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Abstract: Algorithms based on statistical models compete fa-
vorably with other global optimization algorithms as proved by ex-
tensive testing results. Recently, techniques were developed for the-
oretically estimating the rate of convergence of global optimization
algorithms with respect to the underlying statistical models. In the
present paper these techniques are extended for theoretical investi-
gation of P-algorithms without respect to a statistical model. The-
oretical estimates may climinate the need for lengthy experimental
investigation which previously was the only method for comparison
of the algorithms. The results obtained give new insight into the role
of the underlying statistical model with respect to the asymptotic
properties of the algorithm which will be useful for the implementa-
tion of new versions of the algorithms.
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1. Introduction

Statistical models are useful for modeling the global behavior of a complicated
multimodal function and the normal uncertainty of the rescarcher with respect
to the features of the function, Torn and Zilinskas (1989). However, the choice
of a conerete model may not be obvious, and may be guided by conflicting goals.
For example, the Wiener process seems well-grounded as a global model of com-
plicated one-dimensional multimodal functions. The Wiener model has been the
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most common model used for the implementation of global optimization algo-
rithms (Boender and Romeijn, 1995; Zilinskas. 1981; Calvin, 1999; Kushner,
1962. 1964: Locatelli. 1997; Ritter, 1990; Groch, Vidigal, and Director, 1985;
Locatelli and Schoen, 1995), although the local features of non-differentiable
Wiener process paths differ essentially from the local features of smooth objec-
tive functions. For a long time there has been interest in implementations based
on the smooth function statistical models, though progress has been blocked by
the computational complexity of such implementations. The problem of lo-
cal inadequacy was resolved by using a dual Wiener process/quadratic function
model, Torn and Zilinskas (1989): Zilinskas (1981). From a practical point of
view the P*-algorithm based on such a dual model is sufficiently efficient as
shown by the results of extensive testing in Térn and Zilinskas (1989); Zilinskas
(1981). However, a theoretically justified algorithm based on a statistical model
of smooth functions had not been known until recently.

Extension of the approach to statistical models of smooth objective functions
was initiated in Calvin and Zilinskas (1999). where an approximation method
was proposed enabling the construction of a P-algorithm whose computational
complexity is similar to that of the algorithm based on the Wiener model. The
availability of two competing models suggests their comparison. Theoretical
estimates of the convergence rate of P-algorithms with respect to the underlying
statistical models are formulated in probabilistic terms in Calvin (1999); Calvin
and Zilinskas (1999), but the applicability to a specific practical case is not
always obvious.

In the present paper the convergence rate of P-algorithms based on Wiener
and smooth funetion models is compared for neutral conditions, i.e. for general
assumptions on smoothness of an objective function without respect to a statis-
tical model. Under both algorithms, the order of convergence is the same up to
a constant. However, the constant depends on features of the objective function
and a choice of the method parameter e, This result gives new insight into the
role of the nnderlying model in determining the asymptotic properties of the
algorithm. Until recently, the only way to asses the convergence rate and to
compare efficiency of statistical model-based methods was implementation and
experimental testing. The new techniques of theoretical investigation may be
used prior to experimentation to prevent the time consuming implementation
of theoretically unsatisfactory versions.

2. P-algorithm

In this section we will describe the P-algorithm, which is motivated by proba-
bilistic considerations. The reader should keep in mind that the probabilistic
considerations serve only to motivate the algorithm; we will investigate the con-
vergence properties of the algorithm in the following section.
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Convergence of P-algorithms

the case where f does not satisfy stronger regularity conditions, such as convex-
ity, unimodality, or availability of a Lipschitz constant. Let the minimal value
M = ming<.<1 f(x) be attained at lhv point x*, and assume that F(z) > M
for & # a*. The stochastic process {{(z) : 0 < 2 < 1} is accepted as a statisti-
cal model of the objective function; p‘uauu,,t(\.xs of the model can be estimated
from an initial sampling of function values at points uniformly distributed in
[0,1]. Fix ¢ > 0. The n-th observation of the function value is performed by the
P-algorithm at the point

Tpr1 = g tiax P{E(E) < Mp = eléla:) = Yosd = Loy n}. (2:1)
0<a<1
where @y, y; = f(x;) are the results of observations at previous minimization

steps and M, = minj<;<, y;. Let us denote the ordered observation points by
O=af ot € <ar=1,

and the corresponding function values by y!' = f(a1), 1 < n. If {(x) is a Markov
process, then the conditional distribution of the value £() in (2.1) would depend
only on neighboring function values and the maximization in (2.1) might be
replaced by the following simpler procedure: For each subinterval [zf, 2],
i < n, calculate

o PLE() < Mo —elglatg) = vy, S(al) =t} (2.2)

i

and for the interval with the largest probability, calculate the point that max-
imizes the probability in (2.2); this point is the new observation point @, 1.
The details of the implementation of the Wiener process version of the algo-
rithm (2.1) may be found in Zilinskas (1981).

