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Abstract: We consider the optimization of the actuator problem
for a Bernoulli-Euler beam. By using Riesz basis theory, we show,
at high frequencies, that the optimal location of the actnator is the
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1. Introduction

In this paper we study the optimal location of the actuator for the pointwise
stabilization of Bernoulli-Euler beam modelling the vibrations of a beam with
pointwise damping. More precisely we consider the following initial and bound-
ary value problem:

a2 4 2%

%(m,t) + gﬁ(:lr,t) 4 %{;(f t)oe =0, 0<z<m t>0, (1.1)
0%

u(0,6) = 55(0,4) =0, ¢ >0, (1.2)

N Pu

F;(w,t)zﬁ(n,z)zo, t>0, (1.3)

u(x,0) = u’(z), dj(ﬂl,()) =ul(z), 0<z <, (1.4)

ol
where 8¢ is the Dirac mass concentrated at the point £ € (0, 7). Simple calcu-
lations show that (1.1) is equivalent to the equations modelling the vibrations
of two beams with a dissipative joint.
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The problem of finding the optimal decay rate for systems with distributed
interior damping is difficult and in general has not found a complete answer. We
refer to S. Cox and E. Zuazua (1994, 1995), P. Freitas (1999) and to references
therein. The novelty brought in by this paper is that we give, at high frequencies,
the optimal location of the actuator. More precisely, we show that the fastest
exponential decay rate is obtained if the actuator is located the middle of the
beam. A similar problem for a string was studied in K. Ammari, A. Henrot and
M. Tuesnak (2000). One of the main ingredients of the proof is a result showing
that the generalized eigenfunctions of the associated dissipative operator form
a Riesz basis in the energy space.

The paper is organized as follows. In the next section we give precise state-
ments of the main results. Section 3 contains some technical results needed in
the following sections. In Section 4 we give the proof of the main result. The
last section is devoted to a remark for optimizing the location of the actuator
in the case of low frequencies.

2. Statement of the main result

If u is a solution of (1.1)-(1.4) we define the energy of u at instant ¢ by

™ ¢ 2 ’ 2
E(u(t)):é-/n (% )] & %(m) )fza.-. (2.1)

Simple formal calculations show that a sufficiently smooth solution of (1.1)-(1.4)
satisfies the energy estimate

t)

% ¢.9)

2
- ds, VYt>0. (2.2)
dt

EWWD~EWM)=£

We check that equations (1.1)-(1.4) are well posed in the space V x L?(0,7)
where

h
V= {¢ € H%U,ﬂ')}%(ﬂ') =¢(0) = o}‘
dx
Let ng be fixed and sufficiently large. Introduce the notation

e {(u,‘u) = Z(r,,, F, eV x LQ(U.?T), an €% a, =0, Vn < 'n.g},
neN

where F), is defined by (3.6).

The uniform stability result is given in the proposition below. This result
was proved in K. Ammari and M. Tucsnak (2000) and R. Rebarber (1995).

PRrOPOSITION 2.1 The system described by (1.1)-(1.4) is exponentially stable in
V x L*(0,7) if and only 'f‘if% 15 a rational number with coprime factorization

§

Eo? e .
. where p is odd. (2.3)
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In order to state the result on the optimal location of the actuator, we define

the decay rate, as function of &, as

wy (&) = inf{w| there exists C' = C(w) > 0 such that

E(u(t)) < C(w)e*' B(u(0)),

for every solution of (1.1)-(1.4) with initial data in V x L?(0,7)}, (2.4)

wz(€) = inf{w| there exists ¢ = C(w) > 0 such that

E(u(t)) < C(w)e*' E(u(0)),]

for every solution of (1.1)-(1.4) with initial data in A, }, (2.5)

where E(u(t)) is defined by (2.1). Our main result on the optimal location of
the actuator is

THEOREM 2.2 1. Ifng is sufficiently large, then the inequality wa(§) > wa(3) =
5 holds true for any £ € (0,7). In other words, for ng sufficiently Irr:rgc
fhe fastest decay rate of the solutions of (1.1)—(1.4) with initial data in X,
obtained if the actuator is located in the middle of the beam.
2. The inequality wy(§) > —é holds true for any £ € (0,7).

