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Abstract: Neural networks can be successfully applied to 
solving certain types of combinatorial optimization problems. In this 
paper several neural approaches to solving constrained optimization 
problems are presented and their properties discussed . The main 
goal of the paper is to present various improvements to the well­
known Hopfield models which are intensively used in combinato­
rial optimization domain. These improvements include determin­
istic modifications (binary Hopfield model with negat ive self-feed­
back connections a nd Maximum Neural Network model), stochastic 
modifications (Gaussian Machine) , chaotic Hopfield-based models 
(Chaotic Neural Network and Transiently Chaotic Neural Network) , 
hybrid approaches (Dual-mode Dynamic Neural Network and Har­
mony Theory approach) and finally modifications motivated by dig­
ital implementation feasibility (Strictly Digital Neural Network). 

All these models are compared based on a commonly used bench­
mark problem- the N-Queens Problem (NQP). Numerical results in­
dicate that each of modified Hopfi.eld models can be effectively used 
to solving the NQP. Convergence to solutions rate of these methods 
is very high- usually close to 100%. Experimental time requirements 
are generally low - polynomial in most cases. 

Some discussion of non-neural, heuristic approaches to solving 
the NQP is also presented in the paper. 

Keywords: Hopfield network, N-Queens Problem, neural net­
works, combinatorial optimization 

1. Introduction 

In the framework of neural networks there are two possible approaches to solv­
ing constraint optimization problems: evolving deformable template matching 
and Hopfield-type gradient minimization. The first approach requires the prob­
lem to be solved to have appropriate geometrical representation. Elastic nets 
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Le Texier, 1988) are two well known examples of such methods. Typical applica­
tion domain is the Travelling Salesman Problem (TSP), where both approaches 
have proved their efficiency (Smith, Potvin and K wok, 2002). In case of the 
N-Queens Problem (NQP), however, the condition concerning appropriate ge­
ometrical representation of the problem required by these methods is hard to 
fulfil and therefore solving the NQP with neural nets is actually limited to the 
Hopfield-type approaches. 

Hopfield models (HMs) were introduced in two seminal papers (Hopfield, 
1982, 1984) and fully developed in subsequent works (Hopfield and Tank, 1985, 
1986; Tank and Hopfield, 1986, 1987). Since their introduction Hopfield models 
have attracted attention of hundreds of researchers, which resulted in enormous 
number of papers devoted to that subject. Except for their undisputed advan­
tages HMs have also some drawbacks, the main of them being high possibility of 
being trapped in a local minimum of the search space which usually represents a 
good- but not optimal- solution. This limitation has been alleviated by combin­
ing gradient minimization of HMs with non-deterministic global minimization 
methods. This resulted in several stochastic, chaotic and hybrid extensions. In 
stochastic extensions (Akiyama et al., 1991; Wong, 1991; Mmidziuk, 2000a) es­
caping from local minima is based on adding stochastic (usually Gaussian) noise 
to the model. The noise is able to drive the system out of local minima. Simi­
lar idea is made use of in chaotic extensions (Nozawa, 1992; Chen and Aihara, 
1995; Wang and Smith, 1998). The difference lies in the nature of a driving force, 
which in this case is deterministic chaos. Another group of Hopfield-based mod­
els includes deterministic modifications of the Hopfield networks focused on more 
efficient problem representation, e.g. the Maximum Neural Network (Funabiki, 
Takenaka and Nishikawa, 1997). Finally, there are several hybrid Hopfield-type 
models in which HMs are combined with non-gradient optimization techniques, 
e.g. Hopfield-Lagrange models (Zhang and Constantinides, 1992; Li, 1996) or 
Dual-mode Dynamics Neural Network (Lee and Park, 1995). For an overview of 
Hopfield models' extensions please refer to Matidziuk (2000b) or Smith, Potvin 
and Kwok (2002). 

In the literature the efficacy of neural optimization methods is typically pre­
sented based on their application to the Travelling Salesman Problem. There 
are two main reasons for such a choice: first, TSP was originally chosen by 
Hopfield and Tank to illustrate the properties of HMs; second, TSP is the well 
known NP-hard benchmark problem for operation research methods and heuris­
tic algorithms. 

On the other hand, some reasons exist for not considering the TSP as a 
benchmark problem in this comparative study. As stated in Smith (1996) the 
TSP is actually not a good benchmark problem for making comparisons between 
neural and heuristic methods due to a different problem formulation - heuris­
tic and operation research methods take advantage of linear TSP description 
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Considering the above it seems appropriate to choose a benchmark problem 
other than the TSP. No particular reasons exist for considering the NQP in that 
place except for just two: personal interests of the author and availability of pa­
pers devoted to solving the NQP with various Hopfield-type models. Moreover, 
unlike the TSP, the NQP is defined by one parameter only - the problem size, 
and its solution does not depend on additional context data. This makes results 
obtained by different methods easily comparable. It should be noted, however, 
that the NQP is an "easier" problem since its time complexity is polynomial 
whereas the TSP belongs to the class of NP-hard problems1

. 

The paper is organized as follows: In the next section the N-Queens Prob­
lem is formulated and several heuristic approaches to solving it are presented. 
Section 3. introduces classical Hopfield models and describes the generic rep­
resentation of a constrained optimization problem within their framework. In 
Section 4. a simple but powerful modification to the binary model based on ap­
plying negative self-feedback connections is presented. Section 5. describes the 
Maximum Neural Network model - an important modification to the classical 
model, which allows decreasing the number of constraints in the NQP formu­
lation. Section 6. discusses stochastic extension of the HM called Gaussian 
Machine. The next section describes two hybrid approaches based on com­
bining Hopfield model with non-gradient optimization techniques. Finally, in 
Section 8. chaotic extensions of HM and their applications to solving the NQP 
are summarized. An example of hardware motivated Hopfield-type model is 
also presented in this section. Conclusions are placed in the last section. 

2. TheN-Queens problem 

The N-Queens Problem of size n can informally be stated as follows: place n 
chess queens on n x n chessboard so that they do not attack each other. A chess 
queen attacks along the entire row, column and two diagonals going through the 
square it is placed on. Certainly, the above implies that necessary and sufficient 
conditions for the solution of the NQP are the following: 

(i) there is exactly one queen placed in each row, 
(ii) there is exactly one queen placed in each column, 
(iii) there is at most one queen placed on each diagonal. 

Formally the problem can be defined in the following way: 

DEFINITION 1 [N-Queens Problem] A square n x n Boolean matrix V represents 
the solution of the NQP of size n if and only if the following conditions are 
fulfilled: 

n n 

LLVij =n, (1) 
i=l j=l 
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'v'i,j,k,l E {1, ... ,n} ((i,j) =/ (k,l) 1\v;j = 11\vkl = 1) ==> 
(2) 

(i =I k 1\ j fll\ i- j =I k -ll\ i + j =I k + l). • 

In the above definition V;j = 1 represents a queen placed on the square (i,j) 
of the chessboard. Otherwise, if this square is unoccupied, Vij = 0. Condition 
(1) implies that there are exactly n queens placed on the board. Condition 
(2) implies that any two different queens placed on the squares (i,j) and (k, l) 
belong to different rows (i =/ k), different columns (j fl) and different diagonals 
( i - j f k - l and i + j f k + l). 

