates, we obtain 

{ 

T/ + ¢ ( a- xTp,) - l , if xT B n:l: > 0 
9n ,n(x ) = J xTB,x 

ry otherwise 

where¢ denotes the distri bution function of a sta ndard uormal va ri nbk: 

-(X) 

Here we did not indicate the dependence on t he elements w of n, but , since 
t he {J j are random variables, the functions f,~ , I~, g.,, r and .r;,, 11 <t rc fuuctions 
of x and w. Then, f~ and I~ are continuous in :r and measurabl e, hence they 
sati sfy our measurabili ty condit ions. 

Because of {(x,w ) E RP 0 n: XM( x)(p(w)) = I} = {(x ,w): xTrJ(w) 2: n}, 
t he (I;P ® A , E 1 )-measurabili ty of Xlll(.) (PC)) and hence of .lln. l is guaranteed. 
B being regular , the approximations B,, are regular for almost cdl rea li zations 
of p , and hence 9n,II is continuous in x. 

We still have to consider 9n,IC) wi t h respect to lower sernicont inui ty for a 
fixed sequence z1 , . .. , Zn of realizations of p 1 , • • • ,fJn· Let Xj be a d iscontinu­
ity point of XM(·) ( zj). For XM(x i )( zj ) = I t here is nothing to show. Then, 

XM(xi )(zj) = 0 mean s x] Zj <a. Hence, there is a neighbourhood U {:l:j } of Xj 

with x Tzj < a lfx E U{ xj } , i.e. XM(x)( z.i) = Olfx E U{::rd. 
This implies upper sem icont inui ty of XM(·)(z.i) and, consequent ly, .cJn,I (-) is 

lower semicontinuous for all rea li zations of t he rewards . 
Summarizing, in both cases, t he assumpt ions of Lemma 2. 1 and Lemm a 2.2 

are sa tisfied , hence measurabili ty of tb e sets under consideration in t his paper 
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4. Convergence of the constraint sets, the sets of efficient 
points and the solution sets 

4 .1. N otions of convergence 

Jn the first part of thi s section t he results on th e semi cont innous beli <Jviour al­
most surely will be summari zed which tn.ay be der ived from resul ts for mul t iob­
jective deterministic parametric programm ing problems. \ i\'e star t. by 0xplaining 
the sui table convergence notions. Let faiR'' ---+ R' and a closed sel X C R 71 be 
given. 

DEFINIT ION 4. 1 A sequence (fn)nEN of (L;P <2l A, L;"')-rn.eo.surnlile f u:nct·ions ·is 
said to be 

i) a lower semicontinuous appm:cirnat'ion almost sv:rely to fo on X (o.hl!'revi-
ated f n l- ;;s . fa ) if 

'VjE {l , ... ,T} : P {w: 'th: 0 EX 'V(J.:n.)nEN urith :rn --> :r" : 
li m inf fi{(xn,w) :::; n(:ra)} = I, 
n-oo 

·ii) an upper semicontimW'ILS appmrimati.on n.lmusi su:rcly to fu 
)( (f u-a .. s. f ) ij' - f 1- n. -5. - f 

.L' n X o n .. :\ a , 

iii) contimwusly conver!Jent almost sv:rely to f0 on X (f" c-; '·. f~) ·~/ 
f l-a .. s. f (\ f 11.- a .s. f 

n X o n )( o · 

0'1/. 

Continuous convergence a.s . is the natural generali zation or continuous con­
vergence for a sequence of determin ist ic funct ions. 'Tn prolwbili t.y' versions of 
the above convergence notions are discussed by tlte author in Vogel (Hl9,1n, b) 
and, applied to mult iobject ive programmin g aud taking into acco ttn L a CO Jt ver­
gence rate, in Vogel (1992) . They come in to pl ay when on ly convergence in 
probabili ty can be guaranteed for the est im ates . 

At a fi rst glance the not ions of Defini t ion '1.1 may seem unwieldy, bnt for 
l.s.c. (u.s.c., or continuous) object ive fuuctions f /, t here arc poin tw ise snfficient 
conditions (Vogel, l 99Lla, Theorem 5. 1) whi ch ca n be used in scver11 l appli cations 
(Vogel, 1994b). \ i\Te recall the 'cont inuous' version (here C 1' den otf~s l. he clnss of 
compact subsets of RP) . 

