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Abstract: When entering the age of ubiquitous computing we 
observe a rapidly increasing number of applications in which- i u real 
time- operative (control or management) decisions are made ba.sed 
on optimization. To implement repetitive optimization of these de­
cisions we need to use process models, models or directly available 
forecasts of free, uncontrolled, inputs, methods for state and param­
eter estimation, model adaptation techniques, and, finally, suitable 
optimization techniques. Ana.lysis and validation of such optirniza­
tion based systems require- prior to actual real-life implernenta.tion 
- the carefully planned and performed computer experirnents. The­
oretical methods are always welcome to assist in this ana.lysis - if 
possible - but it is mainly the computer based simulation experi­
rnent which allows us to investigate, verify and tune a cornplica.ted 
decision mechanisrn and then control system a.s a whole before this 
system is a.uthorized to be put to real-life test. Success in design of 
a system with on-line computed optimization-ba.sed operative deci­
sians is therefore dependent upon many factors, in particula.r - on 
having good models, efficient and relia.ble optimization techniques, 
good software tools for computer based sirnulation and on proper, 
real-life-like conditions under which the computer experiments are 
performed. These key issues concerning development of such control 
systems are discussed in t his pap er. 

Keywords: operative control, management, operative decisions, 
forecast, optirnization, computer simulation, computer analysis. 

l. Introduction 

One could perhaps feel puzzled when being asked the following question: wha.t 
can be common, wha.t in fact is common, to such problems as: launching a 
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multistage rocket so as to place a satellite on an orbit, management of wa.ter 
releases from a system of reservoirs during flood, defending an important object 
against aerial attack, introducing a newproduet- perha.ps a new motion picture 
- on the market? What these activities have in common with month by month 
or day by day operations, under changing external conditious, of a division of 
a refinery or of a group of petroi stations? Jt appears that in all these, and 
in many, many other situations it is necessary to conceive, usuaJly repetitively, 
operative decisions, which are needed to achieve the possibly best results- there 
is a need to introduce optimization of these deeisions. The rea.sons for this are 
many, but first of all it is the computer revolution, whieb both makes possi­
ble and forces us to use optimization within operative deeision making. The 
rapid growth of computer technology a.llows to transmit, store, ra.pidly aecess 
and proeess vast amounts o f data. A va.ila.ble information, as measured by va.r­
ious methods - like the number of bytes, donbies every few years ( every seven 
years according to Cross, 1997, and even more frequently a.ccording to others). 
In production and marketing situations one faees ever-growing eompetit.ion and 
ever increasing en tropy ( disorder). Fas t and sma.rt decisions a.re needed to avoid 
commerdal disasters and the competitors are thus very likely to use opt.imiza­
tion of their decisions. Hence, one is willing or even forced to use auy relevant 
informat.ion available in the best possible way. In this new reality the basie 
assumption a.bout. a eontroi system, the basie eontroi paradigm, is cha.nged. For 
many years it. was assumed that an opera.tive eontroilaw or a management rule 
bad to be simple, similar to PI or PID eontroi algorithms, or based upon a.nother 
parametric decision rule; more recently, perba.ps, on the use of a. sma.ll artificial 
neural network. Yet, now there is both a need and the means to use much 
more advanced techniques to make operative decisions, for exa.mple deeisions 
concerning launching of a rocket, protective measures during flood, actions -
like weapon assignment and commitment - during a.ir dcfense or deeisions re­
garding next day prices of numerous products in a mega.store. The use of such 
teehniques, teehniques of optimization and system a.nalysis, ha.s for many years 
been perceived a.nd advoeated by many resea.rchers, in partieular by Professor 
Jakub Gutenbaum (Gutenbaum, 1988). It is only recently, however, tha.t actual 
design and implementation of the optimization based meehanisms for opera­
tive decision making beeame a real-life fact. Jt appeared tha.t the introduction 
of such mechanisms ereated a need to develop and to master new speeia.lized 
computing teehniques as well as software tools enabling both verifieation and 
implementation of complex, possibly hierarehical, eontroi systems. Tn part.ieu­
lar, erucia.l role of computer-ba.sed experiment became apparent (Kleiber, 1999). 
While theoretical analysis ca.n provide valuable assistance in underst.auding and 
evaluation of the systems coneerned, it is only through computer simulation­
based experiment that one can obtain both qualitative and quantitative overall 
evaluation of a eomplex eontroi or management system prior to i ts actual imple­
mentation. Computer simulation experiment has, however, to be very carefully 
planned and exeeuted if one wishes to obtain meaningful and reliable outcomes. 
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It has to be well structured, based upon good models and relevant data used to 
evaluate possible results of the proposed decisions. It also should be convenient 
to perform; there is a need for advanced software tools supporting development 
and execution of computer simulations. 

