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Abstract: Contrary to the common opinion, neural networks 
may be used for knowledge extraction. Recently, a new methodology 
of logical rule extraction, optimization and application of rule-based 
systems has been described. C-MLP2LN algorithm, based on con­
strained multilayer perceptron network, is described here in details 
and the dynamics of a transition from neural to logical system il­
lustrated. The algorithm handles real-valued features, determining 
appropriate linguistic variables or membership functions as a part of 
the rule extraction process. Initial rules are optimized by exploring 
the accuracy /simplicity tradeoff at the rule extraction stage and the 
one between reliability of rules and rejection rate at the optimization 
stage. Gaussian uncertainties of measurements are assumed during 
application of crisp logical rules , leading to "soft trapezoidal" mem­
bership functions and allowing to optimize the linguistic variables 
using gradient procedures. Comments are made on application of 
neural networks to knowledge discovery in the benchmark and real 
life problems. 

Keywords: data mining, decision support, logical rules , fuzzy 
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1. Introduction 

In many applications the rule-based classifiers may be created automatically by 
extracting the rules from data using machine learning (Mitchel, 1997), fuzzy 
logic (Kosko, 1992) or neural network methods (Duch et al., 2000). Classical 
crisp logic rules are obtained from fuzzy rules if all membership functions are 
rectangular (i .e. their values are 0 or 1). Rectangles allow to define logical lin­
guistic variables for each feature by intervals or sets of nominal values and thus 
allow to express logical rules in simple sentences like "IF the odor is fishy THEN 
the mushroom is poisonous". If rectangular functions are softened or chane-ed 
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Fuzzy logic classifiers are frequently based on a few triangular membership func­
tions for each input feature, a further simplification comparing to trapezoidal 
functions. 

If the number of rules is relatively small and their accuracy is sufficiently 
high, then rule-based classifiers are the optimal choice. Crisp logical rules are 
desirable since they are most comprehensible, but they have several drawbacks. 
First, when using crisp rules only one class is identified as the correct one, thus 
providing a black-and-white picture where some gradation could be appropri­
ate. Second, reliable crisp rules may reject some cases as unclassified. Third, 
using the number of errors given by the crisp rule classifier for the cost function 
makes optimization difficult , since only non-gradient optimization methods may 
be used. All these problems are overcome if continuous membership functions 
are used, leading to the fuzzy rather than crisp rules. Fuzzy rules have two dis­
advantages: they are not so comprehensible as the crisp rules, and they usually 
involve more parameters determining positions and shapes of the membership 
functions. 

Systems based on fuzzy logic frequently use a fixed set of membership func­
tions with predetermined shapes. Although it helps to avoid overparameteri­
zation it creates some problems. Defining linguistic variables in such context­
independent way amounts i effect to a regular partitioning of the whole input 
space into convex regions. This approach suffers from the curse of dimension­
ality, since with k linguistic variables in d dimensions the number of possible 
input combinations is kd. Fuzzy rules simply pick up those areas in the input 
space that contain vectors from a single class only, but without the possibility of 
adapting membership functions to individual clusters in a single rule they do not 
allow for optimal description of these clusters. Much better results may be ob­
tained with context-dependent linguistic variables (Duch et al., 1999), different 
in each rule. 

Machine learning methods are frequently tested in artificial, noiseless do­
mains (see the three Monk problems, Thrun et al., 1991), while their utility for 
real problems with large amount of data, overlapping classes and the need for 
simplified, although less accurate, data description is not apparent. Neural net­
works are universal classifiers used in such problems, but they have an opinion of 
being opaque black boxes. Several neural methods have been compared exper­
imentally on the mushroom and the three Monk problems benchmark datasets 
(Andrews et al., 1995) , and recently a comparison with some machine learning 
methods has been given (Duch et al., 2000). There is no reason why a simple 
classification model based on logical rules should always work, but in some cases 
it does and is certainly worth using. In many applications simple crisp logical 
rules proved to be more accurate and were able to generalize better than many 
machine and neural learning algorithms (Duch et al., 1998, 1999). One should 
always try to use the simplest description of the data possible, but not sim­
pler. In a few applications fuzzy rules proved to be more accurate (Duch et al., 
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is too large, other, more sophisticated classification models are needed - thus, 
a hybrid, neuro-logical algorithm is described in this paper. 