The Wiener process corresponds to general assumptions on uncertainty in
global optimization, Torn and Zilinskas (1989), and therefore it scems an ad-
equate model to describe the global behavior of complicated multimodal func-
tions. However, it does not accurately 1'(\1)1'(‘%(‘11‘5 the local features of typical
smooth objective functions, since the sampling functions of the Wiener process
arc everywhere non- (111[01( ntiable almost surely. In Calvin and Zilinskas (1999).
a statistical model of a smooth objective function is justified, i.c. a station-
ary Gaussian stochastic process () with zero mean, unit variance and the
correlation function r(+), which we assume to be of the form

r(t) =1 /\,/ + ‘/\1t4+o(_/f‘) (2.3)

4!

as { — 0, for finite Ao, Ay, We further assume that
|dir(t)/dt* = A4| = O([t]), (1) = X2 4+ O(]log™“ |t]])

for some a > 1 as t — 0, and also that »(£)log(t) — 0 as t — oc. These assumn-
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sample functions, Lindgren (1972). The algorithin (2.2) with underlying smooth
function model is an approximated P-algorithm whose details are discussed in
Calvin and Zilinskas (1999).

In the remainder of this section we infroduce parameters that help charac-
terize the convergence rate of algorithms. The magnitude of the error depends
in the limit on two quantities associated with the objective function f. We
can think of these as a global characteristic I'g(¢e). depending on the parame-
ters €, 3. and a local characteristic A. For € > 0 and 2 > 0, define the global
characteristic by

1 - -3
Fg(ﬁ)g/_{] (1+I%—M) da. (2.4)

Note that I's(e) is decreasing in f and inereasing in e. The larger values of
0 < I's(e) < 1 correspond to more difficult minimization problems due to the
concentration of function values near to the global minimum. A constant objec-
tive function has maximal index of difficulty I'g(e) = 1. The case of a constant
objective function is the worst case for many global optimization algorithms, see
Torn and Zilinskas (1989). The meaning of these characteristics is illustrated
by some examples.

EXAMPLE 2.1 Let f(z) = (x — 2*)%, where x* = 1/2. Then

1/2
I‘I,g(c)sf (1+2? /f) % da _\/_111(1+—+ \/14—45)

r=—1/2
~ e ln(l+1/e)
as € | 0. Taking p = 2, we have

1/2 -
Fg(f):/ (1+32/€) “dz

x=—1/2
1

1 7
= ——-—-—) + /e arctan (—) ~ é\/‘:

2 (1 + de 2\/¢
as € | 0.
EXAMPLE 2.2 Let f(z) = |z — 2*|, where 2* = 1/2. Then
H 1/2 1
I‘lﬂ(e):ﬁz/ (1+ax/e)” 2 qa = 4¢ 14— =1
Jar=l 26

and

1/2 ;
LI R | [ P TRy [ - e 2¢
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For the local characteristic, we assume that there exists a positive number
« such that

lim 2 sup f(z"+a)—M=A(f)>0. (2.5)
=g lel<l/n
For example. if f(z) = a |z = 2*|, then a = l and A(f) = lf f Is smooth with

positive sccond derivative at @*, then o = 2 and A(f) = Y12,

3. Asymptotic normalized error bounds

According to Kushner (1962); Calvin and Zilinskas (1999). the P-algorithm for
the Wiener and smooth function models is defined by the following procedures.

If the Wicner process model is used, for each subinterval [z, 2%], i < n,
calculate

Y] n
o —

0 i1 .

# 3.1

[/“_ - ll\/jn + € '!/I'I I A[,, + 4 ( )
i—1 h

n

Pi

e

The next observation is made in the interval with the maximal value of pit. at
Pi
the poing
P s n il
&y + @ Ty — &y Yi — Yi—
2 2 (g 4yl - 2M, + 2)

T4l =

If the smooth process model is used, for cach subinterval [, 2"]. i < n,
calculate

n " 0)

@~ 5

L izl (3.2)
\/‘.1/;'..1 - J\[u PB e \/[/” - /‘ju +(
The new observation is made in the interval with the maximun value of 4/, at
the location "

e

R
i

g e
Tpg1 =Ty
" e TR / -
v = )yisy = My +¢)

- M, +<+\/ /*l—l'\f,,+()‘—’+(/l =y Wy, - /\1,,+()

The following theorem summarizes our results.

THEOREM 3.1 Fiw e > 0. Let an objective funcltion f(x) be continuous over
the minvmazation interval and have local characteristic A([) with exponent «
al the unique global manamizer @ and global chavacteristic U y(¢). Then the P-
algorithm. based cither on the Wiener or on a smooth function model, converges
to the global minemum in the sense thal the error A, | O and in particular

-
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for the algorithm based on a smooth process model, and

limsupn®A,, < 4A(f)3(e) ' (3.4)

n=—00

for the algorithm based on the Wiener process.