2. Repetitive optimization of operative clecisians 

Consider a eontroi or management system depicted in Fig. l. An object of our 
interest - process P - evolves under the influence of clecisians m formed by a 
decision maker or an automated procedure, and the free, uncontrolled inputs 
z. Goals, eontroi objectives, are related to outcomes w. These outcomes may 
be expressed through constra.ints put on specified process variabies or through 
various performance indices which should be, if possible, minimized or maxi­
mized. Objectives to be met by the decision maker, or the controller, have to 
be set when taking into account the uneertainty about future and - often -
about present values of the free inputs. When building a decision mechanism 
one should consider on-line usage of available information concerning process 
behavior - measurements Yp - and information related to the environment be­
havior, observed through Ye· These external measurements, being releva.nt to 
free inputs generation, allow to formulate operative models of those inputs - the 
forecasting models. Observations of Yp and Y e provide for information I (I = h 
at time k, i.e. at the beginning of the k-th stage of the proeess operation), which 
can be used for the operative decision ma.king. 

Environment 
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y, i i 
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Figure l. Control system; m- operative decisions, z- free (uncontrolled) inputs, 
w - effects of process operation 

2.1. The repetitive optimization problem 

As it was explained in the introduction, in a growing number of diverse applica­
tions there is a need to introduce on-line optimization of eontroi or management 
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decisions. One has to work out these decisions in the presence of meaningful, 
often very considerable, uncertainty concerning future free inputs a.nd process 
parameters. It should be observed tha.t, for the purpose of compact notation, 
the free inputs may represent, and will represent within this pa.per, both ex­
terna! uncertainty - uncontrolled inputs from the process environment - and 
internal uncertainty related to process behavior. 

Repetitive decision making, ba.sed upon the use of process model and free 
input forecasting for decision optimization, can be in a. discrete-time ca.se -
obta.ined by dividing the operation interval into sta.ges between specified time 
instants - formulated as follows: 

• at a given time k a foreca.st of future free inputs is provided in the form of 
a single or a multiple scenario, or in the form of a probability distribution, 
concerning possible values o f these inputs during sta.ges j = k, k+ l, ... , k+ 
Lk - l, where Lk denotes the prediction horizon at time instant k, 

• after the above described forecast is ma.de ava.ilable, a.n optimiza.tion prob­
lem concerning opera.tion sta.ges i = k, k + l, ... , k + Kk - 1 i s formula.ted 
and solved; Kk denotes the optimization horizon at time k ( obviously, 
there must be Lk ;:: Kk), 

• the computed decision vector mk, for stage k, from t im e instant k to time 
k + l, is then implemented, and so on. 

The basie decision mechanism belonging to the above generic type consists of 
an open-loop optimiza.tion of a sequence of decisions, with one single foreca.sted 
scenario of future free inputs. Decision algorithm - Basic Predictive Controller 
- is defined, for each consecutive time instant k (k =O, ... , K- 1), as follows: 

l. Ba.sed upon the currently availa.ble informa.tion h a.bout process and its 
environment's beha.vior till time k compute the estimated value xk of the 
process state Xk at this time and a. a single scenario forecast of future free 
inputs: z~'k+h-l = {zk,k, zk,k+l, ... , Zk,k+Lk-I}, where Zk,j denotes the 
forecasted value of zj, at time k, k < j. 

2. Solve the Deterministic Decision Optimiza.tion Problem: 
DDOPk: 
find a sequence of decisions (controls) mk,k,mk,k+l• ... Jnk,k+Kk-l such 
that 

k+K .. -l 

= a.rg mm z= Wj+l (xj+l, mj, zk,j) 
mk.,mk+lt···,mk+Kk.-1 j=k 

where Xj+l = f1 (xj, mj, zk,j), Xk = Xk and mj E Mj, j = k, ... , k+Kk -l 
3. Apply the decision for the k-th stage mk = mk,k; during this sta.ge, then, 

at time k +l, repeat steps l, 2, 3, and so on. 
It ca.n be immediately observed tha.t in the a.bove mechanism the optimiza.tion 
performed in Step 2 makes use only of the process model given in the form of 
the state transition function fi(.), while forecasting, at Step l, of the future 
free inputs may be ba.sed upon a.ny a.va.ilable model of those inputs; it may in 
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particular be based directly upon their past va.lues. To compute estimated state 
of the process one should either use jointly the process and free inputs model 
or - when, for instance, good measurements of Zi, for i < k, are available -
use only the process model on its own. In the above formulation of DDOPk an 
additive performance function, to be minimized, is assumed. There are different 
possible forms of such function- also in the form of vector performance criteria 
- as well as different constraints imposed on decision and state values. 

