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1. Introduction 

Relationships between convexity and invexity and consequently between invex 
and convex nonlinear programming problems have been the subject of thorough 
research, see for example Pini (1994) , Craven (1995), Hanson, Mond (1987) . 
In the present paper some other connections between invexity and convexity 
are shown. In Section 2 we consider invex and convex nonlinear programming 
problems. Relations between Karush-Kuhn-Tucker points and solutions to both 
problems are given. A formula for a convex function which is related to a given 
invex one is derived. In Section 3 some results from Section 2 are generalized 
to locally Lipschitz functions. In Section 4 we provide the definition of such 
a Fenchel-Young type transform, Rockafellar, Wets (1998), operating on invex 
functions , that the second dual gives the original function. These results, which 
are based on the relationships between the subclass of invex functions deter
mined by ( 1.1) and differentiable convex functions seem to be new. 

We recall, Hanson (1981), that a differentiable function f : Rn -+ R is 

a) in vex on Rn, if there exists a vector function ry : Rn x Rn -+ Rn such that 
for any x, x ERn we have 

f( x )- f( x ) ~ (V f(x) , ry(x, x)) , 
b) quasi-invex on Rn , if there exists a vector function ry : Rn x R" -+ Rn 

such that for any x , x E X we have 
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We will call a function f incave or quasi-incave if - f is invex or quasi
invex. The fundamental theorem says, Ben-Israel, Mond (1986), that a function 
f : R" ~ R is invex, whenever all its stationary points are global minimizers. 

Pini ( 1994) proved that a real differentiable function defined on a manifold 
M is invex iff a certain fu nction of a real variable is convex. Hanson, Mond 
(1987) consider the nonlinear programming problems which are transformable 
into convex problems, i.e. for which there exists such a regular C1 diffeomor
phism rp that the functions involved become actually convex when composed 
with rp. Such functions, which are necessarily invex, are called convexifiable. 
It is shown that not all invex functions possess this property. Craven (1995) 
investigates further the connections between invex functions with respect to a 
certain vector function 7J and convex functions. The subclass of invex functions 
that are convexifiable is determined and some Lagrangian duality connections 
with invexity are investigated. Let a differentiable function f : Rn ~ R be given 
which is in vex at x E R" with respect to 7] : Rn ~ R n, called scale function. 
Put w(x) = ry(x - x, x) and assume that w(O) = 0 and V'w(O) = 1, where 1 
denotes the identity mapping. Function q = f o w- 1 appears to be convex at 0. 

Our results are connected to those of Craven (1995), although we make use 
of the diffeomorphism that makes a given problem convex transformable while 
in Craven (1995) the scale funct ions is used to obtain a formula for a convex 
function related to given invex one. Our results seems to be easier to apply, 
compare Example 2.2. 

The in vex problem that we shall study reads: Find an x E 81, if it exists, 
such that 

fo(x) = min fo(x), 
xES1 

where set S 1 is defined as below 

81 ={x I x ERn, J;(.rc) ::50, i = 1,2, ... ,m, hj(x) = 0, j = 1,2, ... ,k}, 

and is called a primal feasible set; numerical functions J;, i = 0, 1, .. . , m, are 
differentiable and functions hj , j = 1, 2, ... , k are continuously differentiable 
on Rn. Throughout the paper, if not stated otherwise, we shall assume that 

A There exists a continuously differentiable function rp : Rn ~ Rn, such 
that a matrix (V' x'P( x)) -l exists for any x E Rn and that a function 
fo is in vex, functions J;, i = 1, ... , m are quasi-invex and functions hj, 
j = 1, 2, ... , k are bot h quasi-invex and quasi-incave on Rn with respect 
to the same function 7] : Rn x R" ~ Rn given by the formula 

17(x,x) = (Y'xrp(x)) - 1(rp(x)- rp(x)) . (1.1) 
In solving the Problem (PI) the Karush-Kuhn-Tucker necessary conditions, 

K-K-T conditions for short , are used. Hence, in order to solve the Problem 
(PI) one may apply the following procedure: find all K-K-T points of the Prob-