LEMIVIA 4.1 L et n be cont·in'U.O'U.S on X faT all j E { I' .. . ' 1'}. Then. the condi­
tion 

'Vj E {1, ... ,1·} 'V:r 0 E X 'VE > 0 3U{:ro} E C" : 

P {w: lim sup sup I fi~(x,u;)- J;~(:ro) l > E} = 0 
n~oo xEU{ c~: .. } 

irnphes f n c--~.s. f0 . 

As to the mult ifunctions, in thi s sect ion we use the follow ing c·o tl vergctJ Ce 
notions, which in the determini st ic case reduce to upper sC'm icont.i llltil.y <m el 
lower semicontinuity in the sense of Sawa ragi rt al. (1 D85). 

T _ J /"'1 1 _ , ___ , ___ , __ ..t_ _r n n 
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DEFINITION 4 .2 A sequence ( Gn)nEN of mult'ifanct·ions with meo.s·u.m.hle gmphs 
is said to be 

i) upper semiconvergent almost surely to G0 (G, u-n.s. Gu) if 

P{w: lim supG,(w) C G0 } = 1, 
n->oo 

ii) lower semiconvergent almost suTely to G0 (G, l-n .s. G0 ) ·if 

P{w: lim inf Gn(w) :::l G0 } = 1, 
n->oo 

iii) convergent almost surdy to G
0 

if Gn v - a.s . Go 1\ G
11 

l - n.s . G
0

• 

The limes inferior and the limes superior in Defini t ion '1.2 are understood in 
the Kuratowski-Painleve sense: 

limsupG71 := {x E RP: 3 (:rn,hEN 
n->oo 

with lim X 11 , = 1: 
k..........,oo 

and Xnl. E Cn, \:/ /;; EN}, 

lim inf Gn := {X E RP : 3(xn)nEN with lim Xn = :r 
n~oo n~oo 

where (Gn)nEN denotes a sequence of su bsets of RP. 

4.2. Constraint sets 

Firstly, we consider the constraint sets. The following result may be derived 
from Theorems 3.1.1 and 3.1.5 by Bank et al. (1 982). 

THEOREM 4.1 i) Let gJ l-a .. s.,gj 'v']' E J Then r 'I/-I1.S. r 
n RP o · - n · o · 

ii) Let the following conditions be satis.fied: 

a) g~ l-;,;s·: gt \:/ j E J, 

b) f 0 C cl{x: g~(x) < 0 'v'j E J}. 
Then r n l-a.s. r O · 

Before we turn to the efficiency sets, we shall have a look at the Markowitz 

model. With dll being fixed, t he interesting point is the behaviour of 9n,I and 

gn)I· 

We start by investigating (9n,I)nEN· Making use of former results (Vogel, 
1992, Section 6), we can conclude, that, given a continuous distribution of the 
rewards, (9n,I )nEN is continuously convergent a.s . to 9o,l, hence ]'n u-a .s. 1'0 • 

For condition b) of ii) a result which is due to J. Wang (see Vogel, 1992, Propo­
sition 10), may be employed. A logarithmic concave probability distribution 

of p and the existence of an x0 E d 1
) with P(x/'p?_ o: ) > T/ imply that also 

T""'' 1- n c:o T""'' 1 1 1 . 1 ' ... """" ' " ' • 
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the assertion also holds for the larger cla ss of quasi-concave measures. Thus, 
distributions which are of interest when modelling the random returns, e.g. non­
singular normal distributions, lognormal di stributions, and Pareto dist ributions, 
are admitted. 

For (gn,IJ )nEN we proceed in the following way: as already menti oned, 
xT Bnx (x-# 0) is positive for a lmost all reali zations of (p1 , •.. ,pn), hPnce 9n,II 
depends continuously on x and the estimates. This, by the strong consistency 
of Pn and En, implies continuous convergence. Concerning conditi on b) of ii) , 
the above considerations hold as well. 

4.3. Efficiency sets 

The following result may be derived from Theorems 4.2. 1 and 4.2.2 by Sawara.gi 
et al. ( 1 985). 

