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Abstract: This paper serves as a tutorial on the use of neural 
networks for solving combinatorial optimization problems. It re­
views the two main classes of neural network models: the gradient­
based neural networks such as the Hopfield network, and the de­
formable template approaches such as the elastic net method and 
self-organizing maps. In each class, the original model is presented, 
its limitations discussed, and subsequent developments and exten­
sions are reviewed. Particular emphasis is placed on stochastic and 
chaotic variations on the neural network models designed to im­
prove the optimization performance. Finally, the performance of 
these neural network models is compared and discussed relative to 
other heuristic approaches. 
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1. Introduction 

Combinatorial optimization problems (COPs) involve searching for the best pos­
sible combination of binary valued-variables, in order to simultaneously mini­
mize a cost function and satisfy a set of constraints. COPs arise naturally in 
the process of mathematical modeling of many practical problems from indus­
try, such as transportation routing, production line scheduling, and frequency 
assignment in mobile communications. The need to find rapid solutions to these 
problems, particularly in a changing environment, is important to the efficiency 
of many industries. The benefits of even a small improvement in the quality of 
the solutions are also significant . Thus both the quality and speed of solution to 
practical COPs are critical issues affecting the usefulness of the solution. Due 

- ------------------------------------------------------------------
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to the combinatorial complexity of these problems however, an exact solution 
(provably optimal) is unlikely to be found within a useful period of compu­
tation time using traditional mathematical programming techniques. Instead, 
heuristic approaches are preferred that aim to provide a near-optimal solution 
sufficiently rapidly for it to be useful. 

For over a decade, researchers have attempted to solve COPs using neural 
networks as an alternative heuristic approach to techniques such as simulated 
annealing, tabu search, and greedy search. Neural networks are simple math­
ematical models, inspired by the interactions between neurons in the human 
brain, that have been applied successfully to a variety of problems including 
prediction, classification, and pattern recognition. Neural computing was origi­
nally developed to provide a fundamentally new and different approach to infor­
mation processing, when an algorithmic procedure for solving a problem is not 
known. As opposed to programmed computing, neural networks are capable of 
internally developing information processing capabilities for solving a problem 
when fed with appropriate information about the problem. Thus, they are often 
referred to as learning or adaptive models. 

The history of neural computing dates back to the paper of McCulloch and 
Pitts (1943), when simple types of neural networks were shown to be able to 
learn arithmetic or logical functions . Important successes were witnessed in the 
late 50's and early 60's, with the development of the Perceptron model and 
the first nemo-computers (Rosenblatt, 1958). By the end of the 60's, however, 
the field collapsed: a book by Minsky and Papert (1969) , demonstrating that 
even the simple exclusive-or logical function could not be implemented with a 
Perceptron, was devastating and diverted away research funding. After a dark 
period, neural networks emerged again in the early 80's with the support of 
John Hopfield, a renowned scientist, and the publication of an important book 
by Rumelhart and McClelland (1986), which introduced the backpropagation 
neural network model to the scientific community. This model extended the 
capabilities of its ancestor, the Perceptron, allowing it to learn a much larger 
class of functions (including the exclusive-or logical function). Since that time, 
the field has continually expanded. 

The first successes with neural networks were reported for the most part in 
pattern recognition, classification and prediction tasks. Application of neural 
networks to COPs however dates back to 1985 when Hopfield and Tank solved 
small instances of the traveling salesman problem (TSP 1 ) with a Hopfield neural 
network (Hopfield and Tank, 1985). Because of the simplicity of its formulation , 
the TSP has always been a fertile ground for new solution ideas. Consequently, 
it is not surprising that many problem-solving approaches inspired by neural 

1 The TSP is a classical combinatorial optimization problem, which is simple to state but 
difficult to solve. Basically, the objective is to find the shortest possible tour (or Hamiltonian 
cycle) through a set of N vertices so that each vertex is visited exactly once. This problem is 
known to be NP-hard (Garey and Johnson, 1979; Nemhauser and Wolsey, 1988), and cannot 
be solved exactly in polynomial time. 
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networks have been applied to the TSP (Potvin, 1993). The other main class 
of neural network, known as deformable templates and including models such 
as the elastic net and self-organizing map, has also focused on solving the TSP. 
Deformable template approaches exploit the geometry of the TSP, and tend to 
be more efficient at solving larger TSPs than the Hopfield neural network. Their 
generalization to non-geometric problems, however, is quite limited. 

Since the early neural models much research has been conducted and many 
new models for solving COPs have emerged over the last decade or so (Smith, 
1999) . These can be broadly categorized as Gradient-Based Neural Networks 
(including the Hopfield neural network), and Deformable Template Neural Net­
works (including the elastic net and self-organizing maps) . Within each of these 
categories, there are many extensions and variations that have been proposed 
to improve the optimization capabilities of the models, using deterministic, 
stochastic or chaotic mechanisms. The developed models have been evalu­
ated on a wide range of problems in addition to the TSP, such as problems in 
routing and transportation, scheduling, cutting stock and packing, timetabling, 
telecommunications, and many others (Smith, 1999; Burke and Ignizio, 1992) . 
In some cases, the results obtained are competitive with those reported for al­
ternative techniques. In other cases, the results are not yet convincing. It is 
clear that the computational paradigm of neural networks, which is inherently 
parallel, distributed and adaptive cannot be fully exploited on current computer 
hardware. Their behavior must be simulated, thus leading to excessively large 
computation times. The development of suitable hardware for these models (of­
ten called nemo-computers) would thus be an important step toward their full 
recognition. 

The purpose of this paper is to provide a tutorial on the use of neural net­
works in combinatorial optimization. The two main approaches , Gradient-Based 
Neural Networks and Deformable Template Neural Networks are reviewed by 
presenting the basic models and some of their variations. These variations in­
clude stochastic and chaotic models. A comparison between the neural models 
and against more traditional heuristic approaches is also presented. 

2. Gradient-based neural networks 

In his seminal paper of 1982, John Hopfield described a new way of modeling a 
system of neurons capable of performing computational tasks (Hopfield, 1982). 
Using a collection of binary-state neurons and a stochastic updating algorithm, 
these computational tasks were initially related to storage and retrieval of em­
bedded memories. The computational capabilities of Hopfield's original model 
were expanded in Hopfield (1984) when he proposed a continuous version, and 
proved convergence of the model by demonstrating that the dynamics of the 
model minimized a constructed Liapunov function over time. From here, it 
became clear that Hopfield networks could be used to minimize any function 
provided the network parameters were set appropriately. The fact that the con-
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tinuous version of the Hopfield network was designed to be implemented using 
electrical circuits also promised rapid computational ability. 

This section first presents the two Hopfield neural network models: the dis­
crete and stochastic model of 1982, and the continuous and deterministic model 
of 1984. The method of Hopfield and Tank for mapping a combinatorial opti­
mization problem onto a Hopfield network is then described, using the TSP as 
an example (Hopfield and Tank, 1985) . The section continues with a discussion 
of the criticisms of the approach. We then briefly review some of the many 
modifications and extensions that have been made to the original model and 
approach in an attempt to overcome these limitations, including stochastic and 
chaotic variations. Finally, the reported performance of these Hopfield network 
models for combinatorial optimization across a range of benchmarked problems 
is discussed and compared to other heuristic approaches. 

