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A bstract: Algorithms based on statis ti cal models compete fa­
vorably with ot her global opt imization algorithms as proved by ex­
tensive tes ting resul ts . Receutly, tech niques were developed for the­
oret ica lly estimating the rate of convergence of global optimization 
a lgorithms with respect to t he underlying statistical models. In the 
present paper these techniques are ex tended for t heoretical invest i­
gation of P-a lgorithms without respect to a statistical model. The­
oretical est imates may eliminate the need for lengthy experimental 
investigation which previously was t he only method for comparison 
of the algorithms. The results obtained give new insight in to the role 
of t he und erlying statis tical model with respect to the asymptotic 
propert ies of the algorithm which will be useful for the implementa­
tion of new versions of t he algorithms. 
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1. Introduction 

Statistical models are useful for modeling the global behavior of a complicated 
n111ltimodal function and the normal uncertainty of t he researcher wit h respect 
to the f<~at ures of the function , Ti:irn aud Zilinskas (1989). However , the choice 
of a concrete model may not be obvious , and may be guided by conflicting goals . 
For example, the Wiener process seems well-gronnded as a global model of com­
plicated one-dimensional multimodal functions. The Wiener model has been the 
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most common model used for the implcmeutat. ion of global opt imi<mtiou algo­
rithms (Boender and Romeijn, 1995 ; Zilinskas, 1981; Calvin , 1999; Kushner , 
1962. 19G4; Locatelli , 1997; Ritter, 1990; Groch, Vidigal, and Direc tor , 1985; 
Locatelli and Schoen, 1995), a lthough t he local featmes of non-differentirrble 
Wiener process paths differ essentia lly from the local feat ures of smoot h objec­
t ive fHn ct ions. For a long time there has been interest in implementat ions based 
on the smooth function statist ical models, though progress has been blocked by 
the computa tional com plexity of such implementat ions. The problem of lo­
cal inadequacy was resolved by Hsing a dual Wiener processjquadmt-ic function 
model , Tiirn and Zilinskas (1989) ; Zilinskas (1981). From a practical point of 
view the P*-algorithm based on such a dual model is suffi cient ly efficient as 
shown by the results of extensive test ing in Torn and Zilinskas (1989): Zi linskas 
( 1981) . However, a theoret ically j ustifiecl algorithm based on a statistical model 
of smooth functions had not been known until recently. 

Extension of t he approach to stat ist ical models of smooth objective functions 
was initiated in Calvin and Zilinskas (1999 ), where an approximation method 
was proposed enabling the constntct ion of a P-algorithm whose com putational 
complexity is similar to that of t he a lgorithm based on the Wiener model. The 
availability of two co mpet ing models suggests their comparison. Theoretical 
estimates of t he convergence rate of P-algorithms with respect to the underlying 
statistical models are formula ted in probabilist ic terms in Calvin (1999); Calvin 
and Zi linskas (1999) , but the applicabi lity to a specific pract ical case is not 
always obvious. 

In the present paper the convergence rate of P-a lgorithms based on Wiener 
and smooth function models is compared for neutral conditions, i.e. fo r genera l 
assumptions ou smoothness of an objective function without respect to a statis­
tical model. Under both algorithms, the order of convergence is the same up to 
a constant. However , t he constant depends on features of t he objective function 
and a choice of the method parameter E. This result gives new insight into the 
role of the underlying model in determini ng the asymptotic properties of the 
algorithm. Until recently, the only way to asses the convergence rat<~ and to 
compare efficiency of stat istical model-based methods was implementation and 
exper imenta l test ing. The new techniques of theoretical invest igat ion may be 
Hsecl prior to experimentat ion to prevent the time consuming implementation 
of theoret ically unsatisfactory versions. 

2. P-algorithm 

In this section we will describe the P-algorithm, which is motivated by proba­
bilistic considerations. The reader should keep in mind that the probabilist ic 
considerations serve only to motivate the algorithm; we will inves tigate the con­
vergence properties of the algorithm in the following sect ion. 