THEOREM 4 .2 Let the following assumptions be satisfied: 
i} fn c-;/·lf0, 

ii) rn~ro, 
iii) :JK E CP: P{w: :lno(w) 'In ~ no: rn c K} = J. 
Then we have En u-a..s. Hl

0 
and, 

given that P(En-# 0) = 1 for almost all n , also En l-o. s . E0 . 

Unfortunately, in general, we do not have H/0 = E0 , thus in th e surrogate 
problems the efficiency set may be ' too big'. 

Conditions implying equality are summarized by Vogel ( 1992, Proposition 
2). For the Markowitz model none of them applies imm ed iately. ~V/e have, 
however, the following result : 

PROPOSITION 4 .1 Let Po be quasi-concave and assume that Ep1 -# EpJ 'l·i -# J 
and that B is a pos-itive definite matri.1;. If then there is an Xo E r 0 with 
P(xa'TP~ a:)> 1] . the equality W 0 =Eo holds. 

Proof. Quasiconca.ve measures and probabilistic constraints in terms of convex 
functions imply a convex constraint set r a (vVets, 1989, Pn~kopa , 1995, Vogel, 
1992). 

Suppose that there is a Yo E W0 , wh ich does not belong to E0 . Then there 
exists a. Y1 E f(fo) such that yJ ~ y~ '~.i E {l , ... , r} and y{" < y~" for at 
least one jo. To Yo and Yl we find Xa E ro and x , E ro with Yo= f( xo) and 
Y1 = f(xl) and consider X>.: = AX0 + (1 - -\)x1, ,\ E (0, 1) arb itrary. With B 
being positive definite,/; is strictly convex, hence f';(x,\) < y; and f;(x ) < y; 
for all x that belong to a suitable neighbourhood U {x>. }. Iff~ (:t>.) < y~ we 
have a. contradiction to the assumption t hat Yo E TV0 . 

Now, suppose that f);(x>.) = y~ = y) . Hence, X>., ,\ E (0 , 1) belongs to a 
contour line of f);. If X,\ is an inner point of ro, we can And X,\ E U{x>.} n ro 
·--! .L. L .r l f :::-- \ .,. 1 1 1 
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Event ually, we assume that a ll elements of GA := {:t:A: :rA = A.1:0 + (1- A)T1} 
are boundary points of f a and constr uct iA E ran U {:rA} wit h f~ (i,\) < y~ . 
We distinguish t hree cases: 

i) F irst, let x\ = 0 for a ll A E (0, I ) and all ·i from an index set I c { I , ... , p}. 
Then XA := x;_ + (J I: e;, where e; denote:; the ith unit vector (0 .. . 0 ·1 O ... O)T 

if/. / 
wit h 1 at the ith posit ion and (J > I a su itablP real number . 

ii ) Suppose that X\ = 0 for a ll A E (0, 1) and all i E I C {I , ... , 71 } and 
p . -
I: x\ = 1. T hen t he set I := {1, ... , p} \I conta ins at least two elements . Let 
i= l 

ia E J be such that Epi" > Ep' Vi E l. T hen we t<lke (wit l1 i 1 E I and a 
suitable (J > 0) XA = XA + (Je;., - (3e; 1 • 

iii ) F inall y, suppose that Da(xa ) = 0 and 9a(.x 1 ) = 0. T hen, lwumse of the 
convexity of ra , t he inequality Da(X,\) ~ 0 holds. Now , choose .'1:;_ := X;_ + 

(3 t e; E dll for a. sui table (J > 0 a.ncl a sui table iu clex set J. Tf no such point 
iEl 

exists, fa cannot have inner points, which contrad icts t he assmnp tion. • 
Finally, let us consider t he condit ion f,1 c-R~;s. fa in t he Markowitz model. Due 

to the simple form off~ a nd J; , the assum ptions t hat Pn ami B, are strongly 
consistent estimates for Ep and B imply cont inuous convergence. 

4.4. Solution sets 

Concerning the solu t ion sets, the fo ll owing result can be deri ved frorn Lemma 
4.4.2 (i) by Sa.wara.gi et al. (1 985) . 