2.1. Discrete and stochastic Hopfield network 

The original Hopfield network, as described in Hopfield (1982) comprises a fully 
interconnected system of n computational elements or neurons. In the follow­
ing description, Hopfield's original notation has been altered where necessary 
for consistency. The strength of the connection, or weight, between neuron i 
and neuron j is determined by Wij. This weight may be positive or negative 
depending on whether the neurons act in an excitatory or inhibitory manner 
(or zero if there is no interaction) . Each neuron has an internal state ui and an 
external state Vi . While the internal states are continuously valued, the external 
states are binary for this discrete model. The relationship between the internal 
and external states of the neurons can be shown as: 

n 

ui(t + 1) = L wi1v1(t) + Ii 
j=l 

if Ui > 0 
if Ui :-::; 0 

(1) 

(2) 

where Ii is a constant external input to neuron i and f() is the transfer func­
tion between internal and external states. The connection weights W are also 
constant, and the only variable elements in the network are the internal and 
external states of the neurons that are updated over time. From equations (1) 
and (2) it is clear that the internal state of each neuron is calculated as the 
weighted sum of inputs from its connected neurons, with an additional constant 
input. The neuron will "fire" (as evidenced by an external state of 1) , if it re­
ceives sufficient stimulation from its connecting neurons, otherwise the neuron's 
external state will be zero representing a dormant or "non-firing" state. 

The neurons update themselves over time in a random sequence, thus the 
model is said to be discrete and stochastic. As the network updates , and pro­
vided the weight matrix is symmetric with non-negative diagonals, the following 
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energy function is guaranteed to be minimized until the system converges to one 
of its stable states. 

1 
n n n 

Ed = -2 L L W;jViVj - L I;v;. 

i = l j =l i=l 

(3) 

Using the terminology of operations research, the system of equations (1) 
and (2) performs a gradient descent on the energy function , with the neuron 
states v converging to one of its local minima. If the values of the weights 
W and external inputs I are fixed appropriately, this process can be used to 
minimize any quadratic function of binary variables. 

2.2. Continuous and deterministic Hopfield network 

Hopfield's subsequent modifications to the original 1982 model were driven by 
considerations of biological plausibility. In the biological system, u; lags behind 
the instantaneous outputs Vj of the other neurons because of the input capaci­
tance C; of the cell membrane, the trans-membrane resistance R.; , and the finit e 
impedance R;j = W;j

1 between the output Vj and the cell body of neuron i. 
The external states of the neurons are now continuous valued between 0 and 
1, rather than binary, as in the earlier model, and represent an average "firing 
rate" . Hopfield ( 1984) modeled this more biologically based system using the 
following resistance-capacitance differential equation to determine the rate of 
change of u; , and hence the time evolution of the continuous Hopfield network: 

du; n U; 
dt = L W;jVj - -:,: + I; 

]=l 

(4) 

v; = f(u;) and T = R.;C; (5) 

where the transfer function f() is now a continuous sigmoidal function such as: 

(6) 

and T is a parameter used to control the slope of the transfer function. T is 
the value of the time constant of the amplifiers, and without loss of generality 
can be assigned the value of unity, provided the time step of any discrete-time 
simulation of equation ( 4) is considerably smaller than unity. This same set 
of equations represents a resistively connected network of electronic amplifiers, 
and thus the system can be implemented with electrical circuits. We refer the 
interested reader to Hopfield (1984) for details of this implementation. 

Similar to the original discrete model, the dynamics of this continuous model 
also minimizes an energy function over time, guaranteed to converge to stable 
states. This energy function is: 

1 n n n {Vi 
Ec = - 2 L L W;jViVj - L l;v; + Jo f;- 1

(v)dv . 
i=l j=l i=l 0 

(7) 
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Hopfield (1984) showed that provided the weight matrix is symmetric, this func­
tion is a Liapunov function for the system of equations ( 4) and ( 5). Furthermore, 
if the slope of the transfer function (6) is particularly high (e.g. T is near zero), 
then the transfer function (6) approximates the behavior of the discrete version 
given by equation (2) , and the integral term of expression (7) vanishes. Conse­
quently, the local minima of Ec coincide with the local minima of Ed, and all 
these local minima lie at the vertices of the unit hypercube resulting in binary 
values for v. Thus, forT near zero, the continuous Hopfield network converges 
to a 0-1 solution in v which minimizes the energy function Ed. 

Thus, there are two Hopfield neural network models available: a discrete 
version and a continuous version. The continuous version can either be imple­
mented using electrical circuits, or simulated on a digital computer using an 
approximation to the differential equation ( 4) such as the Euler approximation. 
The accuracy of this approximation depends on parameters like the time step 
of the discretization, and affects the degree to which the discretized dynamics 
converge on the Liapunov energy function. · Clearly, a small time step will ap­
proximate the dynamics well, ensuring gradient descent on the energy function. 

2.3. Adaptation to solve combinatorial optimization problems 

In 1985, John Hopfield teamed together with David Tank to extend the ap­
plications of his model to include solving combinatorial optimization problems 
(Hopfield and Tank, 1985). Hopfield and Tank (H-T) realized that networks 
of neurons with this basic organization could be used to compute solutions to 
specific optimization problems by selecting weights and external inputs which 
appropriately represent the function to be minimized and the desired states of 
the problem. The updating of the neurons according to the differential equa­
tions given by (4) and (5) (or even the discrete versions (1) and (2)) ensures 
that both the energy function and the optimization problem are simultaneously 
minimized over time. The analog nature of the neurons and the hardware im­
plementation of the updating procedure could be combined to create a rapid 
and powerful solution technique. 

Using the method proposed by Hopfield and Tank, the network energy func­
tion is made equivalent to the objective function to be minimized, while the 
constraints of the problem are included in the energy function as penalty terms. 

Consider the quadratic formulation of the N-city Traveling Salesman Prob­
lem, given the binary decision variable 

xi. = { 1 if city i is in position j 
1 0 otherwise 

and the constant distance matrix dik representing the distance between cities i 



Neural network models for combinatorial optimization 

and k: 

N N N 

minimise L L L dikXij(Xk ,i+l + Xk,i-1) 
i=l k=l j=l 

k#i 
N 

subject to L Xij = 1 for all j 
i=l 
N 

LXij = 1 for all i 
j=l 

XijE{0,1} foralli,j. 

189 

(8) 

(9) 

(10) 

(11) 

Apart from being a well-benchmarked problem, the TSP is a useful problem 
to consider since its form is that of a quadratic assignment problem. Thus the 
methods used by Hopfield and Tank for mapping the optimization problem onto 
a Hopfield neural network can be generalized to a wide range of problems with 
similar constraints and objective types. 

The first step is to construct an energy function representation of the com­
plete optimization problem using a penalty parameter approach, so that all 
objective functions and constraints are integrated into a single function which 
needs to be minimized. This is achieved by observing that a constraint of the 
form (9) can be enforced by ensuring minimization of the quantity 

N N 

L L XijXkj for all j. 
i=l k=l 

k#i 

That is, a constraint reqmrmg a single "1" in each column can be enforced 
by minimizing the pairwise product of elements in each column. If there is no 
more than one "1" in the column, then this term will be at its minimum value of 
zero. If there is more than one "1" in the column, then this term will be greater 
than zero. A similar term can be constructed to enforce the row constraint 
(10). Naturally, these terms will also be zero if there are no "1"s in each row 
or column as well. Since we need exactly one "1" per column and row, we will 
also need an additional term to force N elements of the solution matrix X to 
be "1"s. 

The complete set of constraints can therefore be enforced through minimiza­
tion of penalty terms, and when we add the objective function to these terms, 
we arrive at the H-T energy function for the TSP: 
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The first two terms enforce no more than one "1" per column and row, re­
spectively, the third term ensures that there are N elements "on" in the solution 
matrix, and the final term minimizes the tour length. The penalty parameters 
A, B, C and D need to be fixed at values that reflect the relative importance 
of these terms in the minimization process. If A, B and C are not large enough 
relative to D, then the resulting solution may be infeasible. Similarly, if D is not 
large enough, the solution may be feasible but the tour length may be larger than 
the optimal value. Hopfield and Tank (1985) used values of A= B = D = 500 
and C = 200 to balance these terms. 