Interactions along diagonals include two cases: those along diagonals parallel 
to (1, 1)- (n, n) main diagonal and those along diagonals parallel to the other 
main diagonal (1, n)- (n, 1). In the former case it can be observed that for 
each diagonal the difference between row and column indices of its squares is 
constant, whereas in the latter case the sum of these indices is constant (refer, 
please, to Matl.dziuk and Macukow, 1992, for additional explanations). 

The NQP can be also formulated in the form of a constrained combinatorial 
optimization problem: 

DEFINITION 2 [The NQP as a constrained optimization problem- ver. 1] Find 
minimum 

n n n 

i=l j=l k=l 
kfj 

n n n 

i=l j=l k=l 
k#i 

n i-1 n n n n+i-j 

+ L L L Vk,k-i+j'Vij + L L L Vk,k-i.+jVij 
i=2 j=l k=i- j+l i= l j=i k=l 

k#i k#i 
n n n n-ln-ii+j-1 

L Vk,i+j-kVij + L L L 'Vk,i+j-kVij 
i=l j=n-i+l k=i+j - n 

k#i 

under the following constraints 

n n 

LLV;j=n, 
i=l j=l 

V;j E {0, 1}, i,j= 1, ... ,n. • 

i=l j=l k=l 
k#i 

(3) 

(4) 

(5) 

The first two components in (3) represent interactions in rows and columns, 
respectively. The next four components are responsible for interactions along 
diagonals in four main triangle submatricies. It can easily be checked that with 
the constraints ( 4 )-( 5) the global minima of (3) correspond to exactly these 
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There exist a few other equivalent definitions of the NQP as a combina­
torial optimization problem. One of them, commonly used in neural network 
applications is presented below. 

DEFINITION 3 [The NQP as a constrained optimization problem- ver. 2] Find 
minimum 

2n n-1 

L L L V;jVkl + L L L V;jVk l , i,j = 1, .. . ,n (6) 
p=2 i+ j=p k+l=p p=-(n-1) i-j=p k- l=p 

k#i k#i 

under the following conditions 
n 

LVij = 1, j = 1, .. . ,n, (7) 
i=1 

n 

L Vij = 1, i = 1, .. . ,n, (8) 
j=1 

Vij E {0, 1}, i,j=1, ... ,n. • (9) 

Again, Vij = 1 represents a queen placed on the square ( i , j) of the chess­
board. The first term in (6) represents interactions along one type of diagonals 
and the second one - along diagonals of the other type. Constraints (7) and (8) 
represent interactions in columns and rows, respectively. 

2.1. Backtracking search method 

Classical approach to solving the NQP is based on backtracking search method. 
The algorithm starts off with an empty chessboard and systematically attempts 
to put a new queen- starting from the square (1, 1). The newly added queen is 
placed in the next possible (empty) column in the row with the smallest possible 
index under the general rule that it does not attack any of the queens placed so 
far (Wirth, 1976). Suppose that i < n queens are already placed in the first i 
columns according to the above rules. If location of the i + 1-th queen in column 
i + 1 is not possible the algorithm tries to move the queen in the i-th column 
into another row (with the smallest possible index) and if it succeeds then an 
attempt to put t he queen in column i + 1 is repeated. If it is not possible to 
find acceptable row in column i, then the algorithm backtracks to column i - 1 
and tries to reassign the queen in that column, and so on. If the solution of 
the problem exists the algorithm will find it . If it does not, the algorithm will 
stop after moving back to the first column and failing to find acceptable row 
in that column. The solution found by this method for n = 8 is presented in 
Fig. 1. Simple modifications to the a lgorithm allow to find all solutions for a 
given n. The method is intuitive and easily implementable but its exponential 
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2 3 4 5 6 7 8 

Figure 1. The first NQP solution found by backtracking method for n = 8 

2.2. Heuristic methods 

Among the heuristic approaches t he most effective algorithm (in terms of time 
complexity) is QS1 (Sosic and Gu, 1990) and its enhanced version QS4 (Sosic 
and Gu, 1991a, b). The expected experimental time complexity of both of them 
is linear. QS1 is based on local, probabilistic search. First, a permutation 
a of indices { 1, ... , n} is randomly chosen and the queens are placed on the 
squares ( i, a( i) ), i = 1, ... , n. Certainly, such initial configuration automatically 
eliminates all conflicts in rows and columns. Conflicts on the diagonals are 
gradually eliminated by applying the following heuristic procedure: two row 
indices i and j are randomly selected and the algorithm temporarily moves 
queen (i, c(i)) to (i, c(j)) and queen (j, c(j)) to (j, c(i)), where c(i), i = 1, ... , n 
denotes the column index of the queen in row i (at the beginning c( i) = a( i), i = 
1, ... , n). A new configuration is accepted if and only if it decreases the number 
of diagonal conflicts on the chessboard. The above procedure is repeated until 
all conflicts along diagonals are eliminated. 

QS4 is a modification of QS1 in which the initial configuration is chosen so 
as to eliminate as many diagonal conflicts as possible right from the beginning. 
Consequently, in consecutive rows queens are placed in colums which do not 
cause conflicts with any of the previously placed queens. The column index 
for a queen in the currently considered row is randomly chosen among those 
indices which fulfil the above condition. If for some i placing the queen in row 
i without conflict is not possible, the rest of n- i + 1 queens are placed in the 
l:1.st. n- i-+- 1 rnws arr.nrrlin!Y t.n O.'i'l srhPmP. 'T'hP nrnrPrlnrP nf !!Tarlnal di ;wnn:.J.I 
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(1991a) QS4 solves the NQP of size 3 000 000 in less than a minute on IBM RS 
6000/530 computer. 

Another interesting heuristic approach is based on the min-conflict heuristics 
in which, after the initialization phase (analogous to QS1 or QS4) the following 
procedure is repc~ttedly applied: the "most attacked" queen (i.e. the one which 
causes the highest number of conflicts with other queens) is moved within its 
column to the square on which it causes the smallest possible number of conflicts 
(the min-conflicting square in the column). In case of two or more possible 
reassignments the random choice is applied among them. The algorithm is very 
effective in solving the NQP and according to Russel and Norvig (1995) it solves 
Million-Queens Problem in less than 50 iteration steps. 

2.3. Exact solution 

An interesting and not widely known fact is the existence of an exact, analytical 
solution of the NQP for any n 2: 4 (Hoffman, Loessi and Moore, 1969, see also 
Bernhardsson, 1991). Actually, 

• for n even and n ;j; 6k + 2, k E Z a solution is the following configuration: 

{ 
(i , 2i) 
(I + i, 2·i - 1) 

. n 
for z = 1, ... , 2, (10) 

• for n even and n ;j; 6k , k E Z a solution is the following configuration: 

{ 
(i, 1 + [(2(i -1) + i -1) (mod n)]) 
(n + 1- i, n- [(2(i- 1) + i- 1) (mod n)]) 

n 
for i = 1, ... , 2, ( ll) 

• for odd n the appropriate case among the above two is applied to n - 1 
and the configuration is completed by placing the qneen on the square 
(n , n) . 