Although interpretation of crisp rules seems to be straightforward, in fact it 
may be quite misleading. A small change in the value of a single feature may 
lead to a complete change of the predicted class. Thus, interpretation of crisp 
rules is not stable against small perturbations of input values. Fuzzy rules are 
better in this respect since estimation of probabilities of different classes change 
smoothly. There is a tradeoff between fuzziness and the degree of precision. 
If the membership functions are too broad, all classes have similar probability. 
In the opposite case perturbation of the input vector may significantly change 
classification probabilities, even if the size of the perturbation is within the range 
of accuracy of the measured input values. Interpretation without exploration 
of alternative diagnoses may in such cases be rather dangerous. Rough rules 
suffer from the same interpretative problems even to a greater degree, because 
rough classifiers (Pal and Skowron, 1999) produce a large number of unstable 
rules (Breiman, 1998, on the importance of stability). 

Although the biggest advantage of rule-based classifiers is their comprehen­
sibility, interpretation of rules in practice is not so simple. On the other hand, 
neural networks may easily be converted into systems that are equivalent to 
crisp or fuzzy rule-based classifiers and thus may have transparent interpreta­
tion. In this paper only one classical neural model, the constructive multilayer 
perceptron (C-MLP), constrained to work as a logical-like network (hence the 
name of the method, C-MLP2LN, Duch et a!., 1998), is described. However, it 
should be clear that using neural network models based on localized separable 
transfer functions (Duch and Jankowski, 1999), such as the triangular functions, 
or soft trapezoidal functions, allows for a smooth transition from crisp to fuzzy 
rules and enables natural interpretation of rules. Such neurofuzzy systems (see 
Duch and Diercksen, 1995; Duch eta!., 1997) may also be used for quite complex 
data analysis (Duch eta!., 1999). 

In the next section a short overview of recent work on extraction of knowledge 
from data is presented. The third section describes the latest developments of 
the C-MLP2LN model and illustrates the transition process from complex data 
description to simple decision borders realized by sets of crisp logic rules. The 
fourth section deals with optimization and application of sets of rules and the 
fifth section illustrates the method on a couple of problems. The paper ends 
with a short discussion. 

2. Neural methods of knowledge extraction 

A good strategy in data mining is to extract the simplest crisp logical rules 
first. If the number of logical rules required for high accuracy of classification is 
large, then more sophisticated methods, such as fuzzy rules, capable of providing 
complex decision borders, should be used. Are neural methods competitive to 
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are two issues here: understanding what neural networks really do, and using 
neural networks to extract logical rules describing the data. There is a strong 
competition from decision trees (Quinlan, 1993, Michie et al., 1994), which are 
fast, accurate and can easily be converted to sets of logical rules, from inductive 
methods of machine learning (Mitchell, 1997), and from systems based on fuzzy 
(Kosko, 1992) and rough sets theories (Pal and Skowron, 1999). 

Despite this competition, neural networks seem to have important advan­
tages, especially for real-life problems with continuously-valued inputs. Good 
linguistic variables may be determined simultaneously with logical rules, selec­
tion and aggregation of features into smaller number of more useful features 
may be incorporated in the neural model, adaptation mechanisms for contin­
uously changing data (on-line learning) are built in, wide-margin classification 
provided by neural networks leads to more robust logical rules. An overview of 
neural methods used for extraction of logical rules has recently been published 
(Duch et al., 2000), therefore only a summary of our recent work on this subject 
is given here. 

Knowledge that is understandable to humans may come in different forms. 
The simplest form of knowledge is contained in the standard IF . . . THEN 
prepositional rules used in many expert systems. Non-standard rules, such as 
the M-of-N rules (M out of N antecedents should be true) are quite natural for 
the most common MLP neural networks, where the basic operation performed 
by the neurons is to compare weighted combination of input values with the 
threshold B. The output function 