" 1 I _ _ __ l. L - : . .... .~- .. .... " 1 
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the case wlwre f does not sat isfy st ronger regularity conditions , s uch as convex­
ity, unimoclali ty, or availabi li ty of a Lipschitz; co nstant . Let t he minirnal value 
M = mino<3·< 1 f(:~:) be attained at the point x*, and assume that F(.7:) > lvl 
for :z: f- .1:* . The stochastic process { ~(:z:) : 0 :::; :r :::; 1} is accepted as a stat isti­
cal model of t he object ive function ; parameters of t he~ model can he estimated 
from <Ln initia l sampling of function values at points uniformly clistribntecl in 
[0 , 1]. Fix E > 0. The n-th observation of the function value is performed by the 
P-algorithm a.t the point 

ru+1 = arg max r{~( x) < M"- cl~(:l:;) = y; . i = 1, ... , n }. (2. 1) 
o::>::Sl 

when~ :~: .;_ , y; = f (:z:;) arc tlw res ul ts of observat ions at previous mini mization 
steps a nd A1" = miu 1::;1::;" y;. Lr:t us denote t he ordered o!Jservation points by 

0 = .1:8 < 1:~' < ·- · < :c;~ = 1, 

and the correspond ing function v,d ues by yj' = f(:ci' ), i :::; n. lf ~( :z:) is a Markov 
process , t hen the conditional distr !bution of t he valu e ~(1:) in (2 .1 ) wo uld depend 
only on neig hbori ng funct ion values a nd the rnax imiz;at ion in (2. 1) might be 
replaced by the following si mpler proced ure: For each subinterva l [:fi'_1 , :r.j'], 
i :::; n , calculate 

- - n{c(· ) J\1] lc (-·" )- · " '(·") - · "} lll<tX 1 '-, X < II- t '-, ,l,/-1 - Yi - 1 : '-, :L; - Y; ' 
;r ;~_ 

1 
s; .T ~ ;c ;~ 

(2 .2 ) 

and for t he interval with the la rgest probability, calculate the point t hat ll!ax­
imizes the proba bili ty in (2 .2); t his point is t he new observation point :1; 11 +1 -

The details of the implementation o f the Wiener process ve rsion of t lw a lgo­
rithm (2.1) may be found in Zilinskas (1981). 

The Wiener process co rresponds to general <tss umptions on uncertninty in 
global optimization, T 6ru a nd Zi linskas (HJ89), and therefore it seems an <tel­
equate model to describe t he glob<tl behav ior of complicated multimodal fnnc­
tions . However, it docs not <tccumtcly represent the loc<tl feat ures of ty pical 
smooth objective~ fnnctions, since t he sampling fun ct ions of t he Wiener process 
a.rc eve ryw lwrc non-differentiab le a lmost surely. In Calvi n a nd Zilinskas (1999). 
a statistical model of a smoot h ob ject ive fnnction is justified, i. e. a statio n­
a ry Gauss ian stochast ic process ~( :r) wit h ze ro mean, uni t variance a nd t he 
correlatio n function -r( -), which we assume to he of t he form 

(2.3) 

as/. ---+ 0. for finit e /\ 2 , A-J. We fur t he r assume t hat 

for some a> 1 as t ---+ 0 , and a lso that ·r(l:) l og(/. ) ~ 0 as 1; ---+ oo. T hese <I SS I IIllP-
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sample functions, Lindgren (1972). The a lgorithm (2 .2) with und erly ing smooth 
function model is an approximated P-a lgorithm whose details a re discussed in 
Calvin a nd Zilinskas (1999). 

In the remainder of this sec tion we introclnce parameters that help charac­
terize the convergence rate of a lgorithms. The magnitude of the error depends 
in t he limi t on two quantities associated with the objective function f. We 
can think of t hese as a global character istic f )3( E), depending On the parame­
ters E, (3, a nd a local characteristi c A. For E > 0 and {3 > 0, d efi tH~ the globa.l 
characteristic by 

6 ;·
1 

( f(:r)- M) - (-J 
r 13 (E) = ,;=O 1 + E d:1:. (2.4) 

Note that r f3(E ) is decreasing in {3 and increasing in E. The large r values of 
() < r p(c) :::; 1 correspond to more diffi cult minimi<~<tt i o n problems due t.o the 
c<incentration of function values ncar to the global minimum. A constant objec­
ti ve fun ction has maximal index of diffi culty r !3 (E) = 1. The case of a consta nt 
objective fuuct ion is t he worst case for many globa l optimization a lgorithms , sec 
Tiirn and Zilinskas (1989). The meaning of t hese characteristics is illustrated 
by some examples . 