THEOREM 4.3 Let the following assmnpt-ions be satisfied: 
i) fn c -r~,'s. f a , 

ii) r n tt-a.s . r a 

ii·i) En u-o .s . Ea . 

Then Sn u-n.s. Sa . 

T he crucial poin t is iii ) where, again , the condit ion Eo = H'0 cornes into 
play. 

If f a is one-to-one, a corresponding resul t is available for 5,. !- u. s . S0 ; it 
may be directly derived from T heorem ,J. 2. As t be ob ject ive funct ion iu the 
Markowitz model is not one-to-one, we will quot.e the fo llow ing resul t (Vogel, 
] 990): 

THEOREM 4.4 Let the f ollowing assumptions be sat·is.fied: 
i) f c-n .. s.l f 

n r a, 

ii) r .. ~r n ·· o, 

iii) Vxa. E Sa Vx E fa urith X f. Xa ::Jj .. E {'I , ... ' r} : i'J'·( :r) > .fl·(:ro) · 
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Lemma 7 (Vogel, 1 990) summari~es suffi cient conditions for iii ) . As these 
conditions do not directl y apply to t he .Markowitz model, t he foll owing Propo­
sition will be proved: 

P ROPOSITION 4.2 Let f 0 be conve.r. S1t.ppose that all fJ, j E {I , ... , r }. aTe con­
vex and that one objective function JZ'· is strictly convex. Then ·ii·i) is sat-isfied. 

P roof. Suppose that there are au :x: 0 E Sa and an :r 1 E !',, :r 1 # :1: 0 , such 
tha t for j E {l , ... , r} .fJ (x 1 ) :::; .fZ(:ra) holds . Consider :r" with :r" := A.T0 + 
(J - .\)x1 (.\ E (0, J)). 'With f 0 bei11g convex, :z:" belongs Lo r0 . Because of 
the convexity of fJ the relation fZ(x A) :::; fZ(x 0 ) holds. Stri ct convexity of .rzo 
impli es !J'·(xA ) < f J·· (x0 ) , hence .T0 canuot belong to S0 . • 

Hence, in t he Markowitz model for a quasi-concave measure and a positive 
defini te covariance matrix B t he assumpt ions of Propositi on '1.2 are satisfied. 

5. Order semicontinuity 

As ment ioned, in the single-valued case lower or upper semi convergett c:e of rnul­
tifunctions reduces to convergence. Hence, when specia li zing Theorem 4.2 to 
the single objective case, onl y assert ions on the continui ty of the optim al value 
fun ction can be derived . Resul ts that arc 'vector-valued ' genera li zat ions of as­
sertions on the semicontinuous behaviour of t he optim al val uP fun ct ions rn ay be 
obtained using order semicont inuity as in t roduced by Penot a nd Stern a-I\arwat 
(1989) . We will consider corresponding random not ions auu di scuss stab ili ty 
resul ts in om setting. Let G0 C R" . 

D EFINIT IO N 5. 1 A sequence ( Gn)nEN of mv.lhfnnctions with rn.casnra&lr gnLphs 
is said to be an 

i) order ttpper approJ;imat·ion almost surely to G0 (Gn o-u - 1/ s . G0 ) 'if 
P{w : G0 C lim inf (Gn(w) + R+)} = 1, 

n_,oo 

ii) order lo wer approximation almost surely to Go (Gn o--l-n.>. Go) ·if 

P{w : lim sup Gn (w) C G0 + R~_ } = I . 
n ..... oo 

If (Gn)nEN is a sequence of subsets of R" t hen , ana logously, 

G 
0

- u G G 1· . f(G R.,.) n -----> o : -¢::::=} 0 C . 1m111 n + + , 
n-+oo 

G 
0 - l G I' G G R.,. n ----) 0 :-¢::::=} tm sup n c 0 + l '-1- . 

n-->oo 

An order lower approximat ion accordi ng to Definition 5. 1 corresponds to a 
'sup-upper continuous' multifunction in Lhe sense of Penot anu Stcrm1 -Karwat. 
Simil arl y, a.n order upper approxim ation corresponds to an ' in f-lower continuous' 
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by the fact that one has in each case only one side of the usual upper (lower) 
semicontinuity. Both properties together in general do not imply convergence 
of (Gn)nEN to G0 , unless the multifunctions are single-valued. 