It is worth noting that the existence of analytical solution of the NQP for 
any n 2: 4 does not question the sense of a search for efficient algorithmical 
solutions. The existence of analytical solution has no influence on the level of 
difficulty, which heuristic or AI-based methods actually encounter while solv­
ing the problem. Furthermore, the NQP in its wider formulation consists in 
finding all solutions for a given n. In such a case no analytical or polynomi­
ally bounded heuristical method is known. In this context the Hopfield neural 
network method gains great importance due to its ability to generate different 
solutions depending on initial conditions. 

3. Hopfield models 

Hopfield network can be implemented in three general forms depending on how 
time and states are represented. In this paper binary model will denote a model 
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discrete time and continuous states, and continuous model will refer to the 
continuous time and continuous states model. In most applications either a 
binary or a continuous model is used. In the next two subsections a very brief 
description of these two models is presented. For more details please refer to 
Hopfield's papers (Hopfield , 1982, 1984; Hopfield and Tank, 1985, 1986) or to 
Ma1l.dziuk (2000b ). 

3.1. Binary Hopfield model 

Binary HM of size N is composed of N fully connected two-state McCulloch­
Fitts (1943) neurons neui, i = 1, ... , N. Input activation ui(t) of neuron neui 
at time t is calculated as 

N 

Ui(t) = L tijVj(t- 1) + h i = 1, ... 'N, (12) 
j=l 

where Vj(t- 1) is the output activation of neuron neuj at timet- 1, Ii is the 
external input to neuron neui and tij is connection weight from neuj to ncu;. 
It is assumed that tij = tji,i,j = 1, ... ,N and t;i = O,i = 1, ... ,N. Output 
activation vi(t) of neuron neui at timet is calculated as a binary transformation 
of its input: 

{ 
1 if U; ( t) > 0, 

v;(t) = 0 if ui(t) :S 0. (13) 

At each (discrete) time step some number of neurons calculate their input 
and then output activations. The network usually operates in one of the two 
modes: the synchronous one - in which all neurons update their states at the 
same time governed by the central clock or the asynchrono·us one - where at 
each time step only one randomly selected neuron updates its input and out­
put activation and the other neurons do not change their states. It can easily 
be shown (Hopfield, 1982) that in case of asynchronous update and symmetric 
weights with non-negative self-feedback (tii 2: 0, i = 1, ... , N) regardless of 
initial configuration of states vi(O), i = 1, ... , N, the network converges mono­
tonically to a stable state. This stable state corresponds to a local minimum of 
the following quadratic energy function: 

1 
N N N 

E(t) = -2 L L tijVi(t)vj(t)- L hvi(t). (14) 
i= l j=l i=l 

In case of synchronous update t he network either converges to a stable state 
or to a cycle of length 2, i. e. it alternately changes between two states A --* 
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Figure 2. Schematic representation of continuous Hopfi eld model as an electric 
circuit. For the sake of clari ty only two neurons arc presented 

3.2. Continuous Hopfield model 

Continuous HM has the same topology as the binary model but a different time 
and states representation. The model can be described and implemented as an 
electric circuit - see Fig. 2. In Fig. 2, C; and R; denote, respectively, capacity 
and resistance of the neuron neu;., -i = 1, . .. , N , a nd R;j represents resistance of 
connect ion from 7le"Uj to neu;, -i , j = 1, . .. , N . In teractions between neurons in 
the continuous model a rc described by the following set of differential eq uations: 

N 
du,(t) L 'IL;( t ) c, -rl- = t;plj(t) +I;--, (15) 

t T 
j=l I 

where n; (t ), v; (t), I; have the same meaning as in binary model, t;j = R~ J is a 

weight of connection from neuj to nev.;, and 

1 1 N 

-; = R, + L tij · (16) 
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The transfer function g: ui( t) ---+ vi(t) between input and output activation 
of neuron neui is defined as 

1 
v;(t) = g(ui(t)) = 2(1 + tanh(au.; (t ))), (17) 

where a controls the slope of the sigmoid function (17). 
Setting circuit parameters according to the following conditions: 

ci = Cj and ri = rj , 'i,j = 1, . .. , N, (18) 

and redefining them as in (19) 

ri :=R, ci :=C, i,j=1, ... ,N, (19) 

simplifies the set of equations (15) to the following form: 

dui(t) _ ~ .. ·( ) 1 _ ui(t) 
dt - L tt)VJ t + t RC , 

J=l 

i = 1, ... , N , (20) 

where RC (also denoted by T) represents the so-called relaxation time of the 
electrical circuit. 

The model (20), regardless of the choice of initial state, converges monoton­
ically to a stable state corresponding to a local minimum of the energy function 

1 N N N l N 

E(t) = -2 L L tijVi(t)vj(t)- L I;vi(t) + RC L C(v;(t)), (21) 
i=l j=l i=l i=l 

where 

(22) 

The energy (21) is the Lyapunov function for the set (20). It is important 
to note that in continuous model no restrictions are imposed on self-feedback 
connections tii, i = 1, ... , N. 

For sufficiently high a in (17) energy (21) can be simplified to 

1 
N N N 

E(t) = -2 L L t;jvi(t)v j (t)- L Iivi(t), 
i=l j=l i= l 

(23) 

where the sum of integrals (22) is left out (sec Hopfield , 1984; Smith and Port­
man, 1989 , for details) . 

Note: Mathematical formalism used in description of binary and continuous 
Hopfield models presented in t he last two subsections required that dependence 
on time of several neural variables ( Ui, v;, etc.) be explicitly stated. However, for 
the sake of clarity, hencefort h the dependence on time of variables in equations 
as well as within the text will be omitted. The exceptions arc Sections 6.1. and 
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3.3. Generic representation of combinatorial optimization problem 
in the Hopfield models 

The property of minimization of energy (23) by binary, asynchronous model 
(12)- (13) and continuous model (17), (20) can be taken advantage of in solving 
the constrained combinatorial optimization problems. Consider a problem of 
the form: 

with symmetric matrix Q and linear constraints2 : 

Cj(v)= O, j=l .. . , r , viE{O, l} , i= l , ... ,N. 

Define the penalty function E* for this problem: 

,. 

E*(v) = f3of(v) + Lf3J[cj (v)] 2 

j= l 

where {Ji, i = 0, . .. , r are positive coefficients. 

(24) 

(25) 

(26) 

Having compared the generic form of energy function (23) with penalty 
function (26) one obtains values of weights tij and external inputs Ii of HM, 
that correspond to solving the problem (24)- (25). 

3.4. Basic properties of Hopfield models 

The main advantage of Hopfield optimization networks is their wide applicabi­
lity. Both models can be applied to any const rained optimization problem that 
can be formulated in quadratic form (24) with linear constraints (25). 

On the other hand both models perform gradient descent minimization , 
which in general case does not guarantee that a minimum reached by the 
network is global. Moreover , the models are very sensitive to t he choice of 
penalty coefficients {30 , {31 , ... , f3r in (26) or, equivalently, to the choice of weights 
tij, i, j = l , ... ,N and inputs hi= l , ... , N in (14) or (23), respectively. 

Due to the above disadvantages the Hopfield models in their original formu­
lation are rarely applied to solving optimization problems. In such cases they 
arc usually combined with a heuristic multi-start procedure which allows reach­
ing different local minima (and hopefully the global one among them) due to 
the use of various init ial states (starting points). 