Other possible formulations of multi-stage optimization of operative deci­
sions at time k, or of decision policy eonsiciered at this time, could be: 

a) Stochastic Closed Loop Optimization Problem - it is in fact a problem 
of optimal decision rule design under probabilistic, forecasted at time k, 
representation of future uncertainty; this rule is then implemented until 
time k +l, 

b) Stochastic Open Loop Optimization Problem - in w hi ch expected va.lue o f 
a given performance function is minimized with respect to a sequence of 
decision values mk,k. mk,k+l, ... , rnk,k+Kk-1- as in DDOPk; probabilistic 
distribution o f future free inputs, forecasted at time k is required as in case 
of approach a) above, 

c) Optimization problem based on the use of forecasted probabilistic dis­
tribution, or on multiple-scenario prediction of future free inputs, and 
assuming one ( or more) future interventions of the clecisi on making mech­
anism (limited look-ahead policy, Bertsekas, 1987, Niewiadomska et al., 
1996), 

d) Decomposed optimization problem - represented as a collection (to be 
coordinated if so required) of smaller optimization problems. 

With respect to the decision mechanisms mentioned in point c) above, it is 
worth noting that the main disadvantage of the open-loop feedback policies is 
that, while computing the future control inputs, e.g. by solving DDOPk, one 
does not take into account any future measurements nor interventions; this is in 
contrast with the optimal control design by stochastic dynarnic programming, 
where all future interventions are accounted for. The intermediate, reasonable, 
solution is offered by the limited look-ahead schemes. To explain the basie 
idea behind these schemes consider, at time k, the following generallook-ahead 
decision procedure: 
Solve the Stochastic Look-Ahead Decision Optimization Problem: 
SLADOPk: find control input mk,k such that 

mk,k = arg min E {wk (xk+l,mk,Zk) + Jk,k+l (Jk+d} 
ffikEMk Zk,Yk+l>Ye,k+l 

where Xk+l = fk(:h, mk, zk), h = (h, Yk+l, Ye,k+l, mk), a.nd Jk,k+l (h+l) is­
at time k - the approximate va.lue of- cost-to-go from time k + J till the end 
of the assumed - at time k - optimization horizon. 

Instead of using the estimated value Xk of the state xk at time k in the above 
problem formulation, it is possible to compute the expectation witb respect to 
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Zk, Yk+l, Ye,k+l and xk to define the performance function value in SLADOPk. 
Yet, to simplify the control scheme it is more convenient to separ·ate the state 
estimation from the control computation; such enforced 'separation property' is 
common in practical control a.lgorithms. 

The crucial question is then how to define and, then, to compute at time k the 
approximate cost-to-go Jk,k+I(h+1). There are many possible ways to define 
Jk,k+I(h+ 1), some of them are discussed in Bertsekas (1987). Let us consider 
an important case, in which Ye,k+l = zk. In sucha situation this measurement is 
the only relevant new information at t im e k + 1 - as perceived at time k - and so 
Jk,k+l (h+ I)= Jk,k+I (xk+J), since- once we know Xk- the knowledge of zk and 
the value of mk is sufficient to compute xk+l· Jk,k+l (xk+I) cail now be defined, 
for example, as a solution of a.n open-loop stochastic optimization problem, 
with xk+ 1 given and future free inputs - starting from time k +l - considered 
as the sequence of random variables. If such approach is adopted to define 
Jk,k+l (h+ I) = Jk,k+l (xk+I), then, to be able to solve the SLADOPk, it may 
be necessary to pre-compute the function Jk,k+l (xk+l), prior to implementation 
of the considered scheme, as the on-line computa.tion of this function va.lues may 
be very time consuming. To avoid massive computation required forthis purpose 
it might be useful to define Jk,k+l (xk+I) in a different way. 

Consider the case in which, at time k, one takes into account the set of 
forecasts of future free input values: 

s= l, ... ' s}' 
with associated weights 8 Wk, s = l, ... , S, and then makes the assumption that 
one of these forecasted trajectories will actually occur, and that at t im e k + l 
it will be known which of them have had occurred. Then, Jk,k+l (xk+I) can be 
defined, for Xk+l = 5 Xk+l, s = l, ... , S, and for given mk E Mk, as the solution 
of the following optimization problem 8 D0Pk+1 : 
8 D0Pk+1 : find Jk,k+l, such that 

where 

k+Kk-1 

Jk,k+l (sxk+l) = mk+1··~~+Kk-1 L wj+l (SX]+!, mj, s:zk,j) 
. j=k+l 

Then, SLADOPk is transformed into the following Multi-Forecast-One-Step­
Look-Ahead Controller (MFOSLACk) decision problem: 
MFOSLACk: find eontroi input mk,k such that 

s 
mk,k = arg m mJJ& L 8

Wk [ wk (
8
Xk+!, mk> s Zk,k) + Jk,k+l (

8
Xk+l)] 

k k s=l 
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s 
where 8 Xk+l = !k (xk, mko 8 Zk,k), s= l, ... , S and where L 8 Wk =l. 