In the single-valued case the above properties reduce to upper and lower 
'semicontinuity', respectively, and according to t his relat ion the notation 'order 
upper (lower) approximation' has been chosen in this paper. 

It is straightforward to prove the following assertion. 

LEMMA 5.1 Let Gn(w) = {Yn(w) } P - a. s ., n EN, and G0 = {y0 }. Then 
i) Gn o-u-a.s. Go <==? lim sup Yn :::; Yo a.s . 

n-+oo 

ii) Gn o-l-a.s. Go <==? lim inf Yn ~ Yo a.s. 
n-+oo 

With the above notions the following results may be obtained. 

THEOREM 5 .1 Let the following assumptions be satisfied: 
i) f l-a.s. l f 

n r 0 o, 

ii) r n U-a .s. r OJ 

iii) .:JK E CP: P{w: 3n0 (w) Vn ~ n 0 f n(w) c K} = 1, 
iv} fo(f 0 ) CEo+ R+. 

Then En o- l-a.s. E
0

• 

Proof. This theorem may be derived from Theorem 3.1 by Penot and Sterna­
Karwat (1989). As Penot and Sterna-Karwa.t deal with a more general frame­
work and partly different denotations, for the reader 's convenience we present 
the short proof for our special case. 

Let D' := {wED: fn(w)h fa , fn(w)14 f o and fn(w) c K Vn ~ n 0 (w)} 
and consider an w E D'. 

Suppose that Ym E Em(w ) for infinitely many m and lim Ym = Yo· To 
n -+ oo 

Ym there is an Xm E f m(w) with Ym = fm(Xm,w). Because of ii ) and iii ) 
there is a subsequence (xnkhEN with Jim .Tn! = Xo E ro. Then, i) implies 

k-+ oo 

fJ( x0 ):::; likminfj~k(xn,, ,w) = y~ Vj E {J , ... , r }. According to iv) to f 0 (x0 ) 
-->00 

there is a Yo E Eo with f 0 (x 0 ) ~ y0 , hence Yo:::; Yo· • 
The following assertion corresponds to Proposition 4.1 by Penot and Sterna­

Karwat (1989). 

THEOREM 5. 2 Let the following assumptions be satisfied: 
i) f u-a.s .l f 

n ro 0' 

ii) r n l-a.s. r 0> 

iii) P{w : 3n0 (w) Vn ~ n 0 : fn(fn(w) ,w) C En(w) + R+} = 1. 
Then En o-u-a.s. Eo . 

Proof. Let 

D' :={wED : fn(w) f;;+ f0 , fn(w~ fo and 
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and consider an w E D' . 
Suppose that Yo E E 0 . Hence, there is an :t:u E f o with Yo= fo(xu)- Because 

of ii) , t here exists a sequence (xn)nEN wit h Xn---> X0 and Xn E f n(w) 'lfn 2:' n 1. 
Consequently, employing i), we obtain lim sup n (xn, w) s; fl, (x 0 ) '1/j E {1, ... , r } . 

n --. oo 

Now, fn(Xn,w) with n ::=: n 0 (w) may be represented as fn( Xn,w) = Yn + wn with 
Yn E En(w) and Wn ::=: 0. Furthermore, let Vn := f0 (x0 )- fn( Xn,w), hence 
Yo = Yn + Yn + Wn· Because of liminf (vn + w n) ::=: 0, we And a sequence 

n~oo 

(wn)nEN with Wn ::=: 0 'll·n EN and lim (Yn + Wn) = Yo · • 
n---. oo 

Let us consider the illustrating Markowitz model: sem icontinuous conver-
gence of the objective function s and the required behaviour of the constraint 
set was investigated in Section 4. We sti ll have to consider the condit ions iv) 
of T heorem 5 .1 and iii) of Theorem 5.2, wh ich are usually called 'external sta­
bility' . Sufficient conditions for the external stability are given, for instance, by 
Sa.waragi et al. (1985) . We can employ the following result, which is formulated 
in terms of the original problem (P0 ), but holds analogously for (Pn(w)). 