There also exist several improvements of HMs which extend their original 
formulation and in effect break the monotonical gradient descent behavior. Ex­
amples of such methods are presented and discussed in the rest of the paper. 
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4. Binary model with negative self-feedback connections 

In this chapter a simple modification to the binary Hopfield model is presented. 
The difference lies in setting (appropriately chosen) negative self-feedback con­
nections for the neurons. In effect a modified model does not converge monoton­
ically and, consequently, under certain conditions, is able to escape from local 
minima of the energy landscape. 

4.1. Problem formulation 

In binary HM the NQP of size n can be represented by a square n x n matrix. 
According to Definitions 1 and 2 and eq. (26) the energy function for the NQP 
may be defined in the following way (Mat1dziuk, 1995): 

1 
n n n n 

E = 2 {A L L [ ( L Vik ) Vij + ( L Vkj ) Vij ] 

i=l j=l k=l k=l 
kf:.j kici 

n ·i-1 n n n n+·i - j 

+BLL [( L Vk,k-i+j ) Vij ] +BL:L: [( L Vk,k-i+j)Vij ] 
i=2 j=l k=i-j + l ·i=l j=i k=l 

kici k ici 

n n 11 

+BL: L [( L Vk,i+j - k )Vij ] 
i=l j=n-i+l k=i+j -n 

kici 

where A, B , C > 0 and a ~ 0. The term multiplied by A corresponds to 
interactions along rows and columns (at most one queen should be located in 
each row and in each column) and four terms multiplied by B correspond to 
diagonal interactions in four main triangle submatricies (again, at most one 
queen can be placed on each diagonal). The term multiplied by C forces the 
number of queens on the chessboard to be equal to n. 

The role of parameter a is explained in Section 4.2. For a = 0 the minimum 
of (27) is equal to 0 and corresponds to exactly those network configurations 
which represent solutions of the NQP. 

The input activation u;j of neuron n eu ;j is defined as follows: 

n n n n 

Uij = -A(L: V;k + L Vkj )- R;j- S;j- c(L: L Vkl- (n + a)) ,(28) 
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where 

n 

B I: Vk,k-i+j ifi - j > 0, 
k==i - j +l 

Rij = 
kf-i 

n +i-j (29) 

B I: Vk,k-i+j if i - j ::; 0, 
k==l 
kf-i 

and 

n 

B I: Vk,i+j - k if i + j > n, 
k==i+j - n 

Sij = 
ki-i 

i+j- 1 (30) 

B I: Vk,i+j-k if i + j::; n , 
l.c==l 
kf-i 

for i,j = 1, .. . , n . Transfer fu nct ion Uij ---> Vij is of the form (13) fo r all 
neurons. 

Note that in order to fulfil conditions for monotonic convergence of binary 
model to a st able state (local minimum of energy) in classical Hopfield's fo rmu­
lation the weights of self-feedback connections should be non-negative. Applying 
this condition , however, results in a very poor convergence to solutions (e.g. 
smaller than 5% for n = 8) . T he idea of leaving out the above condition in 
binary model - in case of the NQP introduced in Mmidziuk (1995) - causes 
strong improvement of the convergence to solut ions rate (up to 100%) . Based 
on simulation resul ts and analyt ical calcula tions presented in Mmidziuk (1995) 
it can be shown that network's abili ty to occasionally increase its energy can be 
very helpful in escaping from local minima of the energy landscape. 

4.2. Results of simulat ions 

A modified binary model defined in t he previous subsection can be implemented 
in two modes: asynchronous (sequential) mode and partly synchronous, n­
parallel one. In the former case at each t ime step a selected neuron neUij, i, j = 
1, . . . , n updates its state based on (28) and (13) . Neurons are eit her selected 
with equal probability at each time step or in the so-called randomly selected 
order. In the latter case a permutation of all neurons is randomly chosen at the 
beginning of each epoch and t hen neurons are sequent ially updated according 
to that permutation. 

In n-parallel mode at each time step n randomly selected neurons are up­
dated simultaneously based on (28) and (13) . 

In both modes after every I< time steps a new value of energy (27) is calcu-
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and to 5n in n-parallel mode. The simulation test was stopped if the energy did 
not change in itstop subsequent measurements or the limit itmax for the number 
of time steps was exceeded. 

Simulations in asynchronous mode were performed with the following pa­
rameters: 

n = 8, 16, 32, 64, 80, A = B = C = 100, a = 0, itmax = 1000K, 

it _ {50, for n::; 32, (31 ) 
stop - 100, for n = 64, 80, 

and in n-parallel mode with 

n = 8, 16, 32, 64, A = B = 100, 

.t _ { 50, for n :S 32, 
z stop - 100, for n = 64. 

C = 40, a = 2, itmax = 1000K, 

(32) 

Selections (31) and (32) differ by the choice of C and a. Smaller value of C in 
n-parallel simulations is caused by the danger of possible oscillations which may 
occur due to partly parallel update. Negative effect of relatively small value of C 
is breaking the balance between fulfilling local constraints (in rows, columns and 
diagonals) and the global constraint for the number of queens on the chessboard. 
Consequently, the network tends to decrease its overall activation and prefers 
states with smaller than n number of act ive neurons (queens). This tendency is 
balanced by setting a > 0. 

Three methods for setting the initial state of the network were tested in both 
modes: 

(a) 'Vij = 0, i,j = 1, ... ,n, 

{ 
1 with probability ~' 

(b) 'Vij = 0 
otherwise, 

i,j=1, ... ,n, 

(c) 'V;j=1, i,j=1, ... ,n. 

For each tested n and for each of the above initial conditions 100 tests were 
performed in each simulation mode. The convergence rate was equal to 100% in 
all cases, except for n = 8, (a) in the asynchronous mode when it was equal to 
99% and n = 16, (a) and n = 16, (c) in n-parallel mode when it was also equal 
to 99%. 

Experimental computational complexity of asynchronous mode and n-paral­
lel one is polynomial and equal to O(n4 ·47 ) and O(n4 ·67 ), respectively, see 
Ma1idziuk (1995, 2000b) for details. 

4.3. The choice of starting point 

Based on the results presented in the previous subsection it can be concluded 
that the choice of starting point has practically no influence on convergence rate. 
Moreover, as stated in Ma1idziuk (1995) it has also no impact on the average 
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Figure 3. Frequency histograms for strategies (a), (b) and (c). Values on each his­
togram represent the numbers of different solutions with respective frequencies. See 
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However, if the NQP is considered in a wider perspective, namely as the 
problem of finding all solutions (or at least several different ones) for a given 
n, it may occur that there exists some dependence between the strategy of 
chasing initial state and observed solutions. 

In order to verify the above hypothesis, for each of initial strategies (a) , (b), 
(c), 1000 simulations for n = 8 were run. The convergence rate remained very 
high and equal to 99.9%, 99.8%, 100%, respectively, for st rategies (a) , (b) , (c). 
The average number of iterations required to achieve a solution state remained 
at practically the same level: 10.66, 9.95, 10.61, respectively. 

However , a closer look at solutions obtained in all three cases revealed some 
qualitative differences. It turned out that the number of different solutions 
achieved by the network was equal to 35,92 and 67, respectively, for strategies 
(a), (b) and (c). These results are consistent with intuition - the basins of 
attraction of specific starting points generated in st rategies (a) and (c) do not 
cover all possible solution states3 . 