E XAMP LE 2.1 Let j( x) = (x - x*) 2
, whe1·e :r• = 1/2. Then 

)
·1 /2 ( 1 1 ) ') -1j'J . 

r 1j2( E) = . (1 + :r~ /c) - rl:r = IE ln 1 +- +? v'l+4E 
x=-1/2 2E - E 

"" IE in (1 + 1/E) 

(!S E l 0. Taking {3 = 2, ·we have 

/1 /2 2 
r2(E) = .lr=-

1
/
2 

(1 + :1:
2 /E)- dx 

= ( 
1 

1 ) + IE arctan ( 
1
;;) "" ~ IE 

2 1 +4e 2vE -

asE lO . 

EXAMPLE 2.2 Let f( x) = 1.1:- x* l, where :~;* = 1/2 . Then 

r,12(,) ~ 2 /,.~: (1 + .rf<)-'1' d.r ~ 4, ( J1 + ;, - 1) 
and 
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For the local characteristic, we assume that there l~xists a positive Jmmhcr 
ct such that 

lim n" 
//.-4(X) 

sup f(:~: * + :t)- M = A(f) > 0. 
i.r I:; 1/ II 

(2.0) 

For example. iff ( :z:) = al:1: - :1:* I, then n = 1 and A(f) = a. If f is smooth with 
positive second dcrivatiw at :c* .. theu o· = 2 and A(.f) = f"(:r*)/2. 

3. Asymptot ic normalized error bounds 

According to Knslmcr (1%2): Calvin and Ziliuskas (1999) , the P-algorithm for 
the Wiener and smooth hmction models is defined hy the following proccdmes. 

If the Wiener process model is used, for each subinterval [:r;'~ 1 , :ri'J, 1: ::; n, 
calculate 

II f:::,_ ;1_; ~./ - ;1;?~ 1 (! i = ____ __: __ _:_____:.____ ___ _ 
(u;'- 1 - M" + t )(u;' - iVJ" +c) · 

(3.1) 

The next observation is mml<: iu the interval with the maxilllal value of pj'. at 
t!H' point 

:J: j'- 1 +:cj' 
:l:n -/-1 = 

2 

:I:j' - .?:j'_ l yj'- !Ji'-1 
~-~~~~~-~ 

('If" + 'If" - 2M + 2f.) . 
< 1-l '· /. n. 2 

lf tlw stnooth process model is USl~d , for each subinte rval [:tj'~ 1 , :1:;' ] , 'l ::; n, 
calculate 

6 :l:;.l - :t/_1 
,;, = ---;====:::=='==---'~===c=:== 

Jyj' __ 1 - M" + c + Jyj'- M" + c 
(3 .2) 

The new obscrvatiou is llladc in th(: iu terval with the maximum va.luc of 1,", at 
the location 

(:r;'- : J:j'~ 1 )(yj'_ 1 - M 11 +c) 
+ -----------r~==~~~======~========== 

yj'_ 1 - Mil +f+ ('If" - M + r) 2 + (·u" - ·J!" )( '1'" . - J\!1 +c) .._ 1- \ II ·· • 1 U1-1 '-l1-l II 

Th(~ following t.!Jcorcm Sl lllllllari/.cs Oltr result::;. 

T !-1801\L;;M :3.1 Pi:c r: > 0. Lr:l an ohj!'di1w fundion f(:l:) b~; continuous over 
the 'mini'llli;;o.lion inft:,·vol u11d lw.ue local chuf'(Jclcr'"tic A(./) with c:l:ponr"nt n 

ul th e 1/. '!l.iljl/. e _r;lohu.l!l!l'll.illl.i ::c7 · :1:* . (/,1/d ulolml cilll.l'(lciC1"isl.ic l';J( E) . Then lhc P­
o.l!fOl'i!hrn .. !!ll.w:d edhr:1· on the lVi1~ner or on u -'inwoth. functimJ. nwdr:l. conuen;es 
to tlu: ylolml 111 i nimum in the sen .. -; e that the r: J-ro ·r 6, l 0 o.url in pal'l.iculu.'/' 
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for the algorithm based on a smooth process model, and 

lim sup n"' L'ln S 4A(J)q(c) 
11.-+00 

jo1· the algm·ithm based on the Wiener process. 