. s=O 
Again, the practical possibility of using this controller depends on how ef-

ficiently one is able to solve - for each considered value of mk - the collection 
of S open-loop optimization problems: 8 D0Pk+1, s= l, ... , S. It is useful to 
observe that if a paraHel computer is available then those optimization problems 
may and can be solved simultaneously - in parallel. 

An answer to the question whether the use of the above MFOSLAC scheme 
is worth the considerable effort required is definitely application-dependent; it 
may be hoped that in most cases of practical interest it will be sufficient to 
apply simpler predictive controllers of the BPC type. In Niewiadomska et al. 
(1996) the example is provided, in which MFOSLAC is used to determine the 
outflows from the flood protection reservoirs during flood; it appears that in 
that case MFOSLAC allows for slightly better results than those obtained by 
using open-loop-feedback controllers. 

In case when a composite controlled process is partitioned into N sub­
processes it is natural to introduce - for purpose of optimization of operative 
decisions- a hierarchical structure consisting of local units and of a coordinat­
ing unit. Such a structure is depicted in Fig. 2. One can propose numerous 
decision strategies, which could be implemented within this structure. 

Figure 2. The hierarchical two-level structure 

Most important, from the practical point of view, are hierarchical structures 
with periodic coordination. In brief, the operation of such a structure, with a 
collection of decision mechanisms at local and coordinator level, is the following 
(Malinowski, 1992): 

• Lower level: local decision units compute their decisions mi, concerning 
sub-processes, independently; these decisions are recomputed frequently 
at times k, k +l etc., and one can possibly try to avoid using complicated 
decision procedures; simple parametric decision rules may be introduced, 
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and re-adjusted by t he coordinator at less frequent instants k1, k1+ 1 , wit h 
t he use o f the coordinating instruments pi, i = l, ... , N, 

• Upper level: the coordinator modifies at times k1,kt+l, etc., the loca.l de­
cision mechanisms so as to achieve satisfactory ( or even best possible) 
overall process behavior- periodic coordination is realized through repeti­
tive optimiza.tion of coordinating instruments pi, set at time k1. until next 
intervention of the coordinator at time kl+ 1 etc. 

On the other band, two-Jevel (or multi-level) hierarchical methods with de­
composition and iterative coordination, like Direct Metbod or Price Metbod 
(Findeisen et al., 1980), can be used to solve DDOPk, or simila.r optimization 
problems, in a com p lex process case. Successful applications of those techniques 
depend on various factors. Y et, as far as the operation of the controlled process 
is concerned, it is not so much important which technique is applied to solve 
optimization problems posed at subsequent time instants - provided that one 
can solve this problem sufficiently fast and accurately. 

2.2. Examples of applications of eontroi or management structures 
with optimization of operative decisions 

It is useful now to describe a few examples of processes, which, together with 
accompanying operation goals, may require introduction of decision mecha.nisms 
with repeated optimization of eontroi or other decisions. 

Regulatory eontrał system. Consider a typical eontroi design problem, where 
the task is to find a controller which will drive the outputs of a. given process 
to desired set-points or will make them follow a desired trajectory. Such design 
problem may arise in a straightforward way from direct design specifica.t.ions 
related to a particular process - or it may result as a direct control layer prob­
lem from vertical decomposition of a. complex eontroi problem (Findeisen, 1974, 
1997). In case of industrial process eontroi the direct regulatory functions a.re 
often performed by traditional controllers like PI or PID. Such controllers do not 
involve on-line usage of process models and complicated numerica.l a.lgorithms 
and can even be tuned using simple experiment based rules, like, for insta.nce, 
Ziegler-Nichols rules. Yet, to improve performance of regulatory eontroi one 
may be willing now to build a. predictive eontroll er ( Camacho and Bordons, 
1995), which operates according to the a.bove presented Basic Predictive Con­
troller scheme; linear model is used together with the - usua.lly very simple -
deterministic forecast of future free inputs, representing in this ca.se the process 
and measurement disturbances. 

Set-point eontrał oj industrial plant. R.epeated optimization of a vector of 
set-point values for plant operating at steady-state or in periodic regime, is 
now used in a large variety of a.pplica.tions within the Ma.nufa.cturing Execution 
Systems (MES). This long advocated approach (Findeisen, 1974, 1997) beca.me 
quite common in chemical process industry and is introduced in environmental 
protection and other industries. 
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It is worth to observe that the current computer technology and available 
computing tools may make it useful, in a number of cases, to replace the classical 
two-layer controller ~ involving regulatory eontroi at the direct, lower, layer, 
and set-point specification at the second, upper, layer ~ with a single layer 
predictive controller with repeated model and forecast-based optimization of 
eontroi decisions. Such controller may allow for better dynamie performance 
of the controlled process. It is interesting also that this approach would be 
compatible with, now often observed, tendency to reduce the number of decision 
levels in management systems. 