It is also interesting to compare t he frequency of reaching particular solu­
tions. These data are presented in F ig. 3. Each value of the histogram represents 
the number of different solutions related to corresponding frequency. For ex­
ample, on the top histogram, y-value 22 corresponding to x-value 30 indicates 
that 22 different solutions (out of 35 found) were attained between 21 and 30 
times each. As can be observed in Fig. 3, in strategy (a) two-third of possible 
solutions were either not attained or attained very rarely. On the other hand 7 
solution states were achieved more than 50 times each (in 999 successful tests). 
In strategy (b) the shape of frequency distribution of solutions resembles Gaus­
sian type distribution. Each solution was achieved at least once, and none of 
them more than 20 times. At last , in case (c) the shape of frequency distribu tion 
is familiar to Poisson type one, but with abont 25% of non-attainable solutions. 

In summary: a simple modification to binary HM based on setting negative 
self-feedback connections resulted in very high efficiency of the model regardless 
of the initial state choice. Almost perfect convergence to solutions achieved in 
the simulations can be explained analytically (Mandziuk, 1995). 

5. Maximum Neural Networ k 

Maximum Neural Network (MNN) (Takefuji and Lee, 1992) is also an example 
of a simple modification to binary HM. MNN is composed of binary neurons 
and has the same topology as HM. The difference lies in the internal transfer 
(activation) function which in MNN is defined in the following way: 

{ 
1 if'U.;j(t) = max{uil(t),ui2(t), ... U;n(t)}, · · = 1 (33) Vij(t) = 
0 

I . z,J , ... ,n. 
ot 1erw1se, 
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Function max in (33) returns the first argument among those for which the 
maximum is achieved. In case of typical for HM problem representation in 
the form of a two-dimensional matrix the above transfer function guarantees 
that there exists exactly one active element in each row of the matrix. In most 
combinatorial problems solved by HM - including the NQP - this property is 
required in solution states. One advantage of a guaranteed fulfilment of this 
condition is the possibility of "natural" n-parallel implementation of MNN in 
which n neurons placed in the same row are updated simultaneously. 

5.1. The NQP formulation 

In MNN condition (1) from Definition 1 is always fulfilled 4 and therefore the en­
ergy function is designed based on condition (2) only. One possible formulation 
is the following (Funabiki, Takenaka and Nishikawa, 1997): 

A n n 2 

E = 2 L ( L 'Vkj - 1) 
; = 1 k=l 

B n n 

+ 2 2:: 2:: 'Vij ( 2:: 'Vi+k .j+k + 2:: 'Vi+k .j - k) , 
i= l j=l l ~ i+k , j+k~n l ~i+k,j- k~n 

k~O k~O 

for A ,B > 0. 

(34) 

The component multiplied by A reaches its minimum (equal to zero) if and 
only if there is exact ly one queen placed in each column. The component mul­
tiplied by B is minimized (and equal to zero) if and only if at most one queen 
is placed on each diagonal. 

In MNN the following equation describing neuron's dynamics is nsed: 

where 

n 

6.uij = -A(Lvk1 -1) 
k = l 

-B( 2:: 'Ui+k .j+k+ 2:: 'Vi+k .j-k) + Chcf: v~., j ) 
l ~i+k,j+ k ~n l~i+k,j- k~n k=l 

k~O k~O 

h(:r) ={~ for x = 0, 
otherwise, 

(35) 

(36) 

is a hill-climbing function. The role of the last term in (35) is to enhance the 
activity of neuron neu;1 in case there are no active neurons in column j. 

P lease note that neuron 's dynamics equation in MNN defines the change 
of input potential as negative gradient of the energy function, i.e. 6.u;j = 
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- f:E + h( ·) which differs from Hopfield 's formulation of the binary model in 
.u.V t) 

h. h ~E 
W !C U i j = -~ . 

.u.V 13 

5.2. Simulation results 

Computer simulations were performed in three modes: asynchronous (sequen­
tial) mode, n-parallel mode and synchronous (n2-parallel) one. In the first two 
cases the following set of coefficients was applied: 

A= B = 1, C = { 1 if t mod 20 < 15, 
4 otherwise. 

For n 2-parallel mode the choice of coeffi cients was slightly different: 

A= B = 1, C = { ~ if t mod 20 < 15, 
otherwise. 

(37) 

(38) 

In eqs. (37) and (38) t denotes t ime step. The parameter C in synchronous 
mode takes smaller values than in the other two cases in order to prevent the 
system from potential oscillat ions. In all three modes additional constraints on 
minimum and maximum values of input activations are imposed - see Funabiki , 
Takenaka and Nishikawa (1997) for details. 

In sequential mode the convergence to solut ions rate of MNN is between 76% 
and 97% for 8 ::; n ::; 50 and equal to 100% for 100 ::; n ::; 500 . Results for n­
parallel simulations reach 96 -100% for 8 ::; n ::; 50 and 100% for 100 ::; n ::; 500 . 
It is important to note t hat in both simula tion modes the average number of 
epochs required to converge to solut ion is practically independent of the pro blem 
size. Relatively poorer results are obtained for n 2-parallel mode: 40- 97% for 
8 ::; n ::; 50 and 93 - 100% for 100 ::; n ::; 500. 

Experimenta l data suggests t hat MNN can be effectively used in solving the 
NQP, especially in n-parallelmode, when at each time step all neurons in a ran­
domly selected row are updated simultaneously. An approximate experimental 
complexity of MNN in this mode is polynomial. 

In the recent MNN paper by Funabiki, Kurokawa and Ohta (2002), published 
in this issue, it is shown that simila rly to the Hopfield binary model adding 
negative self-feedback connections to MNN visibly improves the efficacy of the 
model. For example, for n = 10 000 the success rate increases from 75.5% (for 
MNN without self-feedback connections) to 98.5% in case of modified MNN. 

6. Stochastic optimization 

In the previous sections two deterministic improvements to the binary Hopfield 
network , aimed at breaking the monotonic convergence of the model, were pre­
sented. Another group of Hopfield-type models focused on avoiding trapping in 
a local minimum of the energy surface are extensions of HM (binary or contin-
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to higher energy states. Such stochastic extensions make use of a general pur­
pose, global optimization method called Stochastic Simulated Annealing (SSA) 
(Aarts and Laarhoven, 1987; Aarts, 1989) originally proposed in Kirkpatric, 
Gelat Jr. and Vecchi (1983), Cerny (1985). 

Stochastic extensions of continuous HM are usually derived from the Lange­
vin Equation-based minimization (Gidas, 1986). These models include Stochas­
tic Neural Network (Levy and Adams, 1987), Diffusion Machine (Wong, 1991), 
Stochastic Model (Mandziuk, 2000a), or Pulsed Noise Model (Ma1l.dziuk, 
2000a) . Introduction to stochastic Hopfield-type networks and properties of 
the above models are presented in Matidziuk (2000a). 

Stochastic extensions of binary HM include Boltzmann Machine (Hinton, Se­
jnowski and Ackley, 1984) and Gaussian Machine (Akiyama, Yamashita, Kajura 
and Aiso, 1989; Akiyama et al., 1991). Description of GM and its application 
to solving the NQP are presented in the next two subsections. 

6.1. Gaussian machine 

The underlying features of Gaussian Machine (GM) (Akiyama et al., 1989; 
Akiyama et a l. , 1991) are implementation feasibility and low time requirements. 
The topology of GM and the representation of the optimization problem being 
solved are the same as in HM. 