(3.4) 

As previously noted , f' 1; 2(t:) > f'2(r.) . However , t his does not necessarily 
imply that t he Wiener-process-based algorit hm is more efficient for a smooth 
obj ective function: the reason is t hat a good choice of E may be different for t he 
two cases. While choosing E a trade-off between its infi uence on the convergence 
rate and the global dist ribution of trial points should be taken into account. 
This q uestion is analyzed in the next sect ion . 

We now proceed to the proof of t he theorem. 

Proof. We begin with the proof of (3.3). Since the observations are dense in 
[0 , 1] and f is continuous, M, llvf and 

n 1 /·1 l L" . ex 
i= l I; _, 2. x=O Jf(x) - !vi+ E 

(3.5) 

Let J;£ nnd x }? be the observation points to t he left and right, respectively, of 
the minimizer :~:*; that is. for some j,., 

x'L = xj',. ::; a;* ::; .?;j',.+ 1 = :u'Ji. 

Let y£ = f(.T'j.J and yfl. = f(.?;'fl) be the corresponding function values. Let 

11 6 xfl. - :r£ 
fs = Jy£ - M, + E + Jyfi - Mn + E 

(3.6) 

and 

In = max 1i', In = min 1£' . 
'/, ~ 'It '/.::; '1/. 

Since the subintervals are eventua lly bisected , Calvin and Zi linskas (1999) , 
, ., /in -> 2. 

Because y£ - Mn -> 0 and v'R - M, -> 0, 

x'R - x£ - vv£ - Mn + E + Jy'fl - M, + E 
----"'----=~ - -> 1 ' 
2/~'Jf- 2Jf-

which, combined with (3.5), implies that 

Since 

n(:r'fl - .?;£) 
--'-.-"'::::-:c-=- _, 2 IE r (E) . n; 1 '"' 71 n ve 
'· ; L..,i = l li 

(3.7) 

(3.8) 
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we have that 

n 1 
I . . f" I, >]" . f in 
1mlll 1 ,; . 1111 111 - = -. 
n -oo - "' . '"" " - n ->oo '""n 2 

T/ L .. n.= l It f 

(3.9) 

Re-writing, we obtain 

(3. 10) 

and applyiug (3 .7), (3.9) , and (3 .5) to the three terms on the right-hand side of 
(3 .10), we conclude that 

I. ( n n) < 4 t:: l'1 /2(E) ?l' ( ) 
1111 SUp n .1: R - ;J; L _ V E---;:;- = ~ 1; 2 E . 
n-> oo 2v E 

(3 .11) 

We now tnrn our attention from the gap surrounding the global minimizer 
to the error bon = !Vf11 - M. Because of our assumption on the existence of 
A (f), 

b. 
lim sup n :S 1. 
n-oo A(f)(:J:'fl - :r[J2 

Therefore, by (3.11) , 

I. n° bon 1. bon [ ( n n )]o 
1m sup -(f) = 1111 sup A( ") ( . ) n x R - .T L 
H-> 00 A n-oo f Xn - x£ <¥ 

:s 4I'i /2 (E)' (3 .12 ) 

which proves (3.3). 
We now derive a simila r upper bound for the Wiener process-based algo­

rithm ; for details see Calvin , 1999. Recall that the quantity to be maximized 
over a ll intervals (analogous to 1!') is 

6 :r;' - x;'- 1 
{J 11 = -,--- - -,--,,--:--- :--:-=--=-----:c-::-----:-

1 (Y:'-1- Mil+ E)(y;' -Mil+ E). 

Also J efinc 

p" = min pj' , p"" = max fli1
. 

L~n z~ n 

A similar analysis to that carried out for the smooth case yields 

:r /7- :~: £ 2 p" 
-7 2, -7 

E ' 
{J~ fJn 

and 

)o~ ( dt. 1 
-7 = -f'~ ( r l 
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Therefore, 

. . (:r"~~ -;rn) u n 
llln sup n (:~:~ - :r[J = lim sup n. L (!., """"' p" 

(i.~ 1 " /) It ~ i 
H-00 11 -'> 00 '" -;; L.ri:= l (J.i i= l 

(3 .13) 

and so under t he Wiener process-based ct lgorithm, 

. n n ll. n. . 21.., . . ~· 
l1m s up ~( ') = hm sup \ ( ') ) [n(:r'h - :z:£W ::; 4I ~(f). (3 .14) 

II ~OC 1\ j 11 ~ 00 j 1 (:!;Jl - .TL Cl -

T his completes t he proof of ( 3.4) . • 

T he asympto ti c behavior of Lh e P-algorit hm depends mainly on the proper­
ties of the obj ect ive function a nd no t on the stochastic process used to justify the 
a lgor ithm. The dependence on t lw stochastic model euters only in t he constant 
factor. 