Now that the energy function has been constructed, the next step is to derive 
the Hopfield network weights and external inputs so that the energy function is 
minimized by the network dynamics. For this we need to expand and rearrange 
the energy function (12) so that it is in the same form as the standard Hopfield 
energy function Ed 

1
N NNN NN 

Ed = - 2 LLLLwijkzXijXkz- LLI;jXij 
i=l j=l k=l 1=1 i=l j=l 

(13) 

which has been modified to reflect the fact that the neurons Xij for our TSP 
problem are two dimensional, compared to the linear array of neurons vi used 
in the standard Hopfield network. Once the forms of these two functions (12) 
and (13) are similar, the network weights Wand external inputs I can be read 
as the coefficients of the quadratic and linear terms respectively. To ensure 
equivalence of the two functions , the summations of each term in (12) need to 
be extended across all relevant dimensions (i, j , k, l for quadratic terms and i, 
j for linear terms). Thus the Kronecker- Delta symbol is incorporated into each 
term of (12) where necessary: 

{
1 ifa=b 

Dab = 0 if a :f:. b. 

Expanding (12) and rearranging the terms into quadratic, linear, and constant 
terms, thus yields: 

1 
N N N N 

E = -2 L L L L[-A8;k(1- Djz)- B8jz(1- oik) - c 
i=l j=l k=l l=l 

N N CN2 
-D8ik(8z,i+l + Dz,j-l)]XijXkz- L L[CN]Xii + -

2
-

(14) 

i=l j=l 
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By comparing (14) to the standard Hopfield energy function (13) we obtain that 
the network parameters are: 

Wijkl = -Aoik(1- Djz)- B8jz(1- oik)- C- Doik(oz,j+l + 8z,j-l) (
15

) 
Iij = CN. 

The constant term in equation (14) can be ignored since it merely reflects a 
shift upwards and does not affect the location of the minima of the function. 

Now that the network weights and external inputs are determined, the Hop­
field network can be initialized (using random values for the initial states), and 
updated according to equations (4) and (5) (or equations (1) and (2) for a purely 
discrete version) . This updating is guaranteed to minimize the Hopfield energy 
function (13), and since this function is equivalent to the TSP energy function 
(12) and (14) , then the resulting solution matrix X will provide a local minima 
of the TSP energy function. The quality and feasibility of this solution depends 
on the choice of penalty parameters A, B , C and D , as well as the initialization 
of the neurons , and the accuracy with which the dynamics of the differential 
equation ( 4) can be simulated if the continuous model is chosen. 

The complete, the procedure is summarized in the pseudocode form below: 

Step 0: Preliminary Tasks 

0 . 1 Construct an energy function for the optimization 
problem using a penalty parameter approach 

0.2 Expand energy function and infer network weights and 
external inputs 

Step 1: Initialization Tasks 

1.1 Initialize neuron states to random values 

1.2 Select A, B, C, D 

1.3 Select T, the parameter of the continuous transfer 
function, and the value of the discrete time step if 
simulating the continuous model 

Step 2: If energy function has converged to local minimum proceed 
to Step 5, otherwise proceed to Step 3 

Step 3: Repeat n times: 

3.1 Randomly choose a neuron i to update (if using 
discrete time dynamics) 

3.2 Update Ui and Vi using equations (1)--(2) or (3)--(4) 
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Step 4: Go back to Step 2 

Step 5: Examine final solution matrix and determine feasibility 
and optimality 

Step 6 : Adjust parameters A, B, C, D if necessary to obtain a 
satisfactory solution, re-initialize neuron states, and 
repeat from Step 2 

Clearly, one of the main limitations of the H-T approach to solving combina­
torial optimization is the difficulty in choosing appropriate penalty parameters. 
In addition to this difficulty, the Hopfield network performs a gradient descent 
on the energy function, and thus converges to the first local minimum encoun­
tered. Coupling these two issues, it seems likely that the H-T approach may 
yield solutions of poor quality. Wilson and Pawley (1988) first published these 
findings nearly three years after Hopfield and Tank's original paper was pub­
lished. In doing so, they raised serious doubts as to the validity of the H-T 
approach to solving optimization problems, which seemingly served to dampen 
the enthusiasm surrounding the field. 

2.4. Extensions 

Since Wilson and Pawley's results were published, it has been widely recognized 
that the H-T formulation is not ideal, even for problems other than the TSP. 
The problem of optimal selection of the penalty parameters is not trivial and 
much work has been done to try to facilitate this process (Hedge et al., 1988; 
Kamgar- Parsi , 1992; Lai and Coghill, 1992). Many other researchers believed 
that the H-T energy function needed to be modified before any progress would 
be made, and considerable effort has also been spent in this area (Brandt et 
al. , 1988; Van den Bout and Miller , 1988). One obvious improvement to the 
H- T approach to solving the TSP is to reduce the number of terms needed to 
represent the constraints by using the form (2:~1 Xij - 1)2 to represent the 
column constraints, for example. This eliminates the need for the third term in 
equation (12), so that the penalty parameter C is also eliminated. 

Perhaps the most important breakthrough in the field , however, came from 
the valid subspace approach of Aiyer et al. (1990) , and the subsequent work 
of Gee (1993). Their idea was to represent the constraint set as a hyperplane, 
and encourage the solution to lie upon it. This is achieved by including a single 
term in the energy function for the constraints which attempts to minimize 
the deviation between the solution matrix and the constraint plane, or valid 
subspace. A single penalty parameter needs to be selected, which if large enough, 
will guarantee the feasibility of the final solution. 

Some researchers have also attempted to address the limitat ions of the H­
T approach by considering alternative representations of constraints, suitable 
values for penalty parameters, and other modeling issues. The majority of other 
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researchers in the field, however, have focused on the limitation of the Hopfield 
network dynamics. By extending the network dynamics to include stochasticity 
and hill-climbing capabilities, various methods have emerged that attempt to 
avoid the many local minima of the energy function. 

The variations of the Hopfield network that have been proposed can be 
broadly categorized as deterministic, stochastic, or chaotic. The determinis­
tic approaches include problem specific enhancements such as the "divide and 
conquer" method of :Foo and Szu (1989) for solving the TSP, deterministic hill­
climbing such as the "rock and roll" perturbation method of Lo (1992), and 
the use of alternative neuron models within the Hopfield network such as the 
winner-take-all neurons used by Amartur et al. (1992) to improve the feasibility 
of the solutions. Stochastic and chaotic approaches address the problem of poor 
solution quality by attempting to escape from local minima, and are briefly 
reviewed in the following sections. 

2.4.1. Stochastic models 

There are basically four main methods found in the literature to embed stochas­
ticity into the Hopfield network: 

1. replace sigmoidal transfer function with a stochastic decision-type func-
tion 

2. add noise to the weights of the network 
3. add noise to the external inputs of the network 
4. any combination of the above methods. 

