PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On linear operators extending [pseudo]metrics

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For every closed subset X of a stratifiable [respectively metrizable] space Y we construct a positive linear extension operator T : R[sup X*X] --> R[sup Y*Y] preserving constant functions, bounded functions, continuous functions, pseudometrics, metrics, [respectively dominating metrics, and admissible metrics]. This operator is continuous with respect to each of the three topologies : point-wise convergence, uniform, and compact-open. An equivariant analog of the above statement is proved as well.
Rocznik
Strony
35--49
Opis fizyczny
Bibliogr. 16 poz.,
Twórcy
autor
  • Department of Mathematics, Lviv University, Universytetska 1, Lviv, 290602, Ukraine
autor
  • Institute of Mathematics, Warsaw University, Banacha 2, 02-097 Warszawa, Poland
Bibliografia
  • [1] T. Banakh, On linear regular operators extending (pseudo)metrics, unpublished manuscript, 1993.
  • [2] T. Banakh, AE(0)-spaces and regular operators extending (averaging) pseudometrics, Bull. Pol. Ac.: Math., 42 (1994) 197-206.
  • [3] T. Banakh, On linear regular operators extending pseudometrics, Seminaire Initiation a l'Analyse (G. Choquet, G. Godefroy, M. Rogalski, J. Saint Raymond) 34ème Aimée. 1994/1995, no 16, 2 p.
  • [4] C. Bessaga, On linear operators and functors extending pseudometrics, Fund. Math., 142 (1993) 101-122.
  • [5] C. Bessaga, Functional analytic aspects of geometry. Linear extending of metrics and related problems, in: Progress in Functional Analysis, Proceedings of the Peniscola Meeting 1990 on the occasion of the 60th birthday of Professor M. Valdivia, North-Holland, Amsterdam 1992, 247-257.
  • [6] C. Bessaga, A. Pelczyński, Selected topics in infinite-dimensional topology, PWN, Warszawa 1975.
  • [7] C. J. R. Borges, On stratifiable spaces, Pacific J. Math., 17 (1966) 1-16.
  • [8] G. E. Bredon, Introduction, to compact transformation groups, Academic Press, NY, London 1972.
  • [9] R. Brown, S. A. Morris, Embedding in contractible or compact objects, Colloq. Math., 37 (1978) 213-222.
  • [10] J. Dugundji, An extension of Tietze's theorem, Pacific J. Math., 1 (1951) 353-367.
  • [11] R. Engelking, General topology, PWN, Warszawa 1977.
  • [12] V. V. Fedorchuk, V. V. Filippov, General Topology. Principal constructions, Moscow Univ. Press, Moscow 1988.
  • [13] J. R. Isbell, On finite-dimensional uniform spaces, Pacific J. Math., 9 (1959) 107-121.
  • [14] S. Hartman, T. Mycielski, On the imbeddings of topological groups into connected topological groups, Colloq. Math., 5 (1958) 167-169.
  • [15] O. Pikhurko, Extending metrics in compact pairs, Mat. Studii, 3 (1994) 103-106,
  • [16] M. Zarichnyi, Regular linear operators extending metrics: a short proof, Bull. Pol. Ac.: Math., 44 (3) (1996) 268-269.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0001-1194
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.