Since t lw same form of conditiona l mean is used for bot.h a lgori thms, the 
way t he: observatio ns a re a llocated depends on t he condi t ional vari a nce . T he 
a lgorithm based 0 11 t he smooth ll!odel spreads observat ious more uniformly over 
t he interval. 

Examina tion of (2.4) shows that I'11 (r) is large when f spends a lo t of t ime 
ncar t he global mi nimum M. In thi s case, it is no t possible to concentrate the 
search effor t as mucl1 ncar :1;* since t he promising reg ion is large. ln cont rast , 
iff lms a narrow "spike" aL :r;*, th en t he algoritlnn can concent rate tllc search 
effort there a nd so t he error is relat ively small (in tllis case r 1J(E) is rela ti vely 
sma ll ). 

If t he sa!lle value of t were chosen for bot h versions of P-a lgori t hm t hen the 
a lgori t hm based 011 the W iener process model wo uld conve rge faster tha n t he 
a lgorit hm based on t he smooth fnn cl. ion n10dcl. Such a condnsio n might s<:cm 
surprisi ng a t. first. However , t he choice o f r: s hould norma lly be larger for t he 
first tha n for the second version of t he a lgor it hm . as shown by t he a nalysis in 
next sect ion. 

T hus fa r we have co nsidered only a. fi xed obj ect ive hmctioll f. We now briefly 
describe t he sit uatio n wlwn f is a ra ndom fun ction with the same smootlmcss 
propert ies prev ious ly ass umed. Ass uming t hat t he smooth fnn ction f has a 
unique g loba l minimizer t hat has a n abso lu t r~ly cont iniJouc; distribu t ion on [0, 1], 
we can derive descript ions of th e no nlla li ;~,c d point processes of obser vat ions 
lW <U :r* . Basically, :r* is asy mp totica lly un iform ly distribu ted in t lw interval 
formed by the two JI Carcst observat ion:-;, a nd t he subi ntervals arc c~vc n t u a. lly 

b i sc~ctcd. Tlwre ex ists a sequence of stopping t imes {11.1.: : /,: 2 1} such t. ha.t 
.... : . .. . .. .. -. ..... .. co -- r " '"' '"'"'·,~ ;,. , ,_, , ,,.. ,. ,,.* (s ni l.a.hl v n ormali ;~,ed ) convc r.e;es t.o a 
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smoothness ass umption 011 f at x*, allow us to prove (Calvin , 1999; Calvin and 
Zilinskas, 1999) that 

nf,t::, .. ,,. 'D . {U2 (1 (J)2 } -C-,- ___, mIll , - (3 .15 ) 

for some nonnali ~ing ra ndom variable C (which dep ends on the a lgorithm), 
where U is a uniformly dist ribu ted random varia.ble on t he un it in t<~rva l. Here 

!!. denotes convergence in distributiou ; i. e .. X" !!. X for random varia bles 
X,. X if P (Xn ~ :z: )---> P(X ~ .1:) for a ll :1: such that P(X = :~:) = 0. For the 
two a lgorithms under cons ideration , we o btain 

71.
2 /:l n, 'D · 
'· ' ___, min{U 2 (1- U) 2

} 
~f" (x*) f'rJ(c)2 ' ' 

(3. 16) 

where f3 = 2 for t he Wiener process case and f3 = 1/2 for t he smooth procrss 
case. 

4. Asymptot ic distribution of trial points 

Let us denote the smalles t subinterval containing point x after n minimization 
steps !:l (n. x) . 