- . 
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has to make sure that cert ain constraint qualification holds. There are many 
constraint qualifications when the function involved are convex or standard gen
eralizat ions of convex function (quasi- or pseudo-convex), see Bazaar a, Sherali, 
Shetty (1991), Mangasarian (1969). But not all constraint qualifications may be 
applied when the problem is invex, see Hanson, Mond (1984) , Ben-Israel, Mond 
(1986), for certain constraint qualifications in that case. The invex problems are 
also difficult to solve, see for example the problem in Hanson (1981) . Thus, we 
will present a way of finding the K-K-T points of the above invex problem using 
certain convex problem, for which there are not only many constraint qualifica
tions but also t here are methods for determining either explicitly or numerically 
K-K-T points, Bazaara, Sherali, Shetty (1991). 

2. Solution of (PI) 

There exists a convex problem closely related to a given invex problem. Indeed 
we have the following theorem: 

THEOREM 2.1 There exist a convex funct ion go, quasi-convex functions gi, i = 
1, 2, ... , m , both quasi-convex and quasi-concave functions Pi, j = 1, 2, ... , k 
S7LCh that 

g;(cp(x)) = fi(x) for any x E R 11
, 

Pi(cp(x)) = hi(x ) for any x E R11
, 

(2.1) 

(2 .2) 

Proof. We prove only that a function go given by the formula go = fo o cp-1 

is convex and satisfies (2.1). Let us take arbitrary~.~ E R 11
• By invexity of fo 

we than have the following inequality satisfied 

Using definition (1.1) we obtain that 

fo('P- 1(0)- fo( 'P - 1 (~)) 
~ (((V' x'P('P-1(~)))-1fV' x fo(cp- 1(~)), cp(cp-1(~))- cp(cp-1(~)) ) , 

which gives in turn that 

go(O- go(~)~ (V'~go(~), ~- ~), (2.3) 

since V'€go(~) = ((Y'xcp(cp- 1 (~)))- 1 fY'xfo(cp- 1 (~)). Since the inequality (2.3) 
holds for every~,~ E Rn the convexity of go is proven. 

The same argument leads to the conclusion that functions g; given by the 
formulas gi = J; o cp- 1 are quasi-invex for i = 1, 2, . . . , m and functions Pi 
hi o cp- 1 are both quasi-invex and quasi-incave for j = 1, 2, . . . , k. • 
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EXAMPLE 2.2 Consider the function f : R---+ R given by the formula f(x) = 
x3 + x. It is of course invex with respect to 7](x, x) = x3

t2!~-x and a diffeo

morphism cp that makes g convex reads cp(x) = x3 + x . Thus, g(O = ~· If we 
try to determine the convex function as considered in Craven {1995) we have to 
solve with respect to x the equation x

3

:J;:2!~-x = ~· 

In consequence to a given invex problem (PI) we associate a convex problem 
in which the functions involved are determined by the above theorem and which 
is called the Problem (PC): 

Find an~ E Sc, if it exists, such that 

go(~) = min go(~), 
{ESc 

where the set Sc is defined as below 

Sc ={~I~ ERn, gi(~) ::S 0, i = 1,2, ... ,m, Pi(O = 0, j = 1,2, ... ,k}. 

The following theorem provides the announced relation between the K-K-T 
points of the Problems (PC) and (PI) respectively. 

THEOREM 2.3 Let~ E Sc be a K-K-T point for the Problem (PC). Then there 
exists a point x E S 1, which is a K-K-T point for the Problem (PI) and con
versely, if a point x E S1 is a K-K-T point for the Problem (PI), then there 
exists a point~ E Sc which is a K-K- T point for the Problem (PC) with the 
same vectors of Lagrange multipliers. 

