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Abstract:  Changes in spot rates, unknown appriori to in-
vestors, induce unanticipated rates of return on all financial markel
instruments. In this paper we introduce and investigate a concept
of the rest of a bond. The concept is related to the Taylor series re-
mainder and gives a better approximation to an unanticipated rate
of return of fixed income bonds and bond portiolios. It is shown
that the rest of the portfolio composed of fixed income bonds is a
convex combination of the rests ol these bonds. A stronger version
of the theorem on rates of return on fixed income bond portlolios is
given.
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1. Introduction

Changes in spot rates, unknown appriori to investors, induce unanticipated rates
ol return on all financial market instruments.  For many vears the duration
and convexity of bonds have been used to investigate these changes (Brooks &
Attinger, 1992; Dunetz & Mahoney, 1988: Fabozzi & Fabozzi. 1980: Melran &
Howmaifar, 1993). Fabozzi & Fabozzi (1989) observed that the first three terms
ol the Taylor expansion series of bond investment value function can be used to
approximate the changes in the bonds values:
P (0K 9P (OK)
aK? T2 oKWl
where I denotes the YT M (vield to maturity) value and R, represents mean-
ingless components.

By dividing both sides of above equation by P we get the duration (the lirst
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bond. Our aim in this paper is to introduce and investigate a notion ol the
rest of bond, giving a better approximation to an unanticipated rate of return
for a percentage change in the rate.

Let bond A pay a coupon of Cy dollars t years from now, where t € T =
{to,t1,...,tn}, with to (t,) being the maturity of a shortest (longest) bond. For
a single bond some, or even most, of C; are equal to zero. Treasury bills with
maturity of less than one year are treated as zero-coupon bonds. Thus, bond A
can be identified with a sequence of nonnegative coupons Cy,.C,..... C,, (for
simplicity the last payment is treated as a coupon), with each coupon € having
its own investment value Cy - (1 + ;) 7%, where w; is the spot rate for the period
of the nearest t years expressed at the annualized basis.

By the investment value of bond A one understands the sum of present values
of all coupons generated by A, that is the amount:

Py =PA(y¢0=yt|"' ) = Pa(y) = Z Co-(14+w)” 4 (2)

t=#o

where T = (Yo, Yeys- - -5 Yt,, ) 1 called the term structure of interest rates. Value
P4 can be thought of as a “fair” price of bond A, meaning that il a present
price is below (above) P4, then the bond is underpriced (overpriced) and then
it pays to buy (sell) it.
With each coupon C; of bond A its weight is associated:
-t
xfzc—t'—gl—tyﬂ-n for t € {tg,t1,...,tn} (3)
Py

The sum of all weights of each bond is one. A question arises what would
happen to P4 when the spot rates y, are changed by a central bank’s decision
that is apriori unknown to the investors, i.e. y, — y; + hy, (or 7 — G+ I for
short). We are interested here in the evaluation of an unanticipated rate of

Pa(§+h)—P
return —ii-'?—‘l— A 'H;,A = 2@ due to unknown changes in the spot rates.

2. Rests of fixed income bonds

Function P4 given by (2) may be expanded in the Taylor series. lence, we
obtain:

t
~ [OP(Y) | PPy@) ,» 1 PPa+0) 4

dPy = S s 2 m.~———!.- 1
A t———zl'.g[ Ay =Ty T oy Lt+ﬁ y " )
for some 8 = (04,,60,,,....0;,). 0 <6, < h il by > 0and hy < 6, < 0 if
hy < 0,t € {to,...,tn}. Thus,

h;_

dPy = _YfCLH R +
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tw 92
hs
- (t+1)Cy(1 LRS- 5
2; + t + )~ (]+Z/L)2 € (5)
where
1 tn 113
e==) tt+1)t+2)C0+y +6)" Tt —un,
Gt:ZtO < )( ) l,( W 1) (l +yf+{)f){

tn

Gy« i3
€(0s5,05,,...,0;,) = z:t+11+a( r

|+ ys + 6,43

By dividing equation (5) by P4 and using (3). we obtain:

dPA o /1[ [ 4 h?
= ‘Tie Tt A+l gy s s———onus
Z: 22%( - (1 +w)?
i 2 ) R3(1 4+ 1,)t
== )+ 2y e 6
6;(+ )(t + 2)a; (1 +y, + 6,13 (6)
=to
where
A Cy
gl SR . W—
Pa(l+y)
Formula (6) is further analyzed for four cases.
Case L.