The Boltzmann machine (Aarts and Korst , 1989; Hinton et al., 1984) uti­
lizes the first method based on a discrete Hopfield model. The inputs are fixed, 
but the discrete transfer function is modified to become probabilistic. Much 
like simulated annealing (Kirkpatrick et al., 1983), the consequence of mod­
ifying the binary transfer level of each neuron is evaluated according to the 
criteria of the Boltzmann probability factor. This model is able to escape from 
local minima, but suffers from extremely large computation times. In order 
to improve the efficiency and speed of the Boltzmann machine, Akiyama et 
al. (1989) proposed Gaussian machines which combine features of continuous 
Hopfield networks and the Boltzmann machine. Gaussian machines have con­
tinuous outputs with a deterministic transfer function like the Hopfield network, 
but random noise is added to the external input of each neuron. This noise is 
normally distributed (or Gaussian) with a mean of zero and a variance controlled 
by a temperature parameter T. However, based upon Szu's fast simulated an­
nealing (Szu and Hartley, 1987) which uses Cauchy noise to generate new search 
states and requires only aT/ log(T) cooling schedule, the Cauchy machine (Szu, 
1988; Takefuji and Szu, 1989) was proposed to improve solution quality. The 
Cauchy distribution is thought to yield a better chance of convergence to the 
global minimum than the Gaussian distribution. Furthermore, Cauchy noise 
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produces both local random walks and larger random leaps in solution space, 
whereas Gaussian noise produces only local random walks (Takefuj i and Szu, 
1989). The noise is incorporated into the transfer function, while the outputs of 
the Cauchy machine are binary. In the high-gain limit of the stochastic transfer 
function (T near zero), the Cauchy machine approaches the behavior of the dis­
crete (and deterministic) Hopfield network. Another stochastic approach, which 
has been very successful is mean-field annealing (Peterson and Soderberg, 1989; 
Van den Bout and Miller, 1989, 1990), so named because the model computes 
the mean activation levels of the stochastic binary Boltzmann machine. 

2.4.2. Chaotic models 

Recently, chaotic neural networks ( CNN) exploiting the rich behaviors of non­
linear dynamics have been developed as a new approach to extend the problem 
solving ability of standard Hopfield neural networks (Aihara, 1994). Aihara et 
al. (1990) first proposed a general neuron model with chaotic dynamics, which 
constituted a CNN that encompassed various associative and back-propagation 
networks. The model was applied to solve the TSP with higher efficiency and 
better solution quality than the traditional Hopfield network (Aihara et al., 
1990; Yamada et al., 1993). Although chaotic dynamics was found to improve 
optimization, the unstable neuron outputs can be difficult to interpret, and a 
convergent network is more desirable for practical purposes. To meet both ends, 
a deterministic simulated annealing algorithm was proposed by Chen & Aihara 
(1995), where the self-feedback strength wii acts as the bifurcation parameter 
of the network dynamics. As the parameter is gradually reduced, a reverse 
bifurcation process known as chaotic simulated annealing (CSA) results , in con­
trast with stochastic simulated annealing (Kirkpatrick et al., 1983). The process 
starts with an unstable phase for searching global minima, followed by a sta­
ble, convergent phase. To show the effectiveness of the algorithm, the TSP, a 
maintenance scheduling problem (Chen & Aihara, 1995) and theN-queen prob­
lem (Kwok et al., 1998a) were computationally solved with high efficiency and 
solution quality. Methods combining conventional heuristic techniques like the 
2-opt algorithm, tabu search, etc. with CNN were investigated by Hasegawa et 
al. (1997a; 1998) with good performance even on larger problems. To better 
understand the theoretical aspects of CNN's, the existence of chaotic structure 
and stability of discrete-time neural networks underlying the CSA algorithm 
was proved by Chen & Aihara (1997), and a dynamical mechanism explain­
ing the efficiency and novel properties of CNN for optimization was described 
by Tokuda et al. (1997). This research suggests a crisis-induced intermittent 
switching phenomenon to be the dynamical mechanism of chaotic search for 
minima in the Hopfield energy landscape. 

Another general approach to CNN involves Euler discretization of the con­
tinuous Hopfield network. In the framework of globally coupled map (GCM) dy­
namics, Nozawa (1992) proposed an alternative approach to construct a CNN by 
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using Euler discretization on the Hopfield network with negative self-couplings, 
which was equivalent to the simplest version of Aihara et al.'s model (1990). 
The TSP was solved computationally with this GCM model, and was found to 
be more efficient than the Hopfield network and some stochastic networks like 
the Boltzmann machine and Gaussian machine. More recently, Wang and Smith 
(1998) proposed a CSA scheme with the time step of the Euler discretization 
as the bifurcation parameter that controls the reverse bifurcation process. This 
provides chaotic minima searching as well as convergence to a stable solution. 
For some parameter values, this model is equivalent to the one proposed by 
Chen and Aihara (1995) but the underlying chaotic mechanism is quite differ­
ent. 

The ability of various CNN models to improve optimization raises questions 
as to which chaotic properties most benefit optimization performance and how 
they arebrought about. One way to approach the problem is to add external 
noise, correlated or not, into the network, and compare its response and op­
timization performance with CNN's that generate chaotic dynamics internally. 
Hayakawa et al. (1995) compared the effects of adding random noise and the 
logistic map time series into the Euler discretized Hopfield network, and found 
that short time correlation of the chaotic time series is effective for the search 
of global minima. Asai et al. (1995) also experimentally studied how autocor­
relation in various chaotic time series improves the tracing of optimal solutions 
when solving the TSP. A more detailed study along this line by Hasegawa et 
al. (1997b) added surrogates of the logistic map time series to a Hopfield-like 
network and compared the TSP optimization performance to using random and 
1/ r noise. Other research includes using the Henon map time series as noise 
(Zhou et al., 1997), and solving the N-queen problem with added logistic map 
noise (K wok et al., 1998b). It should be noted that although various methods 
of generating chaotic noise have been found to improve optimization, there is 
no strong evidence of random noise being less effective in general. Also lacking 
is a detailed account of the underlying mechanism for chaotic noise to improve 
optimization performance. 

From the brief outline given above, we can see that there are currently two 
major classes of CNN. One is the internal approach, where chaotic dynam­
ics is generated within the network controlled by some bifurcation parameters. 
Examples of this type include Chen and Aihara's decaying self-feedback CSA, 
Wang and Smith's decaying timestep CSA, and Nozawa's GCM model. The 
other class contains CNN models employing an external approach, where an 
externally generated chaotic signal is added to the network as perturbation. 
All CNN's utilizing externally generated chaotic noise belong to this class. To 
seek a better understanding of the functional aspects of chaotic dynamics ex­
isting in various CNN's, a unified framework was recently proposed (K wok & 
Smith, 1999a). It allows us to compare and highlight important common fea­
tures among the many CNN models, as well as to draw new classifications and 
insights, thereby providing a basis for constructing new models. 
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2.5. Comparison of gradient-based neural etworks with other heuris­
tics 

Hopfield and Tank successfully applied their approach to several optimization 
problems including an analog-to-digital converter, a signal decision circuit, and 
a linear programming model (Tank and Hopfield, 1986). It was, however , their 
results for the combinatorial TSP that attracted the most attention. Hopfield 
and Tank (1985) simulated a network of 10 cities (100 neurons), chosen at ran­
dom on the interior of a 2-dimensional unit square. Their results for small-sized 
problems were quite encouraging. For a 10-city problem, and for 20 random 
starts, 16 converged to valid tours. About 50% of the trials produced one of the 
two known shortest tours. Hopfield and Tank then studied a 30 city (900 neu­
ron) problem. Since the time required to simulate the differential equations 
on a computer scales worse than O(n3 ) , their results were fragmentary. They 
were unable to find appropriate penalty parameters to generate valid tours, 
and commented that "parameter choice seems to be a more delicate issue with 
900 neurons than with 100". In fact, their best solution was around 40% away 
from the best known solution of Lin and Kernighan (1973) on the same 30-city 
problem. 

