Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we discuss the existence of positive periodic solutions for a delay logistic equation, by using the theory of coincidence degree.
Wydawca
Rocznik
Tom
Strony
155--160
Opis fizyczny
Bibliogr. 7 poz.
Twórcy
autor
- Department of Mathematics, Shanghai University, Shanghai 200436, P. R. China
- Department of Mathematics, Binzhou Teachers College, Shandong, 256604, P. R. China
autor
- Department of Mathematics, Notheast Normal University, Chang Chun 130024, P. R. China
Bibliografia
- [1] B. S. Chen, Y. Q. Liu, On the stable periodic solutions of single species molds with hereditary effects, Mathematica Applicata, 12 (1999) 42-46.
- [2] G. B. Zhang, K. Gopasamy, Global attractivity and oscillations in a periodic delay-logistic equation, J. Math. Anal. Appl., 150 (1990) 274-283.
- [3] G. Seifert, On a delay-differential equation for single species population variations, Nonlinear Anal., 9 (1987) 1051-1059.
- [4] I. Gyori, G. Ladas, Oscillation theory of delay differential equations, Oxford Science Publications, Oxford 1991.
- [5] R. E. Gaines, J. L. Mawhin, Coincidence degree, and non-linear differential equations, Springer-Yerlag, New York 1977.
- [6] S. M. Lenhart, C. C. Travis, Global stability of a biological model with time delay, Proc. Amer. Math. Soc., 96 (1986) 75-78.
- [7] Y. Kuang, Delay differential equations with applications in population dynamics, Academic Press, Boston 1993.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0001-1227