Proof. Let ~ satisfy the Karush-Kuhn-Tucker conditions for the Problem 
(PI), i.e. there exist a vector X E Rm, a vector Ji E Rk such that, see Bazaara, 
Sherali, Shetty (1991), 

m k 

Y'Ego(~) + L~i\i'Egi(~) + LJiiV'EPj(~) = 0, (2.4) 
i=l j=l 

m 

(2.5) 
i=l 

xi 2: 0, for i = 1, 2, ... , T/7.. (2.6) 

By the assumption on the function cp we obtain the existence of such an x E S1 
that ~ = cp(x). From (2.1) and (2.2) we obtain for i = 0, 1, ... , m and j = 
1, .. . , k that 

(2.7) 
,_ ,, ,...,.,......., 
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Now let us replace in (2.5) 9i(~) by fi(x) and multiply (2.4) by V' x<p(x). Taking 
into account (2.1), (2.2) and (2.7), (2.8) we come to the following relations 

m k 

Y'xfo(x) + :LXiY'xf;(x) + LIIjY'xhj(x) = 0, (2.9) 
i=l j=l 

m 

(2.10) 
i=l 

xi ~ 0, for i = 1, 2, ... 'm. (2.11) 

Hence, x is a K-K-T point for (PI) with ("X, II) being vector of Lagrange multi
pliers. 

Conversely, let us suppose that conditions (2.9)-(2.11) are satisfied for some 
point x E 81 and vectors X E Rm, II E Rk. Put~= <p(x). Again~ is feasible for 
the Problem (PC) and taking into account (2.7), (2.8) we obtain consequently 
from (2.9) 

m k 

(Y'x<p(x)f(V'~go(~) + :LXiV'€9i(~) + LIIjV'€Pi(~)) = 0, 
i=l j=l 

m k 

V'~go(~) + l:XiV'(gi(~) + LlijV'(Pj(~) = 0, 
i=l j=l 

where the last relation holds because V' x<p(x) is invertible. Thus, condition (2.4) 
is satisfied. Conditions (2.5)-(2.6) are satisfied because of (2.1) and conditions 
(2.10)-(2.11). • 

COROLLARY 2.4 The Problem (PC) has a solution if and only if the Problem 
(PI) has a solution. 

Proof. The proof bases on the previous theorem and on the fact that for both 
an invex, Hanson (1981) and a convex, Bazaara, Sherali, Shetty(1991) problems 
all the K-K-T points are global minimizers. • 

Now we provide two examples: the first of an invex problem solved via a 
convex one and the second of a convex problem solved via an easier convex 
problem. 

EXAMPLE 2.5 Consider the Problem (PI) 

fo(xl, x2) =xi+ 2xi + x~ + x~ + 2x~ + x~ ---. inf, 

!I (x1, x2) =xi+ 2xi + x~ + x~ + 2x~ + x~ - 5 :::; 0, 

f2(xl,X2) = -Xl- xr:::; 0, 

h(xl,xz) = x2 +x~:::; 0, 
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Here the functions fo and h are convex, the functions Jz, h are quasi-convex 
on the feasible set, but the function h1 is not quasi-convex, which can be seen by 
taking x = (1,0) and u = (0, -1). Both points are feasible to the problem and 
h1(x)- h1(u) = 0 while (x- u)TV'h1(u) > 0. Let us put 

cp(x1, x2) = (x1 +xi, x2 + x~). 

Then, using Theorem 2.1, we solve the following Problem (PC) 

2 2 . go(6, 6) = ~1 + ~2 .,.... mf, 

g1(6,6) = ~i + ~~- 5:::; 0, 
g2(6,6) = -6:::; 0, 

g3(6,6) = 6:::; 0, 

h1(6,6) = -6 + 6 + 2 = 0, 

associated with a given invex problem. The functions considered satisfy a con
straint qualification at the point (1, -1) since gradients of active functions at 
that point are linearly independent and they are continuously differentiable. This 
point being a K-K-T point is the solution to the Problem (PC). Hence, by The-

orem 2.3 a point (xl, X2) such that Xl = i v(lo8 + 12J93) - V 2 ' 
(108+12V'93) 

xz = - i V (108 + 12J§3) + V 2 V93 is a K-K- T point for the Problem 
(108+12 93) 

(PI) and by Corollary 2.4 its global solution. 