Since then, the many modifications to the original H- T approach have 
seen considerable improvement in these results. A recent fuzzy modification 
of Aiyer's subspace approach yielded nearest-city quality tours for up to 100 
randomly generated cities (Wolfe, 1999). Peterson and Soderberg reported so­
lutions for 200 cities using a mean field annealing neural network that were only 
slightly worse than simulated annealing results (Peterson and Soderberg, 1993). 
These results are still a long way from those that can be obtained by well-known 
heuristics. For example, the iterated Lin-Kernighan heuristic can routinely find 
solutions within 1% of optimal for problems with thousands of cities ( Johnson, 
1990) . Even other neural network approaches such as the deformable template 
methods discussed in the next section yield considerably better results than the 
Hopfield variations seem capable of. 

The advantage of the H- T approach to combinatorial optimization, however, 
lies in its generalization abilities. The H- T approach can be applied to any 
combinatorial optimization problem that can be formulated within quadratic 
terms. It does not rely on the geometry of the problem like many of the TSP 
heuristics or the deformable template methods. The many variations of the 
Hopfield network that have emerged over the last decade or so have been ap­
plied to a wide range of classical combinatorial optimization problems including 
assignment problems, constraint satisfaction problems, graph problems , integer 
programming, and scheduling problems to name a few. We refer the interested 
reader to Smith (1999) for a survey of these and other applications. Many of 
the results are competitive with other meta-heuristic approaches. One of the 
deficiencies of the literature in this area, however, is the fact that few studies 
are established as comparative analyses, aimed to determine the competitive-
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ness of the proposed neural network approach with the best known heuristic or 
meta-heuristic approaches to the same problem. This makes a true evaluation 
of the performance of Hopfield-type models difficult. As Looi (1992) noted , "al­
though there is a large collection of operations research based and other methods 
for solving all of these problems, comparisons between neural network methods 
with existing methods have been lacking". Solutions to this problem in the 
form of guidelines for experiments have now been published (Barr et al., 1995; 
Hooker, 1995) and we hope that researchers will soon provide enough studies of 
this nature, so that an accurate evaluation of the performance and potential of 
Hopfield-type neural networks on a wide variety of problems can be established. 

3. Deformable template neural networks 

Elastic nets (EN) and Self-organizing maps (SOM), often referred to as de­
formable templates, provide alternatives for solving low-dimensional problems 
with a geometric interpretation, like the Euclidean TSP. These models are fun­
damentally different from the H- T approach, as they evolve in a low-dimensional 
continuous search space. In the following, we describe both models for solv­
ing the Euclidean TSP. We then establish some relationships between the two 
models and present a few extensions, including a generalized version of the 
self-organizing map that is suitable for non-geometric problems. 

3.1. Elastic net 

The elastic net (EN) of Durbin and Willshaw (1987), originated from a previous 
work by Willshaw and von der Malsburg (1979). It is an iterative procedure 
where M points, with M typically larger than the number of vertices (or cities) 
N, are lying on a circular ring or "rubber band" originally located at the center 
of gravity of the vertices. The rubber band is gradually elongated until it is 
sufficiently close to each vertex to define a tour. During that process two forces 
apply: one for minimizing the length of the ring, and the other for minimizing 
the distance between the vertices and the ring. These forces are gradually 
adjusted as the procedure evolves. Figures 1(a), 1(b) and 1(c) show how the 
elastic net typically evolves over time. In the figure, the small black circles are 
the points located on the ring which are migrating towards the vertices in the 
Euclidean plane. When there is a point on the ring sufficiently close to each 
vertex, a solution is obtained, as shown in Figure 1(d). 

This model will now be presented more formally, using a pseudocode nota­
tion. Let Xi be the coordinates of vertex i, i = 1, ... , N, Yj the coordinates of 
ring point j, j = 1, ... , M, and dx;Y1 the Euclidean distance between i and j. 
We have: 

Step 0: K ,_ K 0 ; Yj ,_ Yl, j = 1, ... ,M ; 

Step 1: Repeat rep times 
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1.1 Update the coordinates Yj of ring point j, j = 1, ... , M 

1. 2 If min1, ... ,M dx;Y; ~ c, i = 1, ... , N, then STOP 

Step 2: K+-aK (O<a<1) 

Step 3: Go back to Step 1 

Step 0 initializes the scale parameter K (see below) and selects an initial 
location for the points on the ring. In Step 1, the points migrate towards the 
vertices through an iterative procedure governed by parameter K. After a fixed 
number of iterations, related to the size of the problem, the value of parameter 
K is slightly reduced and the migration process is pursued with this new value. 
This is repeated until either K becomes smaller than some preset Kmin value 
or there is a point on the ring sufficiently close to each vertex, as specified by 
the tolerance c. Parameter K is reminiscent of the temperature parameter in 
the simulated annealing algorithm, as its value must be progressively reduced 
according to a pre-specified "cooling schedule" to obtain a good solution to the 
problem. An alternative or additional stopping criterion for EN is to iterate 
until some preset K min value is reached and then, to associate each vertex with 
the closest ring point. 
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Figure 1. Evolution of the elastic net over time (a) (b) (c) and the final tour 
1-2-3-4-5 (d). 
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In Step 1.1, the coordinates of each ring point j are updated as follows: 

where 

.0.Yj = a L Wij(Xi- Yj) + (JK(Yj+l + Yj-1- 2Yj) (16) 
i=l , ... ,N 

i = 1, ... ,N (17) 

-d2 

t/J( d, K) = e 2i<2 (18) 

where, a, (3 are constant parameters and wij is a normalized measure of the 
"attraction" of vertex i on ring point j. In equation (16), the a term drives 
the points on the ring towards the vertices, and the (3 term keeps neighboring 
points on the ring together during the migration process to produce a short tour 
(i.e. neighboring points are associated with vertices that are close in distance). 
These two forces are illustrated in Figure 2. Force (1), derived from the a term, 
drives point j towards vertex i. Force (2), derived from the (3 term, is more 
easily understood by considering the following equivalence 

(19) 

It thus defines a tension on the ring that keeps neighboring points together. 
Through parameters a and (3, the relative strength of the two forces can be 
regulated. 

vertex i 

/ 

j+l 

Figure 2. Forces that apply on ring point j. 
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It is worth noting that the update equations (16) can be expressed as the 
derivative of an appropriate energy function E K, namely 

b.Y = - KaEg 
1 dY J 

(20) 

where 

L ln L <P(dx,y1 ,K)+~ L 4 1 y1+l (21) 
i= l , ... ,N j=l, ... ,M j=l , ... ,I\1 

This algorithm thus finds a local minimum of such energy function by per­
forming a gradient descent in a continuous two-dimensional Euclidean space. 
When K approaches 0 and the ratio of M to N approaches infinity, minimizing 
the energy is equivalent to minimizing the total length of the ring and, thus, 
the solution value. Since the shape of the energy function and its local minima 
change with K, the function is gradually modified through a slow reduction of 
the value of parameter K until the minima correspond to good TSP tours. 

3.2. Self-organizing map 

A self-organizing map is an instance of the so-called competitive neural networks 
(Kohonen, 1982, 1988) . It is composed of a layer of input units fully connected 
to a layer of output units, the latter being organized according to a particu­
lar topology, such as a ring structure. Self-organizing maps basically produce 
topological mappings from high-dimensional input spaces to low-dimensional 
output spaces. In the case of a ring structure, the p-dimensional input vectors 
are associated with output units or 1-dimensional positions on the ring. The 
mapping is such that two input vectors that are close in the input space will be 
associated with units that are close on the ring. 