LEMMA 5 .2 Let the following conditions be satisfied: 
i) fo(fo)/:0, 

ii) fa (r o) + R+ is closed, 
·iii) :ly0 ERr: fo(fo) C Yo + R~~­

Then Eo# 0 and f 0 (l"'o) CEo+ R+. 

It is easy to see that these conditions are satisfied in t he Markow itz model 
for r 0 and r n as well. 

Now we turn to the 'in probability' sense. We propose the fo ll ow ing defini­
t ions, where Uc denotes a n e-neighbourhood. 

DEFINITION 5.2 A sequence ( Gn)nEN of rn·ulti.f1m.ct·ions wdh rneaS'ttTn!Jle graph::; 
·is said to be an 

i) order upper approximation in probability to G0 (Gn u- tl-prob , G0 ) if 
'lie> 0 'IlK E cr: lim P{w: [Go \(U<Gn(w) + R~_)J n K =/:- 0} = 0, 

n-<oo 

ii) order loweT approx·imation in pmbability to G0 (Gn o- l-prob · G0 ) if 
'lie> 0 'IlK E CP: lim P{w: [Gn(w)\(U,Ga + R+)J n ]( =1- 0} = 0. 

n--+oo 

Relying on resul ts by Salinetti and ·w ets (1 981 ), who proved that convergence 
a lmost surely of closed-valued measurable mult ifun ctions implies convergence 
in probability, and on former considerations (Vogel, 1994a, Sect ion 2), we can 
conclude that 

(Gn
o -l -a.s o- l - prob ) 
----->Go)=* (Gn Go and 
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THEOREM 5. 3 Let the following assv.rnpt·ions he sahsfi.ed: 
i) The functions fJ, j E {1 , .. . , r} , are l.s. c. and 

v j E { 1 ' . .. ' T} v E > 0 v ]{ E CP+ I : 

lim P{w: [Epif/,(-, w)\U,Epifi] n J( i- 0} = 0, 
n~oo 

ii) r 0 ist closed and 
Vt: > 0 V]{ E CP: lim P{w: [C,(w) \ U,fo] n J( i- (1} = 0, 

n~oo 

iii) ?Jk E CP V]{ E CP: lim P{w: r n(w) rl J( c k } = 1' 
n~oo 

iv) f0 (f 0 ) CEo+ R+. 
Then En o-l-prob: Eo· 

The convergence condition m i) denotes a 'lower serni cont illlJOlls approxi­
mation in probability ' to f 0 , and the convergence condition in ii ) means t hat 
(r n)nEN is 'upper semiconvergent in probability' to ro. Suflicieut conditious for 
the assumption i) that are relat ively easy to check and apply to many real li fe 
situations are given by the author, Vogel ( 1994b). 'ln probability ' versions of 
the results of subsection 4.2 may be used to decide wbether ii ) is snl. is ficd. 

Before we prove the above theorem, we shall prese1.1 t the con esponding 'order 
upper' part. 

THEOREM 5.4 Let the following assnrnpt'ions be satisfied: 
i) The functions fl,, j E {1 , ... ,r}, are u.s.c. and 

v j E { 1 ' ... ) T} v E > 0 v ]{ E CP+ I : 

lim P{w: [Epi (- f?, (-, w))\U,Epi(- fl,) ] n J( i- 0 = 0}, 
n--+oo 

ii) Vt: > 0 VK E CP: lim P{w: (Go \ U,G.,. (w)) n J( #- 0} = 0, 
n--+oo 

iii) VK E CP: lim P{w: [fn(fn(w),w) \ (En(w) + R+)l n J( i- 0} = 0. 
n~ oo 

Then En o-u-prob' Eo. 

\Ve shall show how these results may be derived from the correspond ing a. s . 
assertions. Tn a similar way the results of Section !J may be caniccl over l.o the ' in 
probability' setting. However, using t he way of proof mentioned we so111 ctirn es 
need additional closedness conditions for f 0 or the epigraph (hypogrnpli ) of f 0 , 

because otherwise the introduced convergence notions a.s. a nd in probability 
for multifunctions do not fulfil desi rab le relations which a re known for seqnences 
of random vari ables. 