EXAMPLE 2.6 It appears that the procedure described above has applications also 
when the Problem (PI) is actually convex. In that case we can find an easier 
way to solve the convex problem. Indeed, consider the Problem (PI) 

fo(xl, x2) =xi+ 2xi - 6x1 + x~ - 6xi 

+ x~ + 2x~- 4x2 + x~- 4x~ + 13.,.... inf, 

h(x1,x2) =xi+ 2xf + x~ + x~ + 2x~ + x~- 5:::; 0, 

!z(x1,x2) = -x1- xi:::; 0, 

h(x1,x2) = -x2- x~:::; 0, 

which is actually convex on the feasible set. Proceeding as above with the same 
functions rJ and i] we find the Problem (PC) which reads 

go(6, 6) = ~i- 6 + ~~- 6 + 13.,.... inf, 

g1(6,6) = ~i + ~~- 5:::; 0, 
g2(6, 6) = -6 :::; 0, 

g3(6,6) = -6:::; 0. 

Here the K-K- T point is (0.5, 0.5). We then compute that the solution to (PI) 
is (0.42385, 0.42385). 
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3. The nondifferentiable case 

In this section we shall not assume that the functions involved are differentiable. 
We still deal with the problem (PI) which now reads: Find an x E SI, if it exists, 
such that 

fo(x) = min fo(x), 
xES1 

where the set SI is defined as below 

SI= {xI x ERn, fi(x)::::; 0, i = 1,2, ... ,m}. 

and is called a primal feasible set, where numerical functions fi, i = 0, 1, ... , m, 
are defined and locally Lipschitz on Rn. We shall assume that 

A There exists a continuously differentiable function t.p : Rn ~ Rn, such 
that a matrix (V x'P(x))- 1 exists for any x ERn and a function fa is invex 
on Rn, functions fi i = 1, 2, ... , m are quasi-invex on Rn with respect to 
the same function 17 : Rn x Rn ---+ Rn given by the formula 

ry(x,x) = (Vx'P(x))- 1(t.p(x)- t.p(x)). 

Here the definition of 1] is the same as in the differentiable case. 
To this end 8 f(x) denotes the Clarke subdifferential of a function f at a 

point x E Rn and f 0 (x, d) a generalized directional derivative at a point x E X 
in the direction d E Rn, see Clarke (1984). We recall, Reiland (1991), that a 
locally Lipschitz function f : Rn ---+ R is, 

a) invex on Rn, if there exists a vector function i]: Rn x Rn ---+ Rn such that 
for any x, x ERn we have 

f(x)- f(x) ~ f 0 (x , i](x , x)), 
or equivalently 

f(x)- f(x) ~ ((,i](x,x)) for every ( E of(x), 
b) quasi-invex on Rn, if there exists a vector function i] : Rn x Rn ---+ Rn 

such that for any x, x E Rn we have 
f(x)- f(x)::::; 0 ===? f 0 (x , r/)(x , x))::::; 0, 

or equivalently 
f(x)- f(x)::::; 0 ===? ((, r/)(x, x))::::; 0 for every ( E of(x). 

The fundamental theorem again says, Reiland (1991), that a function f 
Rn ---+ R is invex if all its stationary points, i.e. points x E Rn satisfying the 
relation 0 E of(x) , are global minimizers. 

Again with the given invex problem we can associate a certain convex prob
lem. Indeed, we have the following 

THEOREM 3.1 There exists a convex function go and quasi-convex functions 9i 
fori = 1, 2, ... , m such that 

9i(t.p(x))=fi(x)foranyxERn, fori=0,1,2, ... ,m. (3.1) 



18 M. GALEWSKI 

Proof. We prove only that a function go given by go = fo o r.p- 1 is convex 
and satisfies (3.1). Let~'~ ERn . By invexity of fo, using definition (1.1) we 
obtain that 

fo('P- 1(0)- fo(r.p- 1 (~));::: crcv· xl.fJ(r.p- 1 (~)))- 1 (r.p(r.p- 1 (~))- r.p(r.p- 1 (~))) 

which, in view of ('Vxr.p(r.p- 1 (~)))- 1 = 'Ver.p- 1 (~) yields 

go(O- go(~);::: (('Ver.p- 1 (~)f()T(~- ~). 

Now &ego(~) = ('Ver.p- 1 (~)faxfo(r.p- 1 (~)) by the chain formula, Rockafellar, 
Wets (1998). So 

go(O- go(~);::: <;T(~- ~), for every<; E &ego(~). 