Figure 3. A SOM 

In Figure 3, a SOM with P = 2 white input units and M = 3 black output 
units is shown. In this figure, Y11 and Y21 denote the weights on the connections 
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from the two input units to output unit 1, and Y1 = (Y11 , Y21) is the weight 
vector associated with output unit 1. In a TSP context, each input vector 
corresponds to the coordinates of a vertex. We then want vertices that are close 
in distance to be associated with units that are close on the ring to obtain a 
short tour. 

This is obtained through the following iterative adjustment of the connection 
weights. Let us assume that we have a SOM with two input units and M output 
units on a ring, each with weight vector Yi = (Y1j, Y2j), j = 1, ... M, M~ N. 
Let Xi= (xi,Yi) be the coordinates of vertex i, i = 1, .. . N. and dx;Yi' the 
Euclidean distance between vertex i and output unit j. Then, we have: 

Step 0: Initialization. it-0; Yjt-Yl; j=1, . .. ,M 

Step 1: Competition. 

1 . 1 i ,_.. ( i + 1) (mod N + 1) 

1. 2 Oj ,_.. dx;Yj, j = 1, ... M 

1. 3 Oj • t- minj=l, ... M { Oj} 

Step 2 : Weight adjustment. 

j = 1, ... , M, 0 < J-l < 1 

Step 3: If minj=l, ... M dx; yJ :S c:, i = 1, ... , N, then STOP 

Step 4: Go back to Step 1. 

In Step 1, the winning output unit j* is the one with the closest weight vector 
to the current vertex in Euclidean distance. In Step 2, function f is typically a 
decreasing function of the lateral distance between output units j and j* on t he 
ring (i.e., if t here are k units on the ring between the two, the lateral distance is 
k + 1) and its range is the interval [0 , 1]. T hus, the weight vector of t he winning 
unit j* and the weight vectors of units that are close to j* on the ring all move 
towards the current vertex, but with decreasing intensity as the lateral distance 
to the winning unit increases. Typically, function f is modified as the algorithm 
unfolds to gradually reduce the magnitude of the weight adjustment. At the 
start, all units that are close to the winning unit on the ring "follow" that unit 
in order to move in the same area. At the end, only the weight vector of the 
winning unit significantly moves towards the current vertex. 

This iterative adj ustment procedure is repeated , through multiple passes 
over the set of vertices (see the modulo operator in Step 1.1) until t here is a 
weight vector sufficiently close to each vertex. Other or additional stopping 
criteria may be considered, like a fixed number of passes through t he vertices 
or stabilization of the competition, when it is observed that the winner for each 
vertex does not change from one pass to another. The association of each vertex 
with a weight vector (i.e., an output unit with an index or position on t he ring) 
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produces a tour. If we consider the two-dimensional weight vector associated 
with an output unit on the ring as the location of that unit in Euclidean space, 
Figure 1 is still a good way of visualizing the evolution of the SOM with the 
output units on the ring migrating towards the vertices. 

3.3. Extensions 

Since both EN and SOM exploit the geometry of the problem, they have mostly 
been applied to the TSP. A few extensions are reported in the literature for the 
multiple TSP (Goldstein, 1990) and vehicle routing problems (Ghaziri, 1991, 
1996; Matsuyama, 1991; Vakhutinsky and Golden, 1994; Potvin and Robillard, 
1995). In these applications, multiple tours are formed through the migration in 
parallel of multiple rings. In the case of the vehicle routing problem, the capacity 
or time constraints typically break the geometrical nature of the problem and 
the algorithm must be modified accordingly. The SOM described in Ghaziri 
(1991), for example, involves competition for the current vertex at two different 
levels: one within each ring based on geometric properties and the other among 
the rings to take into account the capacity constraints. 

3.4. Generalization to non-geometric problems 

Some recent works have applied SOM concepts to non-geometric problems, like 
the generalized quadratic assignment problem (Smith, 1995) . These approaches 
depart from the traditional ring structure and exploit more complex topolo­
gies. The concept of self-organization is embedded in a combinatorial frame­
work rather than within a deformable template structure. This approach, known 
as the self-organizing neural network (SONN), was first proposed by Smith in 
1995, and has been expanded to include measures for improving the optimiza­
tion performance such as normalization and annealing (Guerrero et al., 1998; 
1999; 2000; Lozano et al., 1998) and chaotic perturbation and analysis (Kwok 
and Smith, 2001). 

The idea behind the SONN (Smith, 1995; Smith et al., 1996; 1998) acknowl­
edges that the optimal solution to many combinatorial optimization problems 
involves finding the best location for rows of a permutation matrix, so that the 
solution is both feasible and minimizes the cost function. For example, a solu­
tion to the Travelling Salesman Problem may be represented as a permutation 
matrix 

X --(~~ 0~1 ~~ 0~1) where Xij = 1 

if city j is visited in position i. Clearly, this solution indicates that the salesman 
visits cities in the order B, D, A, C. Each row (vector) corresponds to a particular 
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city, and we need to find the optimal arrangement of the four vectors so that 
the tour length is minimized (given the inter-city distances, etc.). The SONN 
views this problem as a competition: when presented with a given city via a 
vector (row of the permutation matrix), a competition takes place to determine 
the best row of the permutation matrix in which to place the city based on the 
objective function cost. This competition is conducted in a manner similar to the 
Kohonen self-organizing feature map (Kohonen, 1982), where a winning neuron 
(row number) is defined, and a neighborhood around the winner is also created. 
The architecture used is the same as Kohonen's: an input layer is connected via 
weights to a row of neurons. The input layer presents rows of the permutation 
matrix, while the output neurons correspond to the desired location (row of the 
permutation matrix) for the current input pattern. The weights are continuously 
valued, between zero and one, and indicate the degree to which each item (city 
in this example) belongs in each position. Over time, these weights approach 
binary states. Once an input is presented to the network, and the winning 
neuron has been determined, the weights connecting the input layer to the 
winning neuron and its neighbors are updated using a rule similar to Kohonen's 
to reflect the learning process. The main difference between the SONN and 
Kohonen's self-organizing process is in the definition of the neighborhood. The 
neighbors of the winning neuron are defined according to the cost function of 
the optimization problem, rather than the geographic location of the neurons. 
This difference is crucial, and has enabled the process of self-organization to be 
applied to a wide range of combinatorial optimization problems, thus escaping 
the previous limitation of the research to problems that could be embedded in 
a two- dimensional plane. 

One of the known limitations of the SONN however , is its tendency to os­
cillate during the optimization process (Smith, 1995; Smith et al., 1996; 1998). 
Several methods have been used to overcome these oscillations including: adding 
a penalty term to the cost calculation to penalize too many contradictory weight 
changes (Smith et al, 1998); incorporating normalization and annealing (Guer­
rero et al., 1998; 2000); and adding a conscience mechanism that makes a neuron 
feel "guilty" if it is declared the winner too often (a common cause of oscilla­
tions) (Guerrero et al., 1999). Our recent research has investigated the role 
of chaos in helping to control the behavior of the SONN weight adaptations, 
and suggests some promising future directions (Kwok and Smith, 2001). Our 
analysis revealed that the SONN is extremely rich in nonlinear system dynamics 
due to interactions between the neurons and interactions between the weights of 
each neuron. For certain annealing schedules the SONN dynamics results in a 
period-doubling route to chaos, and the high feasibility bands correspond to the 
bifurcation regions. A strange attractor has also been found which matches the 
repeated folding and stretching of the state space during the weight updating 
and normalization procedure of the SONN (Kwok and Smith , 2001). We have 
therefore shown that the SONN contains significant hidden nonlinear system 
dynamics that play a critical role in the optimization performance of the model. 
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Exploiting these rich dynamics, much like chaos has been used to assist the 
performance of the Hopfield neural network, is therefore a promising research 
direction for this broadly applicable self-organizing approach. 