The first difference between the two models lies in the definition of neuron 's 
dynamics, which in GM is of the following form (see (20)): 

(39) 

where 1Ji(t) = N(O, <Ji(t)) is Gaussian noise with variance decreasing in time. 
Noises 1Ji, 1}j are pairwise independent , i.e. cov( 1Ji , 1]j) = Dij. <1[ depends on the 
variable parameter T(t) (called temperature): 

<Ji(t) = kT(t), ( 40) 

where k > 0 is a constant parameter and T decreases in time in the following 
way: 

To 
T(t) = --t , 

1+-
TT 

where T0 , Tr are predefined constants. 

( 41) 

Another difference with the HM is the use of adaptive sigmoidal transfer 
function in GM: 

1 ( . , (u.Jt)\ \ 
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In the above, a0 controls the slope offunction ( 42) and similarly to T changes 
in time in a hiperbolic way: 

Ao 
ao(t) = --t , 

1+-
T ao 

where Ao , T a 0 are constants. In general case Ta 0 and Ty can be different . 

( 43) 

GM operates in sequential (asynchronous) mode and minimizes the energy 
function (21 ), which in the limit ao ____, 0 simplifies to (23) . Subsequent states of 
the system are chosen in a stochast ic way with a long term tendency to decrease 
system's energy. In the initial period , temperature T is high and consequently 
Gaussian noises in (39) are high enough to let the system escape from any 
minimum of the energy surface. Along with gradual temperature decrease the 
intensities of noises also decrease and GM becomes more like HM. For T = 0, 
GM is equivalent to continuous HM. 

Following Akiyama et al. (1991) it is worth emphasising that if high priority 
is assigned to low time requir-ements of the model, then in discretization of (39) 
the time step /:).t can be set to 

!::.t = T = 1 

and, consequently, (39) can be approximated in a relatively simple form: 

N 

Ui(t + 1) = L t;jVj(t) + I; + 1]i(t). 

j=1 

(44) 

( 45) 

Therefore, in case of ( 44) the GM actually exemplifies stochastic extension 
of discrete HM (with discrete time and sigmoidal neurons). 

6.2 . Applicat ion to the NQP 

In computer simulations of solving t he NQP with GM presented in Akiyama et 
al. (1991) the following energy function was used. 

Ann 2 Bn n 2 

E = 2 L ( L Vij - 1) + 2 L ( L Vij - 1) 
i =1 j=1 j=1 i= l 

C 2n D n -1 

+ 2 L L L V; j Vk:i + 2 L L L VijVk l 

p=2 i +j=p k+l=p p=-(n-1) i - j=p k- l= p 
k~ k~ 

A+B n n 
+ - 2 - L L V·ij ( 1 - Vij), 

i= l j=1 

( 46) 
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The first four terms in the above equation control the number of queens in 
rows, columns and diagonals, respectively. The last term forces binarization of 
solution states, since it is minimized if and only if all variables Vij, i, j = 1, ... , n, 
are binary. 

As reported in Akiyama et al. (1991) in case of n = 8 and the parameters 

A=B=C=D=1, Ta 0 =Tr=3, Ao=2.1, To=0.05 (47) 

the convergence rate to solutions is approximately equal to 50%. It is important 
to note that each test took at most 25 iterations, i.e. every test that did not 
converge within 25 epochs was considered unsuccessful5 . 

Our independent simulations performed with the above restrictions con­
firmed the rate of convergence to solutions at the level of about 50%. Ad­
ditionally, a limited search for suboptimal set of system's parameters, with 
A = B = C = D = 1 fixed, was done which resulted in the following choice: 

T 110 = Ty = 3, Ao = 2.1, To= 0.09. ( 48) 

With the above set of coefficients the convergence to solutions rate was equal 
to 57%. It was also observed that the network in a wide range of parameters 
achieved 45- 50% convergence to solutions. 

In summary it is interesting to notice that relatively poor results for the 
NQP (compared to other neural and heuristic methods) are in contrast to rel­
atively good results achieved for the Travelling Salesman Problem (Akiyama ct 
al., 1991). Further analysis of GM and search for possible enhancements of pre­
sented results seem to be interesting research issues. Promising modifications 
include application of a much smaller integration step 6.t « 1 or increase of the 
limit for the number of epochs in the search process. 

7. Hybrid approaches 

Another group of extensions to the Hopfield networks arc hybrid models which 
combine HMs with other optimization techniques. 

7.1. Dual-mode Dynamics Neural Network 

Dual-mode Dynamics Neural Network (D2NN) (Lee and Park, 1995) is an inter­
esting example of hybrid approach in which gradient dynamics of asynchronous, 
binary HM is applied alternately with guided weights perturbation process. In 
D2NN in each epoch at first gradient minimization is performed by HM and if 
obtained minimum is not satisfactory, weights are corrected (according to some 
criteria) in order to let the system escape from current local minimum towards 
the basin of attraction of the global minimum. In other words, the weight space 
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is modified in a way that potentially allows the model to reach deeper minimum 
in the next epoch. 

D2NN attempts to overcome two limitations of HM: convergence to local 
minima and requirement for quadratic form of energy. Actually, for some opti­
mization problems (especially real-life ones) transformation of the cost function 
to the form (14) is very expensive, if at all possible. In order to avoid the above 
drawbacks the cost function in D2NN is only linked (but not eqMl) to network's 
energy function. The process of weights perturbation in D2NN - which modi­
fies network's energy function - is guided by the values of the cost function in 
specific points of a solution space. 

D2NN is composed of two layers: base layer and supervisory layer. The base 
layer is implemented as a binary HM with symmetric weights and without self­
feedback connections. Most of the base layer neurons represent the cost function 
and the constraints is the same way as in HM. These neurons are called base 
neurons. Additionally, in the base layer there exist some number of hidden 
neurons, which are not directly involved in representation of the problem - they 
can be used, for example, to provide external stimuli. 

The supervisory layer is composed of supervisory neurons, which are con­
nected to base neurons, but are not connected to hidden ones. There are also 
no connections among supervisory neurons. Each supervisory neuron except 
one is dedicated to one particular constraint. Additional supervisory neuron is 
devoted to the cost function. Weights between base neurons and supervisory 
ones are defined according to problem constraints. These weights are not altered 
during simulation process. The cost function is defined over the set of super­
visory neurons in such a way that it reaches global minimum if and only if all 
constraints represented by these neurons are fulfilled. In each epoch, once the 
network settles down after minimization phase each supervisory neuron checks 
out whether the respective constraint is fulfilled. If it is not, the weights in 
the base layer arc modified accordingly (with symmetry condition kept). Mod­
ification of weights is guided by the task of minimization of the external cost 
function (see Lee and Park, 1995, for formal mathematical description of the 
weights perturbation phase in D2NN). 

7.2. Solving the NQP 

The NQP of size n is represented by a square n x n matrix V with one-to-one 
correspondence between matrix elements and base neurons. Moreover, in base 
layer there exists one hidden neuron neu00 , responsible for providing external 
stimuli to all base neurons neuij, i, j = 1, ... , n. This hidden neuron is always 
ON. The input to a base neuron neuij, i,j = 1, ... , n, is defined as 

n n 

• - '"""''"""' f · · • '"' • ...l.. f · · n n?lnn 
(Ll.Q\ 
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where t;j,kl is connection weight between base neurons neukl and neu;j. Binary 
transfer function (13) is used for the internal input-output mapping in base 
neurons. 