We start by proving two a ux iliary results. The abbrevia tious Li rn sup and 
Liminf denote the limes superi or and lim es inferi or in the set theorc~ti c: sense. 

LEMMA 5. 3 Let { G,, n E N0 } be a fa.m'ily of m·u.lt'ifunct'ions Gn [D --> Rr wdh 
measurable graphs. 

i) If each subsequence of (Gn)nEN contains a sv./i sequence (G.,, )!,E N 

with lim sup Gn,. C Go P- a.s, then 
k~oo 

I ~ I \ \ T r r1 f \ \ ,......_ T /' I fA) I 1\ 
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holds. 
ii) If. additionally, G0 ·is closed-valv.cd. both cond-it-ions ·i:n po:rl. (i.) ([,'fC uru:i.v­

alent. 
ii·i) If and only if each subsequence of ( Gn)nEN contai'll .. ~ a su iJsequence 

(Gn,)k EN with liminf Gn, , ::::J Go P - a.s., then 
k~oo 

Vt: > 0 I;Jf{ E cr: lim P{w : (Gu(w)\UEGn(w)) n J( :f. 0} = 0. (2) 
n~oo 

holds . 

Proof. We abbreviate Dn,E(w) := G"(w)\UcGo(w ), a nd denote by Bk the closed 
ba ll in Rk with centre 0 and radius k. Furthermore, we reca ll t.h at. 

lim supGn C Go P - a.s . 
n~oo 

impli es 

Vt: > 0 I;Jf{ E cr : nl~~ P ( U {w: Drn,c (ev·) n K :f. 0}) = 0 (3) 
m'2n 

and that equivalence holds if G 0 is c:Iosed- vnl ued (Vogel, 199,1 b, proof of Propo­
sition 2.1). Tn a sim il ar way it can be proved that 

lim inf Gn ::::J Go P- a.s. 
n~oo 

is equivalent to 

Vt: > 0 I;Jf{ E C' 

,!'.<>;;, P c~. {w • (Go(w)\U,G.(w) ) n K # D)) ~ 0. 

i) Suppose that (1) is not fu lfilled , i. e. 
:l t: > 0 :Jf{ E Cr :l(nk)kEN :let> 0 \;//,:EN: 

P{w: Dn,,c(w) n J( :f. 0} > n . 
l-Ienee, P(Limsup{w: Dn,,c(w) n J( :f. 0}) > n, and fm t l1 cr 

k~oo 

P(k!,(w• D.,,,(w)nK#0)) > n Vl c N . 

wh ich contrad icts (3) . 

ii ) Let (1) be satisGed and consider a subsequence (G")nEA'cN of (C .,,)nEN · 

To every k EN we find7~! ~ : EN snch th at for n 2 ii.k, n E JV : 

pf,,, · n 
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Let n1 := ii1, nk :=max {nk-1 + 1, iik}, N1 := {n1, n2, ... },and 
Ak := {w: Dn 1 (w) n Bk oj 0}. k,"ik 

Making use of P(Ak) < dt we obtain 

00 

Vc > OVK E cr: LP{w: Dnk,E(w) nK # 0} < CXl 

k=l 

and consequently, by the Borel-Cantelli-Lemma, VE > 0 VK E cr : 

kl~~ P ( u. {w: Dm,e(w) n K oj 0}) 
m?_nk,mEN1 

lim _ P ( U {w: Dm,e(w) n K oj 0}) = 0. 
n-->oo,nEN1 -m?_n,mEN1 

This, for closed-valued G0 , implies lim sup Gn C G0 P- a.s. 
n----+oo,nE.Nl 

S. VOGEL 

iii) The both directions of this part may be proved like part i) and part ii) 
replacing Dn,e by Dn,e with Dn,£(w) := G0 (w)\UeGn(w). • 

LEMMA 5.4 Let ( Gn)nEN be a sequence of multifunctions with measurable 
graphs. Then 

VK E CP: lim P{w: Gn(w) n K oj 0} = 0 
n-->oo 

(5) 