3.5. Comparison of deformable templates with other heuristics 

Both SOM and EN are closely related. They both involve migration of a ring 
towards vertices, although the mechanism for updating the position of the ring 
points is different. In the case of EN, the update is defined through the mini­
mization of an appropriate energy function. There is no need to define such a 
function in the case of the SOM. 

It is difficult to get an accurate picture of the comparative performance of the 
two models from the current literature. The results are scattered in different 
journals from different research areas. Computation times are often missing 
and comparisons with alternative methods are rare. Furthermore, the problems 
are not taken from standard benchmarks. Overall, it seems that both EN and 
SOM can find good quality solutions to medium-sized TSPs. For problems with 
up to a few hundred cities, EN often ends up with slightly better solutions 
(Angeniol et al. , 1988). However, it is also more computationally expensive, as 
it requires more iterations to converge (see, e.g., the slow cooling schedule of 
scale parameter K). SOM scales up better and has been applied to much larger 
problems. In Favata and Walker (1991) , for example, the authors report results 
on problems with up to 10,000 vertices. The solutions obtained were about 5% 
worse than those produced by a simulated annealing heuristic . 

4. Comparison of neural approaches 

While the previous sections presented a review of gradient-based and deformable 
template neural network models , this section aims to compare these approaches 
across a set of measures: efficiency, solution quality, and scope. 

4.1. Efficiency 

The efficiency of the Hopfield network for solving combinatorial optimization 
depends significantly on the way in which the problem is mapped onto the net­
work. The encoding of the variables, constraints, and objective function into 
the Hopfield energy function and the values of the penalty parameters combine 
to determine the complexity of the energy surface. This, in turn, affects the de­
gree to which the Hopfield network dynamics is able to search for local minima. 
It is interesting to note that almost all of the Hopfield network applications to 
the TSP have been based on the formulation used by Hopfield and Tank which 
uses a decision variable denoting if a city belongs to a given position in the tour 
sequence. The operations research community, however, has based many of its 
TSP methods on another formulation: here the decision variable Xij denotes if 
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city i follows city j in the tour sequence. This alternative formulation results in 
a linear objective function, but some complex constraints are needed to avoid 
sub-tours. Hopfield and Tank's method cannot readily be applied to the linear 
formulation due to the difficulty of encoding this constraint (Smith et al., 1996). 
Nevertheless, this raises the issue of the existence of alternative formulations for 
a given problem, and the degree to which this impacts the efficiency of any 
resulting Hopfield networks. A recent study of a Hopfield network application 
to school timetabling has shown that where alternative formulations exist for 
a problem, the chosen formulation greatly impacts the dimensionality of the 
neurons , the number of constraints needed to represent the problem, and the 
complexity of the energy surface (Smith et al. , 1999). 

While the Hopfield network requires N 2 binary neurons to solve t he TSP, t he 
elastic net algorithm only requires 2M ring points, where M is usually selected to 
be around 2.5* N (see Durbin and Willshaw, 1987). Updating the position of the 
ring points is computationally expensive, however , as the update of a single point 
depends on the position of every vertex through the attraction coefficients W-;j. 

Furthermore, these coefficients must be recomputed at each iteration. For M ~ 
N, the complexity of each iteration is thus O(N2 ) . Different approaches have 
been proposed to reduce this burden. A natural way of addressing t he problem 
without degrading too much solution quality is to consider only vertices that 
have a significant impact on the ring points (Boeres et al., 1992; Vakhutinsky and 
Golden, 1995) . In other words , attraction coefficients that are not of sufficient 
magnitude, because their vertices are too far from the corresponding ring points, 
are filtered out. A large number of coefficients may be eliminated in this way 
because the function 4;( d, K) decreases quickly as the square of the distance 
d2 grows. Hierarchical elastic nets have also been proposed (Vakhutinsky and 
Golden , 1995) where the basic idea is to divide the area containing the vertices 
into smaller subareas and to replace the vertices in each subarea by a single 
vertex located at their center of gravity. As the algorithm unfolds , the subareas 
are progressively reduced until each subarea contains a single vertex. Working 
on smaller aggregated problems at the start allows the algorithm to find the 
general shape of the solution more quickly. 

Improving the efficiency of the Self-Organizing Map has also been a concern 
of researchers. As noted by different authors (Burke and Damany, 1992; Favata 
and Walker, 1991), significant gains in efficiency are obtained by reducing the 
number of ring points that move towards the current vertex (i.e., those that are 
close to the winning point) and also by reducing the magnitude of the move. In 
Step 2 of the algorithm (see section 3.2) , the update mechanism is governed by 
function f(j, j*) which has a form like: 

{ 
( 

d" ) {3 

f(j,j*) = 1 - 1* , 
0, 

if d'Jj• < L, 

otherwise 

where d'jj• = min( lj- j* l,m -lj- j*l). 

(22) 
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In this definition, d" is the lateral distance on the ring between point j 
and the winning point j* (assuming that the points on the ring are indexed 
from 1 to M), and Jx j is the absolute value of x. This function is such that it 
always returns a value of 1 for the winning point, and this value decreases as the 
lateral distance from the winning point increases; when the lateral distance goes 
beyond parameter L, the points do not move at all. The value of parameter (3 
is increased from one pass to another to progressively reduce the magnitude of 
the move of neighboring units. At the end, when (3 is sufficiently large, only the 
winning unit moves towards the current vertex and separates from its neighbors 
to fix the solution. 

4.2. Solution quality 

The traditional Hopfield neural network has difficulty in minimizing the com­
peting terms in the energy function, and is well known for its tendency to 
yield infeasible or poor-quality solutions. As discussed in Section 2.4, there 
have been numerous attempts to overcome this limitation by either deriving 
alternative energy function forms to reduce the number of local minima, or by 
trying to balance the penalty factors. The choice of penalty factor values affects 
the contour of the energy function surface, and thus greatly affect the ability 
of the Hopfield network to find local minima of the optimization problem. For 
many types of constraints, the penalty factors can be treated as equivalent (e.g., 
penalty factors for row and column constraints in the TSP should be identical, 
since these constraints are equally important and equally difficult to satisfy) . 
This observation can often reduce the search space for the optimal penalty factor 
combination. Many researchers have attempted to eliminate the need for trial 
and error parameter selection by examining the theoretical balancing of terms in 
the energy function. For the TSP, Hedge et al. (1988) showed that while some 
regions of parameter space can be identified that yield better quality results, the 
size of these regions diminishes rapidly as the problem size increases. Kamgar­
Parsi and Kamgar-Parsi (1992) developed a systematic method for selecting the 
penalty factors based on analyzing the dynamical stability of feasible solutions. 
Trial and error searching, however, does not necessarily preclude a systematic 
method. The efficiency of searching for optimal penalty parameter values can 
be improved by adopting the following systematic approach: first find values 
for the penalty factors that provide a feasible solution, holding the objective 
function penalty factor constant at unity. Once a combination of penalty fac­
tors has been found that consistently yields feasible solutions, slowly start to 
increase the objective function factor in an attempt to produce less expensive 
feasible solutions. As soon as feasibility is lost, the bounds on this parameter 
can be established. This much reduced search space can then be explored in 
more detail to obtain the combination of penalty factors that yields consistently 
feasible and optimal solutions. 
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One of the factors that has made it difficult for researchers to reproduce 
Hopfield and Tank's original results is that they omitted certain critical details 
in their paper about the method used to simulate the differential equation, and 
the termination criteria. Wilson and Pawley (1988) experimented with three 
different termination criteria in an effort to reproduce the results: the network 
simulation was terminated if i) a valid tour was found, ii) the network had 
frozen as measured by no neuron v values changing by more than 10-35 since 
the last update, and iii) more than 1000 updating iterations had elapsed (a 
"time-out" test, useful for catching cyclic and oscillatory convergence). Wilson 
and Pawley found that 1000 iterations were sufficient for their experiments, 
and increasing the "time-out" range to 10,000 iterations did not produce any 
improvement in results. It is important to be aware, however, that the quality 
of the reported results is usually affected greatly by the termination criteria 
selected, and researchers need to be sure to report these accurately. 