As previously noted, T'yj/a(e) > I'a(¢). However, this does not necessarily
imply that the Wiener-process-based algorithm is more efficient for a smooth
objective function: the reason is that a good choice of € may be different for the
two cases. While choosing € a trade-ofl between its influence on the convergence
rate and the global distribution of trial points should be taken into account.
This question is analyzed in the next section.

We now proceed to the proof of the theorem.

Proof. We begin with the proof of (3.3). Since the observations are dense in
[0,1] and f is continuous, M,, | M and

dx F;;o(r i
; 3.5
Z’? 2=0 \/f(z)— M + ¢ (3:5)

Let x} and 2} be the observation points to the left and right, respectively. of
the minimizer *; that is, for some j,,,

% e,
e = <2t a4y =T

Let y} = f(a}) and y}; = f(2}) be the corresponding function values. Let

n TR — %y 3.6
’Y‘q = (&'6)
VIE =My +e+yh — M +e¢
and
" = max4®, v, = minq’.
7" = maxyf, = ming]

Since the subintervals are cventually bisected, Calvin and Zilinskas (1999),
G i /'Vn — 2.
Because y} — M, — 0 and y — M,, — 0,

VIVE = My + e+ \/y — M, +¢

: = — 1, 3.7
2y Ve 2/ &)
which, combined with (3.5), implies that
n(xp —ay) 2/ET(e) (3.8)
B L

Since
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we have that

,)/l.l 1
lith ik st > lim flf e e (3.9)
n—oc = o n—oo ’y" 2

n 1=1

Re-writing, we obtain

nieh ) = SR e ny (3.10)

and applying (3.7), (3.9), and (3.5) to the three terms on the right-hand side of
(3.10), we conclude that

"1/2( o 2 2
limsup n(zp — 27) <4f / =21y 5(e). (3.11)
n—oo \/—
We now turn our attention from the gap surrounding the global minimizer
to the error A, = M, — M. Because of our assumption on the existence of

A(S),

A”
limsup ————— < 1.

n—oo A(f)(@g —27)? ~
Therefore, by (3.11),
ne An A”

lim sup = limsup

msup gy = s pr e 1@k — ah)”
= 41\%/2(5% (3.12)

which proves (3.3).

We now derive a similar upper bound for the Wiener process-based algo-
rithm; for details see Calvin, 1999. Recall that the quantity to be maximized
over all intervals (analogous to 4') is

.
el

(ylll_l - A/In iy C)(!/," = A/I.n F 6).

n

Pi

1>

Also define
pn = minp!, p" = maxp;.
i<n i<n

A similar analysis to that carried out for the smooth case yields
P N /)‘n
ot SN T

Py Pn
and

Ak e / R L S
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Therefore,

i prL |} n n
i i il Y e 18 ; {:: .’f_'I'L} Py n
lim sup n(zp — ap) = lim sup ~ T 7 E i
G =00 s o i=1 P 14

< 2I'(e), (3.13)

and so under the Wiener process-based algorithm,

n“A A .
limsup = = limsup ——————[n(z% — 2%)]¢ < 4I'%(e). (3.14
100 ’\(}) 1—co A(f)(”"?f . ‘r?,)u [ ( 8 L)] . _( ) ( )
This completes the proof of (3.4). =

The asymptotic behavior of the P-algorithm depends mainly on the proper-
ties of the objective function and not on the stochastic process used to justify the
algorithm. The dependence on the stochastic model enters only in the constant
factor. _

Since the same form of conditional mean is used for both algorithms, the
way the observations are allocated depends on the conditional variance. The
algorithm based on the smooth model spreads observations more uniformly over
the interval.

IExamination of (2.4) shows that I's(c) is large when [ spends a lot of time
near the global minimmun M. In this case, it is not possible to concentrate the
search effort as muel near x* since the promising region is large. In contrast,
if f has a narrow “spike™ at @*, then the algorvithm can concentrate the search
effort there and so the error is relatively small (in this case I'z(€) is relatively
small).