Management oj a system oj reservoirs during fiood. An efficient usage of 
reservoir capacity during flood, especially during flood due to heavy rainfa.ll, 
is one of the most important measures which can be considered for protection 
of people and property against floods (Malinowski, Żelaziński, 1990). Decision 
mechanisms, needed to determine the releases from the reservoirs, should make 
proper usage of available information, in particular ~ of weather and inflow 
forecasts. Many years of research into that matter and numerous computer ex­
periments concerning introduction of centralized, decentralized and hierarchical 
flood management structures and algorithms for reservoirs of the Upper Vis­
tula River System (Malinowski, 1984; Niewiadomska et al., 1996), allowed to 
demonstrate that the use of optimization based decision rules should provide 
for significantly better results than the use of the traditional fixed reservoir op­
eration rules. In case of a single reservoir the mechanism with optimization of 
decisions consists of repetitive planning of future water releases ~ using single 
or multiple inflow scenario forecasting ~ so as to minimize the peak release from 
reservoir during the entire flood period. In case of a system of reservoirs and 
river reaches the objective is to minimize the damages associated with peak wa­
ter levels at important points ~ damage centers. In this case i t was demonstrated 
that the best possible results could be obtained when introducing a hierarchical 
eontroi structure with periodic coordination. Each local decision mechanism 
of this structure is concerned with a particular reservoir and computes water 
releases from this reservoir by minimizing performance function which is pe­
riodically re-parameterized by the coordinator. The coordinator adjusts, over 
longer time intervals, its decisions by performing optimization with the use of 
simulation of the lower level operation. 

Revenue management. One of the quickly developing areas of applications 
of modern decision mechanisms is 'control' of beha.vior of different segments 
of a. market. Qua.ntitative marketing can be a.chieved through operative deci­
sions concerning various market instruments, in pa.rticular prices and availability 
characteristics of the offered products. The decisions are taken repetitively in 
view of local conditions. In this ca.se the controlled process is represented by 
the considered market segment and the operative decisions a.re concerned with 
choosing such values of marketing instruments which would ~ in the best pos­
sible measure ~ lead to a bigger market share and increased profit (Singh and 
Bennavail, 1993; Cross, 1997). As an example one ca.n mention the process of 
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setting ticket prices for different flights by an airline, together with dynamie ad­
justment o f numbers o f seat s offered in various categories (business, economy). 
Another example concerns petroi retail, where ~in view of increasing competi­
tion ~a network of sites, which wants both to retain (or to increase) its market 
share and to maximize profits, has to use sophisticated market analysis and 
decision support techniques to set both pump prices of petroi grades and prices 
of products offered at the site shops. On-line decision support requires iden­
tification of a behavioral model of the eonsiciered market segment, describing 
expected reaction of this segment to both ours and our competitors' actions, 
and repeated optimization of our prices. When a group of petroi stations is 
eonsiciered a hierarchical decision mechanism can be used. Within last years 
these ideas became exploited and implemented for actual decision support tools 
used by several major companies involved in petroi production and retail. The 
results obtained so far are very encouraging. Similarly, quantitative, forecast 
and optimization based, decision support techniques provided for surprisingly 
large profit and market share enhancements of airline carriers and car renting 
companies. Decision mechanisms for operative pricing and shelf space allocation 
are now being tested by supermarket chains; significant profits are expected. 

3. Key issues 

Introduction of a eontroi or management system with centra.lized or hierarchical 
mechanism consisting of repetitive optimization of operative decisions can be 
successful, provided careful preparation of such mechanism and its verification 
and turring is performed prior to actual real-life implementation. The key issues 
ar e: 

• Formulation of a decision optimization problem, 
• Choice (preparation) and testing of computationa.l methods used to iden­

tify process model parameters and process state, to compute forecasts of 
free inputs and, finally, to perform optimization of decisions; all this must 
be done in real time, 

• Theoretical analysis of the proposed eontroi structure, its elements and 
important aspects of operation, 

• Simulation experiment: setting up this experiment, verification of all com­
ponents of the eontroi system as well as of the entire system; turring of 
forecasting and decision mechanisms. 

3.1. Formulation of a decision optimization problem. 

Correct formulation of a decision optimization problem requires the following, 
properły defined and mutually compatible, elements: 

• the operation ( control) objectives, in the form of performance criteria and 
constraints on relevant quantities, 
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• the model of controlled process and, if needed, due to formulation of the 
optimization problem, a model of the measurement system, 

• the model of free inputs and a representation of free input forecasts used 
for repetitive optimization of decisions. 