This is the most general case. Assume that shifts h, satisfy the relationship:

ht hr[

: 5 o
—— =g ——, tE€{to, 1,0} (7)
] + U[ ] + ylo

The situation where an investor knows g, rarely happens in practice and, there-
fore, formula (7) has a theoretical rather than a practical value. If. however, an
investor is able to forecast g; with a “high” degree of accuracy, then he/she is
able to find an approximate value of ﬂi Note that

]+Jt

- h 8
1 +yt0 ltg- ( )

hy = g¢ -

Replacing in (6) hy with (8), we obtain:

dP4 | 5 A Jug
= Zh, J{]+t }-‘)Zf(f+|):r;l‘g,‘)~<—’>

t=to

1 2 = g - (1 + )3 b
—Ezf(f‘l‘])(f‘".).)l/\ - : N / T,
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Now, we can rewrite (6) as follows:

iP iy, X2 by, N
T = DA+ o) () - () o)

PA 1 i gh) T Mo i
where
t”
Di(A) = Z t:l't gt
t=to

is the duration of bond A,

t‘l

1 9
Ci(A) =5 D _tlt+N)af'y]

t=tp
is the convexity of A, and

Lo 3. 143
Z (£ 4+ 1)(t + 2o LU ) (10)

Ri(4): C(U 4y +0,)H3

G)l

is the rest of A. The rest of bond A gives a better approximation to the rate of
return on bond A than the velocity (see Mehran & Homaifar, 1993).

Case II.
In this case, shifts i, satisfv equation (7) with g, = L'™", where L is a given
(known) constant, 0 < L < 1. From

Iy - T
e POl B e Tty ) I
14y 1+ tto. 2 (1

we obtain the following equation:

dP, hy T ( I, )"‘
=—Dr(A L+ Oy —— ) —Ry(A - 12
2 = -Du()3a +Cul) (732 ) — Rula) (152=) (1)

where Dy;(A) is the duration of A, Cy,(4) is the convexity of A, and

Ly

Ri(4) = : Zt{f+l} t+ 2)a

!f.o

](Lr !n | 4 ‘,h)!-{--'i
(1 +y+6)+
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Case III. (Proportional shifts in spot rates).
In this case, shifts h; satisfy equation (11) with L = T and. from

h-f_ - h;”

= L LEeE{tp tye. ... Thic b [
T+y 1+, st bl ()
we obtain that:
dP, hy b, XF hy ):‘
—= =—=Dy(A EtCrii(A) [ —=— ) —Ry(A) | ——] (IA
P 1 )1 ey 11(A4) (I o 11r(A) (I T (15)

where Djyr(A) is the duration of bond A, C'y;;(4) is the convexity ol A, and

Ln

Riri(A) = % Z t(t 4 1)(t + 2)a; (1 +y

T A
i=ip

)! ot

(16)

is its rest.

Case I'V.
This is the simplest case when all the spot rates are identical (1, = y) and
hy = h. We have:

dP, h ho\? 7
o T T LI W 1 (G (WL (RS . W1 7
P, Dy (A)I+?}4 C“H)<l—i-y) Ry (A)(h) (17)
where Dy (A) is the duration of A, Cyy(A) is the convexity ol 4. and
t
1 a0+

Rrv(A) == E (1 ) T N U ¢ - [

" ( ) 6 !,':-'.uf{r_'—i}((_i—Z)“. (t _;_:,;+(}I}f'i:i ( \}

is the rest.

3. Rests of bond portfolios

While considering bond portfolios we assume that shifts hy satisfy cquation (7).
Therefore, we focus on Case . However, since Case [ (7) is the most general one.,
the statements presented below are valid for Cases 11, 11, IV, with appropriately
modified coeflicients g,.

A bond portfolio P = (O, 0s,...,0,) is a collection of single bonds O, ts

investment value P* is delined as the sum of the investment values of all bonds
O (k=1,2,...,7) present in P, that is.