If the same value of € were chosen for both versions of P-algorithm then the
algorithm based on the Wiener process model wonld converge faster than the
algorithm based on the smooth function model. Such a conclusion might seem
surprising at first. However, the choice of € should normally be larger for the
first than for the sccond version of the algorithm. as shown by the analysis in
next section,

Thus far we have considered only a fixed objective function f. We now briefly
describe the situation when f is a random inction with the same smoothness
propertics previously assumed.  Assuning that the smooth function f has a
unique global minimizer that has an absolutely continnons distribution on [0, 1],
we can derive deseriptions of the normalized point processes of observations

-

near 2", Basically, @ is asymptotically wniformly distributed in the interval
formed by the two nearest observations, and the subintervals are eventually
bisected. There exists a sequence of stopping thmes {ny : & > 1} such that

il LT

v ol ahenrratinne near o (anitablv normalized) converees 1o a
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smoothness assumption on f at 2, allow us to prove (Calvin, 1999; Calvin and
Zilinskas, 1999) that

,EA,, g 92 2
__”k(_, £ D omin{U% (1 - U)?} (3.15)

for some normalizing random variable C' (which depends on the algorithm),
where U is a uniformly distributed random variable on the unit interval. Here
D fen e . - D ; :
— denotes convergence in distribution; i.c., X, — X for random variables
Xn . X if P(X,, <2)— P(X < 2) for all 2 such that P(X = 2) = 0. For the
two algorithms under consideration, we obtain
2
N,

Lpurfax\, 2

L) la(e)
where 3 = 2 for the Wiener process case and 5 = 1/2 for the smooth process
case.

Z min{U2, (1 - U)?}, (3.16)

4. Asymptotic distribution of trial points
Let us denote the smallest subinterval containing point 2 after n minimization

steps A(n, ).

THEOREM 4.1 The ratio of lengths of subintervals salisfies the inequality

L/ f@)=M+e\ .. .  Alnz) A(n,x)

- === < f ———= < limsup ———=

2 (f(z) -M+e) — e A(n,z) ~ 1,1111:;11) A(n, z)
; 2

&3 <f(7) - M + e)

- f(z) =M +e¢

for the Wiener model-based P-algorithm and

. A(nga) . A(n,x
——Z~ < limsup ———=
Aln,z) — ,,ﬂ,x,l A(n, z)

b —

IN

for the smooth function model-based P-algorithm.

Proof. Let us consider the Wiener model case. The analysis for the smooth
function statistical model case is similar. The trial points are dense everywhere
in the minimization interval. For continuously differentiable functions af' —

W

2| — 0 implics that the point @ maximizing (2.2) is equal to

ot 4o - —
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i.e., the intervals are eventually bisected, Calvin and Zilinskas (1999), by both

versions of P- a]goril;hm. For sufficiently large n the criterion value p!' of subin-
terval (2], 2}') is not larger than the criterion value of any other subinterval
before the snbdwisium e, it is not larger than double the criterion value of any
other subinterval. Estimating the lmit of the ratios of corresponding criterion
values (3.1) yields the proof of the theorem for the Wiener model case. |

The choice of € is important not only for the constant I's(€) in the estimate
of the convergence rate but also for the global distribution of trial points. The
value of € should be chosen small to ensure high convergence rate, but it also
should be chosen sufficiently large to ensure globality of search, i.e. sufficient
density of trial points in the subintervals of “medium” function values. The
ratio 1/R of the length of a subinterval in the vicinity of the global minimizer
and of an interval with “medium” function values is implied by the choice of ¢
satisfying the inequalities

%((F—M)/He)zsﬂsz(u - M) /‘>+f)

€ €

for the Wiener model-based algorithm, and by the choice of e satisfying the
inequalities

1 ) 3 £ e 2
% F=M2ts o gy [(F=M)[2+¢
& {4 {2

for the smooth function model-based algorithm, where £ denotes the maximum
-4
of f(z). These inequalities suggest the choice € = "} L for the first case and

the choice € = —2;—1,‘;‘21 for the second case. The theoretic d.lly justified choice of €

corresponds to a formula empirically found in Zilinskas (1981), for the Wiener
model-based P-algorithm.

Let us consider Example 2.1. The ratio R = 4 corresponds to the choice ¢ =
1/(8/2) for the Wiener model-based algorithm and € = 1/128 for the smooth
function-based algorithm. Since I>(1/8v2)? = 0.2181 and I'j/»(1/128)% =
0.1845. we may conclude that for a quadratic objective function the algorithm
based on a smooth function model converges faster than the Wiener model-based
algorithm if an appropriate choice of € ensures similar global behavior for both
algorithms. The objective function of Example 2.2 is non-differentiable at the
minimum point. In this case the relation between I'y(1/(8v/2))? = 0.0226 and
I'1/2(1/128)% = 0.0487 shows a faster convergence of the Wiener model-based
algorithm. For sufficiently small e the examples represent two rather broad
Alacene af ahiactive fimetiong: oither smooth or non=differentiable at the mini-
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5. Conclusions

For general assumptions on an objective function the versions of P-algorithm
based on Wiener and smooth function models have the same order of conver-
gence. Under appropriate choice of € ensuring similar global behavior of both
versions of the algorithm, the constant in the estimate of the convergence rate is
better for the Wiener model-based algorithm it f(z) is non-differentiable at the
global minimum point. Similarly, the constant is better for the smooth function
model-based algorithm if f(z) is differentiable at the global minimum point.
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