(1) 

has usually the sigmoidal shape (for example it may be a logistic function a( I) = 
1/(1 + e-!3I), where (3 is a constant determining the slope), and becomes at the 
limit of infinite slope a step function. On the other hand, the Radial Basis 
Function (RBF) networks (Bishop, 1995) frequently use Gaussian functions as 
transfer functions . Triangular functions and symmetric trapezoidal functions 
are also radial and may be used in RBF networks. In general, the separable 
output functions 

o(X) = IT t-ti(Xi), (2) 

computing products of one-dimensional function have a straightforward inter­
pretation as the membership functions of linguistic variables (Duch and Dierck­
sen, 1995). In the MLP network "natural" membership functions are obtained 
as a difference of two sigmoidal functions, /-Li(Xi) = a(Xi) - a(Xi - Bi) or the 
product of sigmoidal functions a (Xi)(1 - a(Xi) ) in all dimensions. It is not 
difficult to prove that after normalization the two forms are identical: 

a( X+ b)(1- a( X- b)) a(X +b)- a(X- b) 
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These membership functions are easily realized using a pair of constrained 
MLP neurons (Fig. 1), where the weights are either zero or ±1 and the thresholds 
define the linguistic variables. In the limit of high gain (large (3 in logistic 
functions) they are converted into crisp linguistic variables: Sk is true if the 
input value X; E [X;,k, XI,k], i.e. linguistic variables for a given feature X; are 
parameterized by interval values Sk(Xi,k , x:,d. 

+1 b 
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X 
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Figure 1. Two sigmoidal neurons are used to construct a linguistic unit con­
verting continuous inputs to linguistic variables. Four basic types of "window" 
functions are obtained, depending on the W and S weight values. 

Since crisp logical rules are the simplest and most comprehensible, they 
should be tried first. They provide hyperrectangular decision borders in the 
feature subspaces corresponding to variables appearing in rule conditions. This 
approximation may not be sufficient if complex decision borders are required, 
but it may work quite well if the problem has an inherent logical structure. 

The classifier based on logical rules provides an approximation to the pos­
terior probability p(C;IX;M), where the classification model M is composed of 
the set of rules. Crisp rules give p( C;IX ; M) = 0, 1 but if clusters belonging to 
different classes overlap this is obviously wrong. Fuzzy rules, for example in the 
form 

11-(kl(X) 
p(Ck iX; M) = 2:::; p,(il(X), (4) 

where p,(k) (X) is the value of the membership function defined for the cluster k, 
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dependent or cluster-dependent membership functions are rarely used in 
classification systems based on fuzzy logic, although they are quite natural in the 
neurofuzzy systems (Duch and Diercksen, 1995, Duch et a!., 1997). Neurofuzzy 
systems adapt the number as well as the shapes of the membership functions 
to the data. Although various fuzzy, rough and neurof zzy systems differ in 
their ability to discover and use logical rules for data description, their ultimate 
capability depends on the decision borders they may provide for classification. 
For example, if a simple rule X1 +X2 > 1 classifies data correctly a large number 
of fuzzy or crisp rules may be created to obtain a poor description of the data, 
while systems that use rotated decision borders handle it perfectly with a single 
rule. 

Extraction of linguistic variables and sets of logical rules proceeds in the 
following manner (Duch et a!. , 2000): 

• Select linguistic variables. In case of continuous features Xi the linguis­
tic variable sk is true if the input value Xi E [Xi,k• Xf k], i. e. they are 
parametrized by interval values Sk(Xi,k, x:,JJ. ' 

• Extract rules from the data using neural, machine learning or statistical 
techniques. 

• Optimize linguistic variables (intervals they depend upon) using the rules 
and exploring the accuracy /rejection rate tradeoff. 

• Repeat previous steps until a stable set of rules is found. 
• Introduce and optimize input uncertainties. 

The last step will be explained in Section 4. We have described several meth­
ods of initial rule extraction, based on decision t rees ( usi g the SSV separabil­
ity criterion, Grqbczewski and Duch, 1999), Feature Space Mapping Network, 
search-based discretized networks and standard MLP networks trained with the 
backpropagation procedure (Duch et a!., 2000). Since the constructive MLP 
network gave very simple and accurate sets of rules in a number of applications 
we have developed it further and present the algorithm in details below. 

3. C-MLP2LN model 

MLP2LN is a smooth transformation between the MLP network and a network 
performing logical operations (Logical Network, LN) (Duch et a!., 1998). This 
transformation should simplify the network as much as possible to facilitate 
logical rule extraction. Skeletonization of a large MLP network is the method 
of choice if our goal is to fi nd logical rules for an already t rained network. Oth­
erwise, the constructive approach, starting from a single neuron and expanding 
the logical network during t raining (called further C-MLP2LN method) is faster 
and more accurate. Smooth transition from an MLP to a logical-type of network 
performing similar functions is achieved during network t raining by: 
a) simplifying the network structure by decreasing the weights during the train-
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b) gradually increasing the slope j3 of sigmoidal functions a(j3x) to obtain crisp 
decision regions; 
c) enforcing the integer weight values 0 and ±1, interpreted as 0 = irrelevant 
input, + 1 = positive and -1 = negative evidence. 