"y

3. Some technical results

Take the following rotations

Y = [H*0,7)n H*(0,€) n Hi(¢,7)] x H?(0,7), (3.1)
du dv
D(A) = {('u,v) €Y, u(0)=v(0) =0, d—(ﬂ') = E(ﬂ) =(J;
d*u d*u dJ d®u (e
R B Sy il =— 3.2
o0 = T30 =0. T30 - T30 = 9 ) (3.2
Consider the unbounded lincar operators:
. v
A:DA) =V xL20,7), A “)=| d (3.3)
U = o v(€)0¢
where D(A) is defined in (3.2),
and
: v
A, i D(A,) = V x L2(0,7), A. (:) = ( m) (3.4)
dat
where

D(A,) = {(1.'..-.'1} € H4(0,7) x H*(0,7), u(0) = v(0) =

du dv d u d3u
)= 2 =0, 220 = Thim =0},
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First we give the following characterization of the eigenvalues and eigen-
functions of A. This result is not stated nor proved in K. Ammari and M. Tue-
snak (2000).

LEMMA 3.1 A compler number A = it?, v = re', with v > 0, § € [-3,0], is
an eigenvalue of A if and only if

=27ch(rm) cos(rm) — i[—ch[r (& — w)]sh(T€) cos(rm)

+eh(rn) cos[r(m — £)]sin(r€)] = 0. (3.5)
Moreover, the corresponding eigenfunction Fy is given by
1
—@’)J\(-’L‘)) ;
Film)s1 2 ; 3.6
,\(’."‘) ( NED) 3 ( )
where

—ch[r(m — &)] cos(rm)sh(rz)

+ch(rm)cos [r(m — €)]sin(rz), 0<z<E,
—sh(r€) cos(rm)ch[r(m — z)|+
ch(rz)sin(r€) cos[r(r —z)], E<Lz< .

da(z) = (3.7)

The following two propositions concern the spectrum of the operator A de-
fined in (3.3).

PROPOSITION 3.2 There is a family of eigenvalues A, =i 72 of A for all suffi-
ciently large positive integer n, satisfying the following asymptotic expression

Re), = —sin® (%5) -+ O(%)

Before stating the second proposition we recall that a Riesz basis in a Hilbert
space is, by definition, isomorphic to an orthonormal basis*.

ProposITION 3.3 For an arbitrary £ € (0,7), the generalized eigenfunctions of
A form a Riesz basis in V x L*(0,).

Proof of Proposition 3.2. 1t is easily verified that A. is a skew-adjoint oper-
ator in V x L2(0,7) with compact resolvent. We see that

w5 (25}

We write a characteristic equation (3.5), in a small neighborhood of %

cos(Tm) = -2—3-1-_- [% cos(rm) — cos[r(m — £)] Sin(r&)] 305, (3.8)

" Let (un)n>0 be an orthonormal basis in the Hilbert space H, and let ('Un_]nzu C H.If
there exists an isomorphism T from H onto H such that T'(un) = vn, ¥n > 0, then (va )ugo
is a Riesz basis in H.
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Applying Rouche’s Theorem, we obtain that

2n-1 1
n — O S .
T 5 + (n) (3.9)

is a solution of (3.8).
Substituting (3.9) into (3.8). we find

and so
2
M:ﬂﬁ:ﬂ(mgd) —mﬁ(%24§)+o(%) (3.10)
This is achieves the proof. [ |

Before giving the proof of Proposition 3.3, we need a technical lemma on Riesz
basis generation for discrete operators in general Hilbert spaces. This lemma
was proved in (B. Z. Guo and K. Y. Chan, 2001, Theorem 2] (see e.g., B. Rao,
1997).