P*=)"P., Pi=awPo, () (19)
k=1

where ay, is the number of bonds O, present in P,
The concept of duration (convexity) for bond portfolios was delined similarly
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portfolio P = (Oy,...,0,) is a convex combination of durations (convexities) of
bonds O (k=1,2,...,r), that is

Di(P) =Y axD(Ox), k= % (20)
== Za;kC;(Ok), B = % (2[)

where Py is the investment value of bond Oy and P* =35, | P,
Proceeding in the same way, we introduce the concept of the rest of a bond
portfolio. The rest of portfolio P is given by:

in

.:J Jr (1)t
Z t+ 1)(t+2)a AT T

THEOREM 3.1 If P = (0,,0,,...,0,) is a bond portfolio. then its rest is a
conver combination of the rests of bonds O,,,. m = 1,2,...,r. that is

1(P) =) _axRi(O:), ar= i (22)
k=1

where Py, is the investment value of bond Oy, while P* =%, | P

Proof. Let Ctk denote the coupon of bond Oy payable at time t. Using (10),
we obtain:
P
2 Ri(Ok) = P—’;-R;(on

t 3f Lo L-+3
gr(t+m)

= 1)(t+2 A St

()P* Z t+ )&y (| + 4 + gl.::)u.i

t=to
Ly i

_ B S U+ 1)(t+2) gi(l+y)** ¢
6P t=to (l+-‘J1 *'(}f.;'”:‘ Pk“'{";b’r]!

L : 5 o

| 9. (1 + ) C

= = t(t 4+ 1)(t 4 2) T
“; (1 +9,+05)"° P14+ u)
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ok

for Ry(P), because zf = 3| _, O
i Tk - Ri(Oy)
N 1 P+t ct
= kz [E Zﬁ F1)(t+2) “‘h+ N mf_J (23)
-z iz ) g1+ 3) - Wy (6)

where
Ck
v, (6 = = :
L( t) kz +Jt ‘|‘9t +3 P*“ + '.U.*.)f'
1 [ al B Ci
(I+y +6) [P +y)t " P(1+u)

Note that for any fixed t € {tg.....t,}, ¥, (6;) is a continuous and differentiable
function, and

: —(t+3
v, (0,) = (—)H_I .
(1 4y +6,)
where C = 2 e ek is a constant
Pr(l4ye) P+ ¢ s :

One may notice that lIJ; is a decreasing function for 6; € (0, h¢) if Iy > 0 or
for 8; € (ht,0) if hy < 0. By the Darboux property there exists 6, such that:

‘]15(0) > ‘Ilg(f)‘:) > "I"ﬂ(h-t) for h-t >0

or
Wy (hy) > W, (8,) > ¥,(0) for hy <0
and
() = A
where
1 C} | 7

= 7" b R o ik :
A+ +6)* P(l+n) (143 +0)"° P+
Therefore, for any t € {to,...,tn}

Lk (14w +E}:)H3 P*(1 + y)! P'(I + )
1 !}

8 g —— 3 Y
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Substituting (24) into (23) we get:

¥ ] o G +y)t
ap - Ri(Op) == ) tt+1)(t+2) ——L—= 2] = Ry(P)
g (,!_S_;: (1 4‘.3)&“'"9:)”3

which completes the proof. o

Theorem 3.1 can be used to extend the theorem on unanticipated rates of
return on bond portfolios (Zaremba, 1995).

THEOREM 3.2 If P = (0,.0,.....0,) is a bond portfolio. then the unantic-
ipated rate of retwrn on P due to shifts hy in spol rates vy, that satisfy the
relationship (7) is given by the formula:

dPP hf h; : -"Jp
=L = —Dy(P)- o Ci(P . —Ry(P) [ —2— ] (2f
Pp 1 +yru+ g (|+mu) i )(1+ym) (25)

where Pp stands for the investment value of the bond portfolio P. while D(P).
Ci(P), R;(P) denote the duration, converily and rest of P. respectively.

=
Proof. From Pp = E Pi, where Py, is the investinent value of Op. we obtain

k=1
r

dPp = Zr!Pk. Further, because equation (9) holds for each bhond Oy, the

k=1
unanticipated rate of retwrn on P satisfies the following:

dPp  ~dP. P. <~ P [(dP
Pp Z P. Pp “gpp P,

-'i.‘-f P; !.‘p‘
= - N ... I — (0 L
Z l-H,':,,Jr;;P; G ( ' )

=1 I+ ¥,

Z Ri(0y) [ e 3
Pp e L+ 91,

. hy, h!c; . hy, :
B _D!(P)‘l'I‘HIU—i—CF(P) (1+ytn) "( }(I+J!o)

where D;(P) is the duration of P given by (20), and C;(P) is the convexity of
P given by (21). |

2

4. Conclusions

In this paper, we used the Taylor series remainder to introduce and analyze
the notion of the rest of fixed income bonds and bond portfolios. [irst, we
showed that the rest of a bond portfolio, being a collection of single bonds, is a
convex combination of th(‘ rests of these lmnd-; [lnllwl a stronger version of

1 M " eee L ee ) e 1 RS |
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