To achieve these objectives two additional terms are added to the standard 
mean square error function Eo(W) to form the total cost function E(W): 

E(W) = Eo(W) + R1 (W) + R2(W) 

= ~I: I:(vrl- Fk(x<Pl ; W))2 
p k 

AI "" 2 A2 "" 2 2 2 +2 ~ Wii + 2 ~ W;1(W;1 -1) (Wij + 1) 
i,j i,j 

(5) 

The first part is the standard mean square error measure of matching the 
network output vectors F(X(Pl; W ) with the desired output vectors y(p) for 
all training data samples X(Pl. The first regularization term RI (W), scaled 
by AI , is frequently used in the weight pruning or in the Bayesian regularization 
method (Bishop, 1995) to improve generalization of the MLP networks. The 
second regularization term R2 (W), scaled by A2 , is a sum over all weights and 
has a minimum (zero) for weights approaching zero or ± 1. 

A naive interpretation why regularization works (for a more sophisticated 
view see Bishop, 1995, and references there) is based on observation that small 
weights and thresholds mean that only the linear part of the sigmoid around a(O) 
is used. Therefore, the decision borders are rather smooth. On the other hand, 
for logical rules decision borders should be sharp and the network should be as 
simple (skeletal) as possible. Therefore the regularization term that we have 
used so far may not be the most appropriate. Another regularization term: 

A1 "" wi~ 
RI(W) = 2 L.- 1 + WlJ· ' 

t ) 

(6) 

does not grow to infinity for large weights and thus allows those weights that 
should not vanish at the end of the training to stay sufficiently large. It in­
duces an extra weight change that is easy to implement in the backpropagation 
training procedure: 

(7) 

where 17 is the learning constant . 
The first regularization term is used at the beginning of the training to force 

as many weights as possible- without a sharp increase of the mean square error 
term E0(W ) - to become sufficiently small to be removed. This term is switched 

- I , ; 
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stage of the training. This allows the network to increase the remaining weights. 
Large weights, together with increasing slopes of sigmoids, lead to sharp decision 
borders of rectangular shape. Although non-zero weights have values restricted 
to ±1, increasing the slopes {3 is equivalent to using the network with one, large 
non-zero weight value W = ±{3 with sigmoidal functions of a unit slope. 

An obvious generalization is to use several different maximal W values in 
the final network, for example by adding, after skeletonization of the network, 
the following penalty term: 

~)O'(Wij + 1)- O'(Wi1- 1)). 
i,j 

(8) 

This term will not restrict the weights to ±1 but will allow them to grow beyond 
these values. If the network is used to extract the logical rules at the end of the 
training the slopes should be infinitely steep, corresponding to infinite non-zero 
weights (in practice W = ± 10000 is used), so t hat nothing is gained. However, if 
the final goal is a hybrid, network-rule based neuro-logical system that provides 
logical description of data whenever possible, and more complex decision borders 
wherever necessary, this may be an attractive solution. 

The architecture of the network is presented in Fig. 2. Logical (binary) 
inputs may be directly connected to the rule nodes (R-nodes), while all continu­
ous inputs go through L-units creating linguistic variables. In some applications 

x4---­
A-units L-units 

Figure 2. MLP network with linguistic and rule units. An additional aggregation 
layer provides the Xi inputs to the L-units; X 1- X3 are real-valued, X4 is a logical 
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with a large number of features an aggregation of features belonging to the 
same type is possible, leading to a smaller number of linguistic variables that 
carry more information. Groups of features that are of the same type are com­
bined together by an additional layer of neurons between the input and the 
1-units. These aggregation units (A-units) should incorporate domain knowl­
edge about the type of input features and usually may be linear. In some cases 
one may use information theory or separability criteria (Wettschereck, 1997) to 
set up the weights for these units, decreasing the number of adaptive parameters 
during the network training. 

Initial knowledge about the problem may be inserted directly into the net­
work structure, defining initial network parameters and structure that is modi­
fied during on-line training in view of the incoming data. Since the final network 
structure becomes quite simple, insertion of partially correct rules to be refined 
by the learning process is quite straightforward. 