TH EOREM 4.1 The mtio of lengths of snb·inlenJO.ls satisfies /.he inequality 

1 (f (:z:) - j\1[ + ") 2 ,. . i' !:l (n, :z:) - < llll Ill 
2 J (-., ) - M + E - n --+co !:l (n , z) 

. !:l(n, :r) 
~ Inn sup A( ) 

n___, oo u n , z 
2 

< 2 ( .t: ( ]; ) - M + E) 
- .f(z ) - M+ c 

for the Wiener n1odcl-based ?-algorithm and 

1 

2 

f (:r) - M + r: 
1
. . 

1
. 6 (n, :~:) . 6(n, :r) 

< Jmlll ~ Inn s11p ( 
f( z ) - M + c - 11 - ·co !:l (n, z ) " __, co D. n , z) 

f( :r) - M + E 

f( z )- Nl + E 

fm· the smooth fun ction model-based P- algor,it.h.m .. 

P roof. Let us consider the Wiener model case. The analysis for the smooth 
fun ction statistical mod el cas<~ is similar. The tri;tl points are dense everyw here 
in t lw minimi~ation in terval. For cont inuously differentiable funct ions :rj' 
:rj'_ 1 ___, 0 illlplics that the point x maximi:oing (2 .2 ) is equa l to 
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i. e., the intervals arc eventually bisected, Calvin and Zilinskas ( 1999) , by both 
versions of P-algorithm. For s uffici(~nt ly large n the criterion value pj' of subin­
terval (:ui'_ 1, xi') is not la rger t han the criterion value of any other subinterval 
before the subdivision, i. e. it is not larger than do11blc the criterion value of any 
ot her subinterval. Estimating the limit of the ratios of corresponding cri terion 
values (3.1) yields the proof of t he t heorem for the Wiener model case. • 

The choice of E is important not only for the constant r 13 (E) in the estimate 
of the convergence rate but also for the global distribution of trial points. The 
value of E should be chosen small to ensure high convergence rate, but it also 
should be chosen sufficiently large to ensure globali ty of search, i. e. sufficient 
density of t ria l points in the subintervals of "medium" function values. The 
ratio 1/ R of the lengt h of a subinterval in the vicinity of the global minimi7.er 
and of an interval with "medium" function values is implied by the choice of E 

satisfying the ineq ualities 

for the Wiener model- based a lgo ri thm , and by t be choice of E sat isfying the 
inequalities 

1J(F-M)/2 + E R J(F -M)/2+E - < . < 2 2 E - - E 

for the smoot h function model-based algorithm , where F denotes the maxim1un 
of f(:r). These inequalities suggest t he choice E = 1;rn for the first case and 

the choice E = ~]/Y1 for t he second case. The theoretically justified choice of E 

corresponds to a form ula empirically found in Zilinskas (1981 ), for t he Wiener 
model- based P -algorithm. 

Let ns consider Example 2.1. The ratio R = 4 corresponds to the choice E = 
1/(8/2) for the Wiener model-based algorithm and E = 1/128 for the smooth 
function- based algo rithm. Since f 2 (1/8/2)2 = 0.2181 and f 1; 2 (1/128) 2 = 
0.1845, we may conclude that for a quadratic object ive function the algori t hm 
based on a smoot h fun ction model converges faster than the Wiener model- based 
algo ri t hm if an appropriate choice of E ensures similar globa l behavior for both 
algori t hms . The objective funct ion of Example 2.2 is non-differentia.ble rtL the 
minimmn point. In this case the relation between fz ( 1/ (8 /2) )2 = 0.0226 and 
r 1; 2 ( 1 /128) 2 = 0.0487 s hows a faster convergence of the Wiener model-based 
algorithm . For suffi ciently smaJl f the examples represent two rather broad 
r. l ., co r•A •' r.f Ah;,_,t ;, , _, f'1111 r'tim1.;: ' Pit.h01' S rJl()()t,h or non-difFerent iable at the mini-



Convergence o f P-algoritluns 565 

5. Conclusions 

For general assumptions on a n objective function the versions of P-a lgori thm 
based on Wiener and smooth function models have the same order of conver­
gence. U ndcr appropriate choice of E ensuring similar globnl behavior of both 
versions of t he algorithm. the constant in the estimate of the convergence rate is 
b(~t t er for the Wiener model-based algorithm if f(:r) is non-differenti a ble at the 
global minimum point .. Simila rly, the constant is better for the smooth function 
model-based a lgor it hm if f( :r) is differentiable at the global minimum point. 
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