LEMMA 3.4 Let {513,,&.}3" be a Riesz basis in V x L?(0,7). If there are an N > 0

and an w-linearly independent’ subset of generalized eigenfunctions {(I'J., } R
of A corresponding to {A,}¥,,, where A, is as in (3.10), such that

o0
Z "q)nm i) lp“”%’xbz([).h') < 00,
N+1

then there are generalized eigenfunctions {U,}Y of A corresponding to {\,}Y
such that {'.I;n}g“ forms a Riesz basis in V x L*(0,7). Hence, a(A) = {An, A\ }&
counting algebraic multiplicity. Therefore A, are algebraic simple for sufficiently
large n as that they are distinct for sufficiently large n.

REMARK 3.5 According to the preceding lemma, we remark in particular that
except for at most a finite set, all {)\,,‘)\,;} determined by (3.10) consist of all
ergenvalues of A.

Proof of Proposition 3.3. A similar result, for a slightly different situation,
was obtained in (B. Z. Guo and K. Y. Chan, 2001, Theorem 4). But for the
sake of completness we give a proof.

T Let (gj)j>0 be a sequence of vectors in the Hilbert space H. Then, (g;);>0 is said to be w-
linearly independent, if the equality 2;:»0 c;jgj =01is impossible for 0 < 2;‘50 |c;iz1|gj|ﬁf <00,
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Let Ay = i72, 7 = 2"7_1 + O(ﬁ), for sufficiently large positive integer n, be an
eigenvalue of A. Then the corresponding eigenfunction (ﬁquqf).l), where ¢, is
given by (3.7) with 7 = 7,,, has the following asymptotic expression

2-‘3 i d2¢'u
N a7 =
2e~ ™" ¢ ()
[ st aieta o)
(

_])n-l-l Sill( er—IE) 5111(2112—1:}:) 4 O(-l‘") (311)
Ve € (0,6)U (&, 7).
We see that (3.11) is also valid for 7, = -l

1 =1 7
_¢ra y ¥ rI'()ll.l':)
By = B Pue=( Pn
' ( Pnye ) ' ( Pn.c

be the eigenfunction of A corresponding to p, = i <2 )? and fi,, =

where ¢, . is given by (3.7) with 7 = 2n_1 c;b,, e 18 t.ht, conjugat.e of qb“ = T]l(’]l

¢ satisfies (3.11). The set of mgenfnnrtmns of Ag is { Py o, Prc}i°-

Since A, is skew-adjoint in V x L2(0, ) and its resolvent is compact, each eigen-

value of A, is geometrically simple and hence algebraically simple. We know that

{®,,c, P, ..} forms an orthogonal basis in V x L?(0, 7). From (3.11) and Propo-
1

2n—1

i Qn—l )‘2

sition 3.2 there are an N > 0 and a family of eigenfunctions \¥,, = ( 3 9n ) of

n

A corresponding to A, = i72, 7, being determined by (3.9), satisfying

S dlle ™", -

n>N

‘I’,, ¥ x L2(0,7)

2n—1

-+-l!(3_f"“li’ﬂ —e 2 “‘i)u.c”ri’ij:?((l‘w)} < 0.

= 2n—1

Thus, since {:I"J,,‘c = e”a'""f”l"(b,,‘c,@,.,c =e¢ 7 "P, J& is a Riesz basis in
V x L*(0,7), then according to Lemma 3.4, there are generalized eigenfunctions
{0, = e ™0, }¥ of A such that {¥, = ¢~™"¥,}5° forms a Riesz basis in
V x L2(0, 7). o

4. Proof of Theorem 2.2

To prove Theorem 2.2 we need the following lemma:

LEMMA 4.1 For any & € (0,7) satisfying (2.3), we have

o (2n—-1
sin ( 2 £)

2

% Vn € Z. (4.1)
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Proof. Since ¢ satisfies (2.3), % = f}. where p is odd. Then, if j is integer

) 2n—1 ) .o (p(2n—1)
2 _ il
sin ( 7 £ J?r) sin ( % ?T).