Supervisory layer is composed of 6n - 2 neurons each of which controls one 
NQP constraint : n row and n column constraints and 4n- 2 diagonal ones (see 
Definition 3): 

n 

(row) s;; = L Vki, k = 1, . .. 'n, (50) 

n 

(column) S'k=LVik. k=1 , ... ,n, (51) 
i=l 

(diagonal) stl = L Vij, k = -(n- 1), ... '(n- 1) , (52) 
j- 'i = k 

(diagonal) st2 = L V;j, k = 2, ... '2n . (53) 
j+i=k 

Note that in case of the NQP there is no need for additional neuron that 
controls the cost function. 

Based on (50)-(53) weights w'k~ij between neuron rwu;i in base layer and 
neuron S'f.011 in supervisory layer are set, where con E { r, c, d1 , d2 } denotes the 
type of constraint . For example, w2 34 = 0 since neuron neu34 does not belong 

to the second row. Similarly wg 1
36 =· 1 since neuron n eu3s belongs to a diagonal 

for which index difference betw~en column and row is equal to 3. 
The cost function is defined as a function of supervisory neurons in the 

following way: 

where 

F = ~ ( t ( s;; - 1) 2 + t (Sf. - 1) 2 

k=l k=l 

n -1 ~ 

+ 2.:: f2 (st~ - 1) + L ! 2 (St2
- 1)), 

k=-(n- l) k=2 

f(x) = { ~ for x 2: 0, 
otherwise. 

(54) 

(55) 

Note that f(x- 1) = 0 for .1: ::; 1. Moreover, F = 0 if and only if all NQP 
constraints are fulfilled. 

Computer simulations of D2NN confirmed its efficacy in solving small and 
medium size NQP. For n between 4 and 40, 100% convergence to solutions was 
reported (Lee and Park, 1995) . The success of D2NN lies in its ability to escape 
from local minima of the energy surface. An important advantage of D2NN -
though not actually used in case of the NQP - is its wide applicability, since 
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The weak point of D2NN is high computational complexity since in this model 
the search in n 2-dimensional binary state space is replaced by the search in 
continuous n4 -dimensional weight space. This makes application of D2NN to 
the NQP of large size an infeasible task. 

7.3. Harmony theory neural network 

An interesting approach to solving the NQP based on Harmony Theory is pre­
sented in Tambouratzis (1997). The Harmony Theory Neural Network (HTNN) 
for solving constraint satisfaction problems (Smolensky, 1986) is composed of 
two layers with sigmoidal neurons: the upper layer represents constraints and 
the lower one represents elements of the problem (in case of the NQP - chess­
board squares). The only connections allowed are these between the layers, i.e. 
there are no connections within the same layer . Unlike in the Hopfield networks, 
in HTNN, instead of the explicitly stated energy function, the consensus fun c­
tion of harmony is implicitly defined . Each network state is accompanied by a 
harmony value, which measures the "goodness" of this state. States with more 
conflicts are assigned lower harmony values compared to those with smaller 
number of conflicts. 

Network simulation is based on simulated annealing procedure, which starts 
off with adequately high initial temperature and lowers it gradually in the course 
of simulation. Two processes accompany this gradual temperature decrease: 
sharpening of the gain in sigmoidal activation function - which causes "gradual 
binarization" of the state space, and magnification of discrepancies of harmony 
values between states. As a result system's state space shrinks since states with 
low harmony values are not considered in t he search process anymore. Changes 
of harmony values are governed by the threshold parameter k which has criti cal 
effect on selection of the optimal solution. Another important factor is the 
assignment of positive strength values to upper layer nodes, which represent 
relative importance of constraints related to these nodes (see Smolensky, 1986, 
for more details). 

HTNN applied to solving the NQP is composed of n 2 neurons in the lower 
layer and 4(n2 -1) neurons in the upper one (Tambourat~is, 1997). Each lower 
layer neuron represents a particular chessboard square and each upper layer 
neuron encodes one constraint corresponding to a particular chessboard square: 
n 2 row inhibition constraints (one per square), n 2 column inhibition constraints 
(one per square), n2 - 2 left-diagonal constraints (one per square except the two 
corner squares) and similarly n 2 - 2 right-diagonal constraints (as before). 

As reported in Tambouratzis (1997) with appropriate choice of parameter k, 
HTNN is effective in solving the NQP of small size, i. e. 4 ::; n ::; 32. Evaluation 
of HTNN effectiveness for larger problem instances and its application to other 
combinatorial optimization problems (e.g. TSP) are interesting open research 
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8. Examples of other Hopfield-based approaches 

This section briefly summarizes a few more examples of neural approaches to 
solving the NQP: Chaotic Models and Strictly Digital Neural Network. 

8.1. Chaotic optimization 

Several extensions of HMs based on deterministic chaos have been proposed 
in the literature. One well known example is Chaotic Neural Network (CNN) 
(Aihara, Takabe and Toyoda, 1990) in which network's dynamics is defined in 
the following way: 

1 
v.;(t) = _1_+_e ___ a_u-,i(--,-t)' 

N 

u;(t + 1) = ku;(t) + s( L t;jVj(t) +I;)- z;v;( t) . 
j=l 

(56) 

(57) 

In (56)- ( 57) v;, u; , t;j, !;, a have the same meaning as in HM, s > 0 and 0 ~ 
k ~ 1 are scalar coefficients, and z; > 0 is a weight of self-feedback connection. 

Chaos in CNN is generated by accumulation of negative self-feedbacks 
- z;v; (t) over time. In effect the network breaks its monotonic convergence 
and is able to escape from local minima of the energy function. 

CNN was later modified to Transiently Chaotic Neural Network (TCNN) 
(Chen and Aihara, 1995) in which chaotic term is controlled by the simulated 
annealing procedure and consequently the amount of chaos in the system is 
gradually decreased to zero. Application of the simulated annealing procedure 
eliminates the critical problem in CNN concerning the arbitrary choice of the 
moment when the chaotic search process should be stopped. In order to force 
the convergence of TCNN (by gradual decrease of the amount of chaos in the 
network) the input potential to neuron neu; is defined by the following equation: 

N 

u; (t + 1) = ku;(t) + s ( L t;jVj ( t) +I;) - z;( t)( v;(t) - Io) , (58) 
j=l 

where 

z; (t + 1) = (1- f])z;(t) (59) 

and t ;j = tj;, t;i = 0, i, j = 1, ... , N, zi (t) 2: 0, Io > 0, 1 2: (3 2: 0. The output 
potential v;(t) of neuron neui in TCNN is defined by eq. (56). 

The term Zivi (t) from eq. (57) which implements the self-feedback mech­
anism is in TCNN (eq. (58)) replaced by zi (t)( v;(t) - Io) . Parameter z; (t) is 
interpreted as the temperature of the model in the process of chaotic simulated 
annealing. Consequently, eq. (59) describes a very fast , exponential annealing 
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Since ! 0 > 0 and z;(t) decreases in time, TCNN after the initial bifurcation 
period finally stabilizes and resembles more and more the Hopfield model. At 
temperatures close to zero TCNN is equivalent to the Hopfield model. Therefore, 
unlike CNN, TCNN is guaranteed to converge (analogously to the HM). 