It must be stressed that the design stage at which formulation of the de­
cision optimization problem is done plays the crucial role. There are, usually, 
many degrees of freedom. In particular, existing data allow to introduce various 
forros of description (models) o f uncertainty, i.e. of the free inputs. One can use 
probabilistic models in the form of Markov processes or in the form of dynamie 
generators driven by white noise input ( e.g. ARMA model). It is also possi­
ble to characterize uncertain quantities by set membership models or by fuzzy 
sets. Such models have to be compatible with the objectives to be assessed and 
optimized. For example, if a priori evaluation of a given performance index is 
defined as an expected value of this performance, then the probabilistic mod­
els ~ allowing for computation of this expectation ~ must be used (Bertsekas, 
1987). If a priori performance evaluation is in form of the worst case value, 
then set membership models of uncertain quantities are needed. When a priori 
performance is defined through a fuzzy constra.int (Zimmerman, 1996), then 
compatible, fuzzy, description of free inputs is required. 

A natural, in majority of applications, a priori performance eva.luation in 
the form of expected value is, therefore, often hampered by the accompanying 
necessity of introducing good probabilistic model of the process operation and 
free input behavior. One can in fact findin many texts the argumentation sup­
porting the view that such probabilistic models are difficult to obtain and verify 
when based on insufficient data, and that it is easier and, perhaps, more natural 
to introduce and use other models, for example based on possibility concepts or 
fuzzy sets. In author's opinion such reasoning is not fully substantiated. Sim­
ilarly as a fuzzy model, a probabilistic model can be introduced with the use 
of the available, even quite poor information. To put trust in this model one 
should only avoid embedding in this model any information which, in reality, 
is not available; in other words one should observe the maximum uncertainty 
principle. This can be achieved by using the entropy optimization principles as 
explained inKapur and Kesavan (1992). 

Building models o f uncertainty in the form of fuzzy set s, with t he use of fuzzy 
logic, is reasonable in situations in which one is in passession of a knowledge 
base ~ provided by experts ~ consisting of a number of linguistic rules. Then, 
fuzzy sets and fuzzy logic offer tools to construct a decision mechanism; this 
mechanism requires then parametric tuning ~ which, in turn, implies a need to 
have either a probability model of uncertain factors or a sufficient amount of 
data. 

For practical purpose it is often sufficient to model uncertain inputs, at a 
given time, in the form of forecasted ~and, if possible, genera.ted by sirople algo­
rithm ~single scenario of these inputs. S uch approach to deterministic madeling 
of uncertainty is used within the Basic Predictive Controller scheme presented 
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in the previous section; it is commonly adopted in predictive regulatory eontroi 
algorithms (Camacho, Bordons, 1995) and in supervisary eontroi or manage­
ment mechanisms (Findeisen et al., 1980). It is always necessary, however, to 
perform a number of simulation experiments to be able to find whether the BPC 
scheme is sufficiently good to be accepted. 

3.2. Computational techniques 

Practical realization of a mechanism with repetitive optimization of opera­
tive decisions is possible only when sufficiently fast and reliable computational 
techniques, in particular optimization methods needed to solve problems like 
DDOPk or more complicated problems, are ava.ilable. To solve large optimiza­
tion problems, which allow for problem partitioning, one can use hierarchical 
methods with iterative coordination (Findeisen et al., 1980; Malinowski, 1992). 

It could appear that the existing range of optimization methods, consta.ntly 
improved and developed, given in the form of computer procedures, a.llows in 
almost any practical case to choose and implement, without too much hassle, 
a method satisfying the specified requirements. Unfortunately, this is not the 
case. Apart from the algorithms used to solve linear programming problems (the 
Sim p lex Metbod and i ts variants) there do not exist sufficiently fast and reliable 
universal methods for nonlinear optimization problems, especially such problems 
in which many constraints are imposed on the decision and other varia.bles. 
Almost always, when having to cope with a real-life practical problem, one must 
provide a specialized computational method ~ an algorithm taking into account 
characteristic features of a particular decision optimization task. Obviously, 
such specialized algorithm may be created based upon some existing general 
purpose optimization method, after this method has been adapted for particular 
application, and proved, by tests, to be sufficiently reliable. Yet, quite often it 
is necessary to build a new specialized a.lgorithm. Such was the case when 
developing decision mechanisms for flood eontroi in a multiple reservoir system 
(Niewiadomska et al., 1996), and when developing algorithms for operative price 
optimization in marketing applications. Simultaneously, it must be stressed 
that knowledge concerning theory of optimization and existing optimization 
techniques is always very useful, often necessary, to build specialized, effective, 
dedicated methods. 

It is interesting to observe that rapid development of computer technology 
allows to use computational techniques for on-line applications, which need a 
lot of computer power. The emphasis then, when developing such techniques 
for a given application, is upon the reliability of the method and its ability 
to handle all relevant constraints, instead of trying to decrease the number of 
mathematical operations or to reduce mernory requirements. In particular, for 
process state and model parameter estimation one might be willing now to use 
optimization of an error function in the presence of known constra.ints on these 
state or parameter values, instead of applying the Kalman Filter ( or Extended 
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Kalman Filter) w hi ch do es not allow to observe s uch constraints. 

