Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We prove the existence of positive solutions of the Neumann problem with indefinite weight and critical Sobolev nonlinearity. Our approach is based on the concentration-compactness principle applied to a related variational problem.
Wydawca
Rocznik
Tom
Strony
323--333
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
- The University of Queensland, Department of Mathematics, St. Lucia 4072, Qld, Australia
Bibliografia
- [1] Adimurthi, G. Mancini, The Neumann problem for elliptic equations with critical nonlinearity, A tribute in honor of G. Prodi, Scuola Norm. Sup. Pisa (1991) 9-25.
- [2] Adimurthi, G. Mancini, Effect of geometry and topology of the boundary in critical Neumann problem, J. Reine Angew. Math., 456 (1994) 1-18.
- [3] Adimurthi, G. Mancini, S. L. Yadava, The role of the mean curvature in a semilinear Neumann problem involving critical exponent, Comm. Partial Differential Equations, 20 (3, 4) (1995) 591-631.
- [4] Adimurthi, F. Pacella, S. L. Yadava, Interaction between the geometry of the boundary and positive solutions of a semilinear Neumann problem with critical nonlinearity, J. Funct. Anal., 113 (1993) 318-350.
- [5] Adimurthi, F. Pacella, S. L. Yadava, Characterization of concentration points and L∞-estimates for solutions of a semilinear Neumann problem involving the critical Sobolev exponent, Diff. Int. Eq., 8 (1995) 31-68.
- [6] Adimurthi, S. L. Yadava, Critical Sobolev exponent problem in Rn (N ≥ 4) with Neumann boundary condition, Proc. Indian Acad. Sci. Math. Sci., 100 (1990) 275-284.
- [7] C. Bandle, M. A. Pozio, A. Tesei, Existence and uniqueness of solutions of nonlinear problems, Math. Z., 199 (1988) 257-278.
- [8] H. Berestycki, I. Capuzzo-Dolcetta, L. Nirenberg, Variational methods for indefinite superlinear homogeneous elliptic problems, NoDEA Nonlinear Differential Equations Appl., 2 (1995) 553-572.
- [9] H. Brézis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Commun. Pure Appl. Math., 36 (1983) 437-477.
- [10] J. Chabrowski, M. Willem, Least energy solutions of a critical Neumann problem with weight, Calc. Var. Partial Differential Equations, to be published.
- [11] J. F. Escobar, Positive solutions for some nonlinear elliptic equations with critical Sobolev exponents, Commun. Pure Appl. Math., 40 (1987) 623-657.
- [12] M. Grossi, F. Pacella, Positive solutions of nonlinear elliptic equations with critical Sobolev exponent and mixed boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A, 116 (1990) 23-43.
- [13] C. Gui, N. Ghoussoub, Multi-peak solutions for semilinear Neumann problem involving the critical Sobolev exponent, Math. Z., (229) (1998) 443-474.
- [14] P. L. Lions, The concentration-compactness principle in the calculus of variations, The limit case, Rev. Mat. Iberoamericana, 1 (1, 2) (1985) 145-201 and 45-120.
- [15] P. L. Lions, F. Pacella, M. Tricarico, Best constants in Sobolev inequalities for functions vanishing on some part of the boundary and related questions, Indiana Univ. Math. J., 37 (2) (1988) 301-324.
- [16] W. M. Ni, X. B. Pan, L. Takagi, Singular behavior of least energy solutions of a semilinear Neumann problem involving critical Sobolev exponent, Duke Math. J., 67 (1992) 1-20.
- [17] W. M. Ni, L. Takagi, On the shape of least-energy solutions to a semilinear Neumann problem, Comm. Pure Appl. Math., 44 (1991) 819-851.
- [18] H. T. Tehrani, On indefinite superlinear elliptic equations, Calc. Var. Partial Differential Equations, 4 (1996) 139-153.
- [19] X. J. Wang, Neumann problems of semilinear elliptic equations involving critical Sobolev exponents J. Differential Equations, 93 (1991) 283-310.
- [20] Z. Q. Wang, On the shape of solutions for a nonlinear Neumann problem in symmetric domains, Lect. in Appl. Math., 29 (1993) 433-442.
- [21] Z. Q. Wang, Remarks on a nonlinear Neumann problem with critical exponent, Houston J. Math., 20 (4) (1994) 671-694.
- [22] Z. Q. Wang, High-energy and multipeaked solutions for a nonlinear Neumann problem with critical exponents, Proc. Roy. Soc. Edinburgh Sect. A, 125 (1995) 1013-1029.
- [23] Z. Q. Wang, The effect of the domain geometry on number of positive solutions of Neumann problems with critical exponents, Differential Integral Equations, 8 (6) (1995) 1533-1554.
- [24] Z. Q. Wang, Construction of multi-peaked solutions for a nonlinear Neumann problem with critical exponent in symmetric domains, Nonlinear Anal., 27 (11) (1996) 1281-1306.
- [25] Z. Q. Wang, Existence and nonexistence of G-least energy solutions for a nonlinear Neumann problem with critical exponent in symmetric domains, Calc. Var. Partial Differential Equations, 8 (1999) 109-122.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0001-1238