TCNN model is well known as the efficient tool for solving the Travelling 
Salesman Problem. In asynchronous simulations (according to randomly se­
lected permutation of neurons) the optir a! path for the 10-city TSP was found 
in 100% of 5 000 tests (Chen and Aihara, 1995). Similar results were obtained in 
our simulations. TCNN also appeared to be very efficient in fully synchronous 
simulations with the average tour length equal to 100.3% of the optimal tour 
length (Marl.dziuk, 2000b ). 

We have also tried to apply the TCNN model to solving the NQP of size 
n = 8 and n = 16 with energy function (27). Quite surprisingly the results 
were not as good as expected. The main problem was the appropriate choice 
of system's coefficients, since the model seemed to be very sensitive to that 
selection. Actually we were unable to select the set of coefficients for the asyn­
chronous update mode that would provide satisfactory results. After a certain 
number of trials we found out that the best results for the NQP are obtained 
in synchronous mode with the synchronity factor (sf) between 0.85 and 0.95G. 

The best convergence to solutions rate for n = 8 was equal to 91% and was 
obtained with the following set of parameters: 

A = 2, B = 2, C = 1, (}' = 0.9, 

k = 0.9, n = 250, ! 0 = 0.65, sf = 0.85, (60) 

z(O) = 0.08, u(O) = 0.5, s = 0.015 , (3 = 10-4
. 

For n = 16 the best rate was also equal to 91% and the parameter set was 
as follows: 

A=2, B=2, C=1, (}'=2.2, 

k = 0.9, n = 250, Io = 0.65, s f = 0.95, (61) 

z(O) = 0.08, u(O) = 0.5 , s = 0.015 , (3 = 10- 4
. 

Several trials with faster annealing schedule, i.e. with smaller value of (3 = 
w-3 resulted in 87% convergence to solutions for n = 8 (with (}' = 2.2 and other 
parameters as in (60)) and 85% convergence for n = 16 (with(}'= 2.5 and other 
parameters as in (61)). 

Another approach to building Chaotic Neural Networks based on adding 
deterministic chaos to the system was proposed in Nozawa (1992). An inter­
esting modification to Nozawa (1992) was reported in Ohta (1999), where it 
is proposed that the network autonomously magnify its self-feedback connec­
tions (and consequently increase the amount of chaos in the system) in case it 

6 The svnchTOnitv factor is defined as the fract ion of randomly selected neurons that are 
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is trapped in a local minimum. The model was applied to the NQP of sizes 
50,100 and 200 with visible improvement of solution rate compared to Nozawa 
(1992) - from 84.3% to 98 .8%, in case of n = 200. 

8.2. Digital models 

Binary Hopfield-type neural networks are especially interesting in the context 
of digital hardware implementation. One of such implementations is SDNN -
Strictly Digital Neural Network (Nakagawa, Page and Tagliarini, 1989). SDNN 
is designed based on "k-out-of-n" principle (Page and Tagliarini , 1988) , which 
can be summarized as follows: suppose that a constrained satisfaction problem 
is represented by m multiple-sets (one set per constraint) S, r = 1, ... , m each 
composed of n,. neurons and that in each set S,., T = 1, ... , m, k,. neurons must 
be ON if the constraint is satisfied. The energy term corresponding to the T-th 
constraint can therefore be expressed in the following way: 

nr 2 1l. r 

E,. = ( L v; - k, ) + L v; ( 1 - v;), (62) 
i= l i=l 

where the second term forces binarization of the network states. Eq. (62) can 
be rewritten in the form 

(63) 

which has the form of Hopfield's energy (14) (with t;j = -2, i i= j, l ; = 2kr - 1) 
in case scalar !.:?: is neglected. 

The above approach allows for a systematic design of a Hopfield-type binary 
network with strictly digital weights. Input u; to neuron nen; in SDNN is defined 
as: 

'tl; = ~ ( t t,., j Vj + 1,.;), (G4) 
r·= l j#i 

where m; is the number of sets S,. to which nw; belongs, t,.ij is weight of 
connection between ne'Uj and neu; in t he 7'-th set S,., and I,.; is an external 
input to neuron neu; generated in the set S,.. 

It is easy to show that, if neuron ne1L; satisfies "k-out-of-n" rule, then it 
must be in one of only two feasible states ufN or ufFF corresponding to being 
ON or OFF , respectively, where 

ON 
n; = m; and OFF 

1L; = -m.;. (65) 

The above construction can be direct ly implemented in hardware allowing 
efficient, parallel computation of minimal energy states (Nakagawa and Kita-
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Application of SDNN to the NQP is based on appropriate combination of sev­
eral "1-out-of-n" rules, according to the row, column and diagonal constraints. 
The fact that in solution states input to each neuron is restricted to only two 
values (see eq. (65)) allows a great speed-up in hardware simulations of SDNN 
compared to the classical Hopfield's approach. According to the tests reported 
in Nakagawa and Kitagawa (1991) for the problem sizes of up to 3 000 experi­
mental computational complexity is 0( 1) in parallel mode and 0( n 2 ) in sequential 
mode, with 100% convergence to solutions. 

Another hardware oriented approach based on systolic arrays and its appli­
cation to solving the NQP is discussed in Funabiki, Kurokawa and Ohta (2002), 
in this issue. 

9. Conclusions 

Neural networks are well suited to solving certain types of optimization prob­
lems. Among neural approaches there are two basic ones: deformable template 
matching and gradient Hopfield method. The latte r can be effectively applied 
to solving the N-Queens Problem, which is one of classical benchmarks in com­
binatorial optimization domain. 

The key advantage of the Hopfield networks (binary, discrete and continuous) 
is their simple and effective implementation. Another good point is generality 
of Hopfield 's approach - the only requirement is quadratic formulat ion (24)-(25) 
of the problem being solved. 

On the other hand the main limitation of the Hopfield networks is high 
possibility of being trapped in a local minimum since optimization method im­
plemented in these models is purely gradient. Another weak point is related to 
high sensitivity of Hopfield models to the choice of internal parameters (energy 
coefficients). 

Various modifications to original Hopfield 's formulation have been proposed 
in the literature. These improvements can generally be divided into four groups: 

• modifications of energy form (or equivalently more efficient problem rep­
resentations), 

• deterministic modifications (e.g. negative self-feedback connections , other 
transfer functions, neurons with hysteresis), 

• simulated annealing methods (stochastic , chaotic and mean fi eld appro­
aches), 

• hybrid methods (combining HMs with non-gradient optimization meth­
ods). 

In this paper several examples of the above methods are presented and t heir 
effectiveness tested based on the N-Queens Problem. Advantages and limita-
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Numerical results indicate that each of the modified Hopfield models can 
be effectively used in solving the NQP. Convergence to solutions rate of these 
methods is very high - usually close to 100%. Experimental time requirements 
are generally low - polynomial in most cases. 

On the other hand it is worth noting that for a large group of combinatorial 
optimization problems (e.g. the Travelling Salesman Problem) neural networks 
are generally less efficient than heuristic algorithms. The main reason for such 
efficiency difference lies in the nature of neural optimization methods which 
represent a very general, non-dedicated approach as opposed to highly dedicated 
heuristic algorithms. 
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