3.3. Theoretical analysis of overall control (management) system 

In view of considerable complexity of a control or management system with 
repetitive optimization of operative decisions, theoretical analysis of this system 
is possible only with respect to some aspects of its operation, such as: conver­
gence properties of the computationa.l methods, dynamie stability ~ if stability 
is an issue- and bounds on possible performance values. Most interesting, from 
the practical point of view, quantitative aspects of system operation a.re usually 
extremely hard to examine on an analytical level. 

In general, theoretical results a.re possible to be achieved only under sim­
plifying, often far reaching assumptions (Malinowski, 1992). Nevertheless, such 
analytical results can be very important for a better understanding of system 
operation and properties of proposed decision mechanisms. An obvious advan­
tage of analytical results is their generality; these results are not concerned with 
particular values of decision variables, free inputs, etc.; no experiment, real-life 
or simulation based, has this property. Yet, simula.tion experiments may be per­
formed when theoretical analysis is impossible or gives only partial answers to 
the questions posed. In most cases of interest such experiments a.re fundamental 
for evaluation of the eonsiciered control mechanism, especially for evaluation of 
quantitative effects of repetitive optimization of decisions, and are followed then 
by the real-life experiments (pilot implementations). 

3.4. Simulation experiment 

The objective of simulation experiments is to tune forecasting and decision 
mechanisms, to verify operation of all components of a control system and, fi­
nally and most important, to examine the operation of this system as a whole. 
In view of the important role of simulation experiments in design and analysis 
of control (management) systems with repetitive optimization of operative de­
cisions the following section is devoted to discussion of objectives, components 
and other relevant aspects of Computer Analysis of Control (CAC). 

4. Computer analysis of eontroi 

4.1. CAC; objectives 

Based upon computer simulation, i.e. on a computer experiment (Cellier, 1991), 
computer analysis of control (CAC) allows, at the pre-implementation stage, 
to examine the properties of the decision mechanisms and the possible effects 
which may accompany real-life implementation of these mechanisms. CAC in­
volves numerical simulation experiments needed to evaluate quality of control 
algorithms in view of their effectiveness, robustness, unitary and averaged quan­
titative measures of performance. 
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Computer supported design is still relatively young; i ts development has been 
stimulated by appearance and proliferation of powerful personal workstations 
and PC's, possessing large computational and graphical capabilities. These com­
puters are usually networked, which allows for data exchange and distributing 
processing; in particular - for paraHel computing. Computer supported design 
and analysis of control or of management systems makes use of achievements 
of several technical disciplines, in particular control engineering, management 
science, computer science and information engineering. CAC allows for ta.king 
into account all phenomena relevant to real system opera.tion, including mutual 
interaction between the controlled process and its environment. CAC plays the 
most important part in cases when one has to investigate control or manage­
ment structures and decision mechanisms for complex processes, when it is not 
possible to obtain quantitative results from theoretical analysis. Computer ex­
periment requires a lot of commitment on the part of a designer. To make his 
or her efforts fruitful and to decrease the amount of time spent on setting and 
performing the experiment it is necessary to provide both good methodology 
and software tools. 

The objectives of CAC are: 
• evaluation and comparison of various possible control ( decision) strategies 

with respect to their effectiveness, robustness and other factors like speed 
of computing, 

• examination of the influence of forecasting quality on behavior of decision 
strategy and the overall control system, 

• evaluation of the influence of various external and internal factors on sys­
tem operation (e.g. effects of delays in computing decisions and transmit­
ting data), 

• proposals concerning modifications of estimation, forecasting and decision 
algorithms. 

It is very important to provide the decision maker with a convenient interface 
to CAC system, to automatize as many steps leading to performing a computer 
experiment as possible, and to ensure that each essential step of the experiment 
is well documented. 

CAC requires, in most cases, a large number of simulation experiments to 
get meaningful results. These simulations should be based on reliable data, 
for example on realistic scenarios of free inputs and on the identified process 
model. As far as the input scenarios are concerned, historical real data are 
preferred to artificially generated data. If it hecomes necessary to generate 
new data for simulation a lot of care must be ta.ken to ma.ke sure that these 
data eonform to investigated operational conditions. When control system with 
repetitive optimization of opera.tive decisions is examined, one needs also to 
simulate forecasting mechanisms to solve, within simulation, decision problems 
like DDOPk or MFOSLACk (in the latter case multiple forecasted scenarios are 
required). Also, other factors which may affect the real-time operation, like the 
already mentioned delays in computing and transmitting decisions (Malinowski, 
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1992), have to be taken into account. 