Each subsequence of ( Gn)nEN contains a subsequence ( Gnl h EN with 

P(Liminf{w: Gn,(w) = 0}) = 1. (6) 
k-->oo 

Proof. First, assume that (5) is satisfied . As in the proof of part ii) of Lemma 
5.3 we can show that 

00 

VK E cr: LP{w: Gn,(w) n K # 0} < oo, 
k= l 

hence, by the Borel-Cantell i-Lemma, 

VK E cr: P(Liminf {w: Gn,(w) n K = 0}) =I. 
k --> oo 

which implies (6). 
Secondly, assume that (5) is not fulfilled. Hence 
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consequently 

P(Limsup{w: Gnk(w) nK i- 0}) >ex and 
k--->oo 

P(Liminf{w: Gn,Jw) n K = 0}) < J - ex 
k--->00 

which contradicts (6). • 
Now, we are able to prove Theorem 5.3. Note that Theorem 5.4 may be 

proved in a similar way. 
Proof of Theorem 5.3. We consider a subsequence (En)nEN of (En)nEN 

and show that it contains a subsequence (En,)kEN with 

E o- l - a.s. E (k __. oo) . 
nk o 

Then, applying Lemma 5.1 to Gn = En(w) and G0 =Eo+ R+, the conclusion 
follows. 

We consider the sequence (fn)nEN· By Lemma 2.1 in Lachout and Vogel 
(1999) it contains a subsequence (fn) nEN

1
ciV with fn u-a.s. f0 (n E N1). To 

(rn)nEN! we find a subsequence (fn)nEN2C NJ with r n u-a.s. r o (n E N2). 
Eventually, there is a subsequence (r n)nEN3 cN2 with f 71 (w) C k P -a.s. \In 2 
n 0 , and it remains to apply Theorem 5.1. • 

6. Conclusions 

In this paper, we have considered multiobjective programming problems which 
are approximated by random problems. We started with condi t ions that imply 
desirable measurability properties for the approximate problem. Tt has been 
shown that the sets of efficient points and the solution sets which belong to them 
have measurable graphs if, additionally to the general measurabi li ty assumptions 
throughout the paper, the objective functions are lower semicontinuous with 
respect to x. 

Afterwards, we have summarized conditions which guarantee that the sets of 
efficient points and the solution sets of the original problem are approximated by 
the corresponding approximate sets in a suitable 'almost surely' sense. Further­
more, we have investigated how these results may be used to deri ve statements 
for the Markowitz model with a shortfall constraint, assuming either that there 
are i.i.d. forecasts for the returns or that the returns have a normal distribution 
and strongly consistent es tim ates for the expectation vector and the covariance 
matrix are available. It turned out that, given an absolutely continuous quasi­
concave probability measure (as for exampl e a 11onsingular normal distribution) , 
pairwise different expected returns, a positive definite covariance matrix, and 
a Slater-type condition for the shortfall constraint in the original problem, for 
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are continuously approximated (almost surely) . The assumptions conccming 
the distribution are brought into play by the shortfa ll coustra.int.. 

However, it may be doubted whether in real-life situations the i.i .d . condition 
or only the strong consistency of the estimates can be assumed . Tl1erefore, we 
have asked for convergence not ions which can be proved to hold under weaker 
assumptions on the behaviour of the estimates. 

vVeak consistency, which can often be maintained even for dependent sam­
ples, leads to convergence in probability. To give an example, what appropri ate 
convergence notions 'in probabi lity ' look like and by what mean s staLern ents on 
the convergence in probability can be derived from corresponding 'n.s .' state­
ments, we have investigated the 'order ' behaviour of t he sets of efficient points, 
i.e. we have considered order lower (a nd upper) approximations. Houghly spo­
ken, the elements of an order lower approx im ation may be regarded as approx­
imate upper bounds to subsets of th e e fficiency set of the origi1wl problem. 
Application of the results to the Markowitz model shows that 'order sernic:on­
tinuity' can be proved without the assumption s that th e expected returns are 
pairwise different and the covariance matri x is positive definite. Thi s implies, for 
instance, that in the classical Markowitz model (without shortfall constraints) 
'order semicontinuous' behaviour in the a.s. ('in probability') sense is guaran­
teed if only strong (weak) consistency of the estimates can be assurnecl . 
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