The solution quality of the elastic net is also highly dependent on optimal 
choice of many parameters. For example, the number of ring points M to be used 
is clearly related to the number of vertices N. However, using too many points 
leads to a loss of efficiency. In the literature, M is usually around 2.5N. As 
noted by some authors (Favata and Walker, 1991), normalizing the coordinate 
vectors of the vertices can often lead to a more robust algorithmic behavior 
over different types of instances. The initial position of the ring can also affect 
the performance, and is typically around the center of gravity of the vertices. 
Good results are also reported when the points on the ring correspond to the 
convex hull of the vertex set (Burke, 1994). The parameter K also impacts the 
results greatly. When the value of parameter K is large, the energy function 
is rather smooth, but as this value is reduced a multimodal energy landscape 
emerges, where the good local minima should correspond to good tours. In 
order to obtain this result, parameter K must be slowly reduced to avoid some 
form of twisting or crossover of the ring (which typically leads to long tours). 
For example, a problem with 100 vertices was solved by Durbin and Willshaw 
(1987), by setting K to an initial value of 0.2 and by reducing it by 1% every 
25 iterations until a value in the range of 0.01-0.02 was obtained. 

The interpretation of the final configuration can sometimes impact the so­
lution quality as much as the process of obtaining the final configuration, and 
needs to be carefully considered. Two or more different ring points may be 
associated with the same vertex if they are all within the tolerance of that ver­
tex (this is sometimes referred to as a spike). Conversely, a ring point may be 
associated with two or more vertices. In such cases, the solution is not well de­
fined. In Fig. 4(a), two ring points are within the tolerance of vertex 2, and two 
different sequences 1-2-3-4-5 and 1-3-4-2-5 are obtained depending of the ring 
point chosen. In Fig. 4(b), a single ring point is associated with vertices 2 and 3. 
Hence, it is impossible to know if vertex 2 is visited before or after vertex 3. One 
possible way of solving these problems is through post-processing. For example, 
all valid solutions obtainable with the current configuration can be considered 
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and the best overall solution is taken. Trying to avoid this phenomenon during 
the course of the algorithm is rather difficult. Some theoretical studies indicate 
that an appropriate setting of the /3 j a ratio (so that it is about one-half of 
the average inter-point distance on the ring) is likely to lead to fully-specified 
solutions (Simmen, 1991). 

(a) (b) 

I 

~ I G) I I G) I 
L -' L -' 

1-2-3-4-5 ? 
1-2-3-4-2-5 --> 

1-3-4-2-5? 1-2-3-4-5? 1-3-2-4-5? 

Figure 4. Solution ambiguity 

Solution ambiguity can also occur in the SOM, either because many ring 
points fall within the tolerance of a given vertex or a single ring point falls within 
the tolerance of two or more vertices. However, due to the methodology adopted 
for stretching the ring, which is based on a competition between ring points, 
it may also happen that a number of points will freeze at their initial location, 
because they never win any competition. Consequently, partially defined tours 
are obtained, where a number of vertices are "orphans" (i.e., do not have any 
close ring points). Different techniques have been proposed to alleviate this 
problem. 

i) In Angeniol et al. (1988) the implementation is based on the distinctive 
feature that ring points are dynamically created and deleted. A point is 
duplicated if it wins for two different vertices after a complete pass through 
the set of vertices. It is deleted, if it does not win after three complete 
passes. Through this mechanism, vertices are less likely to end up alone. 
Starting with a single point on the ring, the authors report that up to 
twice as many points as vertices may be created during the procedure. 

ii) In Burke and Damany (1992) , a conscience mechanism proposed by De­
sieno (1988) replaces the dynamic creation and deletion of ring points. 
A penalty is added to the distance between a ring point and a vertex, 
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based on the number of times that point has won the competition in the 
past. Consequently, frequent winners are heavily penalized in favor of 
other units. Basically, Step 1.2 (competition) of the algorithm presented 
in Section 3.2 is modified as follows for a given vertex i and ring point j: 

Step 1.2'. Oj ~ dx,Yj + rbj, 
where bj is the penalty or bias associated with ring point j. This penalty 
is typically the fraction of competitions won by ring point j in the past. 
Good results are reported with a number of ring points now equal to the 
number of vertices, leading to substantial savings in computation time. 

iii) Parameter 1 that weighs the penalty with respect to the true distance in 
the conscience mechanism, is reportedly difficult to tune. In Burke (1994) , 
a vigilant net is proposed where ring points are turned off if they win too 
often to let others win. Basically, the number of wins is recorded for each 
unit and that unit is turned off for the remaining part of the pass through 
the set of vertices, if this number exceeds some threshold value (known as 
the vigilant parameter) . At the start of the next pass, the winning score 
of all units is reset to zero. The vigilance parameter is large initially, to 
allow the vertices to win freely at the start, and is progressively reduced 
until it reaches a value of one, to let the ring points separate and converge 
towards distinct vertices. 

4.3. Scope 

The Hopfield neural network and its many stochastic and chaotic variants find 
broad applicability across a wide range of combinatorial optimization problems 
provided the objective function and constraint terms are linear or quadratic. 
Fortunately, this covers a broad class of problems including the generalized 
quadratic assignment problem, a form in which many practical COPs can be 
expressed. The deformable template approaches of the elastic net and SOM 
however , are quite restricted in their scope and applicability: the problem must 
be geometric in nature as the solut ion evolves in a geometric plane. The self­
organizing neural network (SONN) method of Smith, discussed in Section 3.4, 
extends the scope of the self-organizing principle to any combinatorial optimiza­
tion problem, regardless of the nature of the objective function, although the 
constraints are such that the solution needs to be expressed in the form of a 
permutation matrix. Recently, other neural network methods, such as the back­
propagation learning algorithm of feedforward neural networks , have been used 
to approximate complex objective functions using only a sample of data points 
(Smith and Gupta, 2001). The resulting neural model then represents a con­
tinuous and differentiable approximation to the original optimization problem, 
that can be optimized using any gradient-based or heuristic approach. 
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5. Conclusion 

This paper has reviewed the two main types of neural network models that 
can be used for combinatorial optimization: gradient-based neural networks 
including the Hopfield networks and its many variants, and the deformable 
template models of elastic nets and self-organizing maps. The review has covered 
both the theoretical aspects of their application to combinatorial optimization 
problems, as well as discussed a variety of practical considerations that affect 
the performance of the models. The original models have been discussed along 
with deterministic, stochastic and chaotic variations designed to improve their 
performance. 

From a meta-heuristics viewpoint, neural networks can be seen as an alter­
native technique with the current potential to match the performance of better 
known algorithms such as simulated annealing. This potential relies on due 
consideration of the aforementioned range of issues affecting the success and 
efficiency of the methods. The deformable template methods are well suited to 
solving loJV dimensional problems with geometric interpretation like the TSP. 
The Hopfield network method generalizes to a broad range of combinatorial 
problems, but the cost of this generalization is a reduction in efficiency and seal­
ability. Certainly, current developments in hardware implementation of neural 
architectures should see some of these limitations relaxed in future years. The 
advantage of neural networks over other meta-heuristics could then be more 
fully determined. 
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