Note that

M —
p(2n—1) sy
2q

™ i ™
= [p(2n — 1) = 2qj5] > % (4.2)

The last inequality follows from the fact that p(2n — 1) is odd and 2qj is even.
Therefore, the inequality (4.2) is optimal, i.e.,

p(2n —1)

- T—jn
2q

q

w

inf
JEL,neZ,peN"

Suppose now that (4.1) is not true. Then, there exists n € Z such that

. [(2n=1
sin ( 3 E)

so there exists j € Z such that

1

> 5, (44)

According to (4.3) we deduce that § < 5%, this implies ¢ < 2 which shows that
(4.4) cannot be true and end the proof of the lemma. |

By Proposition 3.2 we have

Ve > 0, dng € N, such that
2n—-1

Y|n| > ng, —e — sin® (

5) < Redn < € — sin? (2”—2_—1 g). (4.5)

Thus, for an arbitrary £ € (0, 7) such that _§r is a rational number with coprime
factorization and {; = f;’, where p is odd, by Lemma 4.1 there exists an eigenvalue

Ay of A such that Re), > —4 —e. If we consider the solution of (1.1)-(1.4)
with initial data

W0\
ul = Lo

where Fy, is an eigenfunction corresponding to the eigenvalue A,,, we obviously

get
u(t u°
(u’((t})) s e-\nl‘ (u] ) , vt 2 n'
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S0
w;i(€) = —% —e, Vi=1,2 Ve>0, VE&e(0,7), satisfying (2.3).
Then,
wi(€) > —%, Vi=1,2, V&€ (0,m), satisfying (2.3). (4.6)

On the ot.h(:l hand, for { = %, by (4.5) the eigenvalues A, of A are such that
Rel, < —-— + ¢ for sufficiently lalgc integer n. We know from Proposition 3.3

that the gcncmlm,d eigenfunctions U,, of A form a Riesz basis in V x L? (0,7).
Using this fact and Lemma 3.4 we obtain that, for initial data

0

U = =

(,”_1 ) = Zan‘l‘" = Z Q"‘I'”., (U’n) & £2([C) ?llld Ay = []-_ Vﬂ‘ S 0,
neMN n>ny

where ng is a positive integer sufficiently large, the solution

(2) = S o

n>ng
of (1.1)-(1.4) satisfies the estimate
E(u(t)) < Cel=H21 B(u(0)), Vi>0,

where C' is a positive constant. It follows that
"Y<-c4e WEnD
o B = B £ & "

Then,

wg(g) < *%. (4.7)

Inequalities (4.6) and (4.7) give the conclusion of the theorem. |

5. Remark on optimal location of the actuator at low fre-
quencies

In order to see what happens in the case of pointwise stabilization at low fre-
quencies of a Bernoulli-Euler beam one can make some numerical experiments.
As an example we calculate the energy of numerical solution of problem (1.1)-
(1.4) given by finite difference discretisation. Figure 1 shows the energy of
this numerical solution with pointwise damping concentrated in three differents
points:

& = % (line 1.), & = % (line 2.), and & = 2= (line 3.). We see that the fastest
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decay rate of the energy is obtained with pointwise damping concentrated in
the middle of the beam (£ = Z). This results allows us to expect the same
results as in previous sections and the optimal location of the actuator at low

frequencies is also the middle of the beam.

120

number of iterations

Figure 1. Energy of numerical solution

A related question

A question related to the problem studied in this paper is the optimal location
of the actuator for the pointwise stabilization at high frequencies of a Bernoulli-
Euler beam with moment feedback (sce R. Rebarber 1995, for an appropriate
model).
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