This proves the convexity of go. 
The same argument leads to the conclusion that functions gi, i = 1, 2, ... , m, 

given by the formulas gi = fi o r.p- 1 are quasi-invex. • 

To a given invex problem (PI) we associate a convex problem (PC) which 
reads: Find an ~ E Se, if it exists, such that 

go(~) = min go(O, 
eESc 

where the set Se is defined as below 

Se={~ I~ ERn, gi(~) S 0, i = 1,2, ... ,m}. 

Following the results obtained in Section 2 we have 

THEOREM 3.2 Let~ E Se be a K-K-T point for the Problem (PC). Then there 
exists a point x E Sr which is a K-K-T point for the Problem (PI) and con
versely, if a point x E Sr is a K-K-T point for the Problem (PI), then there 
exists a point~ E Se which is a K-K-T point for the Problem (PC) with the 
same vector of Lagrange multipliers. 

Proof. Let ~ satisfy the Karush-Kuhn-Tucker conditions for the Problem 
(PI) , i.e. there exists a vector X E Rm, such that, Hiriart-Urruty (1978), 

m 

o E (&go(~)+ 2: Xi&gim), (3.2) 
i=1 

m 

(3.3) 
i=1 

xi ;::: 0, fori= 1, 2, ... 'm. (3.4) 

Put x = r.p- 1 (~) E Sr. From (3.2) it follows that there exist <;i, i = 0, 1, .. . m, 
such that <;i E agi(~) and the following relation holds 

(3.5) 
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From (3.1) we obtain by chain rule differentiation, Rockafellar, Wets (1998), 
that 

(3.6) 

where and Ti E 8 h (x) for i = 0, 1, ... , m. Thus, multiplying (3.5) by (\7 xcp(x) )T 
and taking into account (3.1), (3.6) we come to the following relations 

m 

o E (8fo(x) + :LXi8fi(x)), (3.7) 
i =l 

m 

(3.8) 
i=l 

xi 2: 0, fori = 1, 2, . . . 'm, (3.9) 

from which we obtain that xis a K-K-T point for (PI). 
Conversely, let us suppose that conditions (3.7)-(3.9) are satisfied for some 

point x E S1 and a vector X E Rm. Put~= cp(x) E Se. By (3.7), we obtain the 
existence of Ti , i = 0, 1, ... , m, such that Ti E 8 fi(x), satisfying the following 
relation 

(3.10) 

Since (3.10) holds we obtain (3.5) by (3.6), that gives (3.2). Conditions (3.3) 
and (3.4) follow from (3.8) and (3.9) if we take into account the assumptions on 
the functions h and gi, i = 1, 2, ... , m. • 

COROLLARY 3.3 The Problem (PC) has a solution if and only if the Problem 
(PI) has a solution. 

Proof. The proof bases on Theorem 3.2 and the fact that for both an in
vex, Reiland (1991), and a convex problems all the K-K-T points are global 
minimizers. • 

REMARK 1 It is now easy to derive relationships between M ond- Weir duals to 
both invex and convex problems in the differentiable and nonsmooth cases. 

4. Fenchel-Young duality for an invex function 

In this section we follow Rockafellar, Wets (1998), Section 11.1* entitled "Gen
eralized conjugacy" and provide a kind of generalized conjugacy operating on 
invex functions. The general framework for such generalized duality is to be 
found in the book mentioned above but the results given in the present paper 
are not contained there. This concept appears to be of use for example when a 
variational method is applied to show the existence of a solution to a certain dif
ferential inclusion and the action functional happens to lack convexity property, 
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does not satisfy suitable growth conditions and its second Fenchel-Young dual 
is equal to -oo, see Nowakowski (1992), Orpel (1997), and references t herein. 
We shall require the following assumpt ion to hold: 

A Let f : Rn --. R be locally Lipschitz. Let t here exist a continuously 

differentiable function cp : R11 ~ R11 such that the matrix \7 x'P(x) is 
invertible for any x E Rn and that the function f is invex on Rn with 
respect to the function 7] : Rn x R" --. R11 given by the formula (1.1) , 
namely 

1)(X, x) = (\7 x'P(x))- 1(cp(x)- cp(x)) 
If f is differentiable then it suffices to assume that cp is differentiable. By 