4.2. Elements of CAC 

In view of the above presented role and objectives of CAC, it is useful to distin­
guish several elements needed to set and then to perform a simulation experi­
ment. The most important are: 

• Simulators of processes and phenomena which are considered as external 
with respect to the decision maker ( eontroi agent), in particular: simulator 
o f the controlled process, simulator (generator) o f the values ( trajectories) 
of free inputs, simulator (forecast dummy) of any forecasts used by the 
decision mechanism if such forecasts are prepared by units being external 
with respect to the decision maker, 

• Simulator of behavior of the operator (operators) if there is a need to 
simulate activities and decisions of the human being involved in process 
operation, in particular- in decision making, 

• Identification and estimation algorithms used for on-line adaptation of all 
models and for state estimation, 

• Decision mechanisms; either explicit control rules or optimization based 
decision procedures, 

• Time structure: time scales specifying when and what information is ob­
tained, when and what decisions are made and when the simulation is 
advanced, w ha t are decision and transmissio n delays, etc., 

• Software environment under which the computer experiment is organized, 
including tools to create user defined modules, graphical interfaces to mon­
itor experiment, facilities to store experimentation data, and providing 
convenient means for user-computer interaction. 

To illustrate the above points consider hierarchical two-level structure, as 
depicted in Fig. 2, in case when this structure represents two-level fiood man­
agement described briefiy in Section 2.2, presented in deta.il in Niewiadomska 
et al. (1996). Local decision mechanisms are concerned with decisions made 
by reservoir operators and are represented by simple decision rules or optimiza­
tion based procedures of low complexity using forecasts of future !ocal inflows. 
These rules are from time to t im e modified by the eontroi center ( coordinator), 
through coordinating parameters pi. Local reservoir problems are solved at 
time intervals t:. TL. The eontroi center solves a much more complicated prob­
lem, at longer intervals b.Tc. As a result of solving this coordinator problem, 
new parameters for local mechanisms are established. Decision mechanisms 
used to solve the coordinator problem are based upon the minimization of a 
performance function, which is defined through simula.tions of the lower level 
operation. These simulations are performed for given scenarios of external in­
puts (infiows); such scenarios can be different from those that are used for the 
lower level decision making. Computer experiment involves all elements of this 
structure: models of the water system, including reservoirs and river reaches, 
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forecasting mechanisms for the !ocal level and for the eontroi center, decision 
rules of reservoir operators, and the complete decision mechanism at the upper 
level. Both historical infiow scenarios during fiood periods and other, feasible, 
scenarios of these infiows can be used. 

lt must be stressed that for the successful computer analysis it is absolutely 
necessary to make sure that within a computer simulation experiment one ma.y 
only use data to simula te forecasting and decision making of such kind and qual­
ity as will be used in real-life implementation of these mechanisms, i.e. which 
will be available to the decision maker under real operating conditions. One 
should not use for this purpose other information, for example, without mak­
ing it explicitly elear, or use more accura.te- than actually a.vaila.ble, simulated 
forecasts; e.g. to use overoptimistic forecast dummies. 

4.3. Software environments for CAC 

It has been alrea.dy said tha.t effective computer experiment can be set and 
performed in a reasonable time only if good software tools a.re a.vailable. These 
tools, in the form of a software environment for CAC, ha.ve to support the 
decision maker - alleviate tedious tasks and enable him or her to concentrate 
on important issues. 

One may distinguish the following types of software environments for CAS: 

l. Specialized systems: designed and developed for particular app!ication. 
As an example l et us mention: the FC-VS system (Flood Control Vistula 
System) to be used for simulation and support the rea.l-time operation 
at the center ( coordinator) level o f t he hierarchica.l two-Jevel management 
structure described above (Niewiadomska-Szynkiewicz et al., 1 992), 

2. General purpose (universal) systems: software systems with open archi­
tecture, like SIMULINK-MATLAB, which can be used as support tools 
for a wide variety of applications. Such systems are usually too general to 
make a convenient environment to investigate complex eontroi (manage­
ment) systems, 

lntermediate solution could be to develop software environments with open 
architecture, yet oriented towarcis analysis of complex systems with many deci­
sion and process units and capable of distributing the computing ta.sks during 
simulation between several processors (workstations). System CSA&S (Com­
plex Systems Analysis and Simulation) belongs to tha.t category and was devel­
oped in several versions (Niewia.domska-Szynkiewicz et al., 1995; Niewiadomska.­
Szynkiewicz and Malinowski, 1999); this software tool can be also used to or­
ga.nize computer experiments involving complex optimiza.tion mechanisms and 
information exchange pa.tterns. It has a.lrea.dy been used to perform computer 
aided analysis of fiood eontroi systems, routing mecha.nisms in telecommunica­
tion networks, and water management in protected agricultura.l systems. 
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