Theorem 3.1 or 2.1 in the differentiable case, we obtain that there exists a 
function g : R11 

--. R such that g is convex and g( cp( x)) = f ( x) for all x E Rn. 
For a convex function g the Fenchel-Young dual g* and t he second dual g** 

are defined as follows, see Rockafellar, Wets (1998), 

g*(C) =sup {(C,~)- g(~)} 
~ERn 

g**(O = sup {(~,C ) - g*(C)} 
(•ERn 

We define f<P(x*), where .r* ERn is arbitrary, to be 

j'f'(x*) = sup {(cp(x*) , cp(x))- f(x))} 
xER" 

( 4.1) 

( 4.2) 

( 4.3) 

THEOREM 4.1 Let f satisfy assumption A and let g = f o cp- 1 . We obtain that 

f<P = g* 0 cp. 

Proof. Since the function R11 3 x ~------+ ( cp( x*), cp( x)) - f ( x) E R is in cave as a 
sum ofincave functions with respect to the function ry(x,x) = (\7xcp(x))- 1 (cp(x) 
- cp(x)) we have by Theorem 3.2 or 2.3 in differentiable case, if convexity is 
replaced by concavity, that 

f<P(x*) = sup {(C , ~ ) - g(~)} , 
(ER" 

where we put cp(x*) = C. This is the definition of the Fenchel-Young conjugate 
of the convex function g. • 

We define the second dual j'f''f' of a function f as follows 

j'f''f'(x) = sup { (cp( x*), cp(x))- j'f'(x*)} ( 4.4) 
x•ER" 

We have the following theorem 

THEOREM 4.2 Let f satisfy assumptions A and let g = f o cp- 1
. Let j'f'<P and 

j'f' be calculated as in (4.3) and (4.4), respectively. Then 
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Proof. By (4.4) for any x ERn we have f'P'P(x) = supx*ERn{(rp(x*),rp(x))
f'P(x*)} = sup~*ER"{(C,~)- g*(C)}. The last relation holds by Corollary 3.3 
or 2.4 in differentiable case, because the function g* o rp is invex with respect 
to 17 given by (1.1). By the theorem on the Fenchel-Young transform for a 
convex function, we obtain consequently f'P'P(x) = g**(O = g(O. Finally by 
the assumptions on f and g we have for any x ERn, f'P'P(x) = f(x). • 

The dual and second dual introduced above have the following properties: 

PROPOSITION 4.3 Let f, JI, h satisfy assumption A and let g = f o rp- 1, 

g1 = h o rp- 1, g2 = h o rp- 1. Then we have 

1. (the Fenchel- Young inequality) 
f'P(x*) + f(x) 2 (rp(x*), rp(x)) 

2. if h ~ h then if 2 ff. 

Proof. Put ~ = rp(x). Since g(rp(x)) = f(x) and f'P(x*) = g*(rp(x*)) we 
obtain 

f'P(x*) + f(x) = g*(rp(x*)) + g(rp(x)) 2 (rp(x*), rp(x)) 

Let now h ~ fz.Then gi(rp;(x)) = f;(x), i = 1, 2, and of course g1 ~ g2. 
Thus, by the properties of the Fenchel-Young dual we obtain that gr(C) 2 
g2(C), which by definition of Jt and ff means that fi(x*) 2 j:f(x*), where 

C = rp(x*). • 

To conclude the section we provide easy examples to back our theory up. 

EXAMPLE 4.4 Let us consider the function f(x) = x 3 + x from Example 2.2. 
J** = - oo if it is calculated by (4.1). Here rp(x) = x + x3 and a convex function 
g is linear. Hence we obtain: 

f'P(x*) =sup{ rp(x*)rp(x)- f(x)} 
xER 

=sup{ rp(x*)~- 0 = { 
0 

~ER 00 

By (4.4) we obtain 

if rp(x*) = 1, 
otherwise. 

f'P'P(x) = sup {rp(x*)rp(x)- f'P(x*)} = rp(x) = f(x). 
~ER" 

REMARK 2 For a convex function f the two concepts of duality give the same 
second dual. If one takes rp( x) = x then first duals are also equal, take for 
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