The training proceeds separately for each output class. Although the method 
works with general multilayer backpropagation networks we recommend the C­
M1P21N constructive procedure that frequently leads to a satisfactory solution 
in a much faster way. This is due to the fact that no experimentation is needed 
to determine the network architecture and that a single neuron is trained at 
a time instead of all neurons simultaneously. While the actual differences in 
timing strongly depend on the problem, the constructive M1P21N method has 
frequently been more than two orders of magnitude faster than the standard 
network. 

As with all neural procedures, for some data the network training may slow 
down and require some experimentation so the procedure is not completely 
automatic. Typical parameter values that work in most cases are given in the 
description of the training procedure here. 

1) Set up the structure of the aggregation layer and create 1-units for contin­
uous inputs, usually 1-3 units per input (too small number of the linguistic 
variables will lead to low accuracy of rules). 

2) Create one hidden neuron (R-unit neuron) per class. 
3) Train the neuron on data for the first class using backpropagation proce­

dure with regularization. Start with small ,\ 1 = w-5 and .-\2 = 0 and the 
unit slope a-((3x), (3 = 1. 

4) If convergence is too slow add another R-unit neuron and train two neurons 
simultaneously; in rare cases training even more neurons may significantly 
speed up the training. 

(a) Train as long as the error decreases; then increase .-\1 t- 10,\1 and 
the slope of sigmoidal functions (3 t- (3 + 1 and train further; repeat 
this step until a sharp increase of the error is noticed when .-\1 is 
increased. 

(b) Decrease .-\1 slightly until the error is reduced to the previous value 
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(c) Take ..\2 = ..\ 1 and put ..\ 1 = 0; train slowly increasing the slopes 
and ..\2 until the remaining weights reach 0 ± 0.05 or ±1 ± 0.05. 

(d) Set very large slopes (3 ~ 1000 and integer weights 0, ±1. 

5) Analyze the weights and the threshold(s) obtained by checking the combi­
nations of linguistic features that activate the first neuron( s). This analysis 
allows to write the first group of logical rules that cover the most common 
input-output relations. 

6) Freeze the weights of existing neurons during further training. This is 
equivalent to training only new neurons (usually one per class at a time) . 

7) Add the next neuron and train it on the remaining data in the same way 
as the first one. Connect it to the output neuron for the class it belongs 
to (if more than one R-neuron for this class has been created). 

8) Repeat this procedure until all data are correctly classified, or the number 
of rules obtained grows sharply, signifying overfitting (for example one or 
more rules per one new vector classified correctly are obtained) . 

9) Repeat the whole procedure for data belonging to other classes. 

The network expands after a neuron is added and then shrinks after connec­
tions with small weights are removed. A set of rules R 1 V R2 V . . . V Rn is found 
for each class separately. The output neuron for a given class is connected to 
the hidden neurons created for that class - in simple cases only one neuron may 
be sufficient to learn all instances, becoming an output neuron rather than a 
hidden neuron (Fig. 3). Output neurons performing summation of the incom­
ing signals are linear and have either positive weight + 1 (adding more rules) or 
negative weight -1. The last case corresponds to those rules that cancel some 
of the errors created by the previously found rules that were too general. They 
may be regarded as exceptions to the rules. 

C1 
x3 

C2 
x4 

C3 

Figure 3. Structure of the simplest network solving the Iris problem. 

Since each time only one neuron per class is t rained the C-MLP2LN training 
is fast. Both standard MLP architecture with linguist ic inputs or the L-R 
network may be used with the C-MLP2LN training algorithm. The first neuron 
for a given class learns the most general pattern, covering the largest number of 
instances. Therefore rules obtained by this algorithm are ordered, starting with 
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cases. An optimal balance between the number of rules and the generalization 
error is usually obtained when only the rules that cover larger number of cases 
are retained. The final solution may be presented as a set of rules, or as a 
network of nodes performing logical functions, with hidden neurons realizing 
the rules, and the hidden-output neuron weights set to ±1. However, some 
rules obtained from analysis of the network may involve spurious conditions 
and therefore the optimization and simplification steps are necessary. 

The ..\ 1 and ..\2 parameters determine the simplicity/ accuracy tradeoff of the 
generated network and extracted rules. If a very simple network giving only a 
rough description of the data (and thus simple logical rules) is desired, ..\ 1 should 
be as large as possible. Although one may estimate the relative size of the 
regularization term versus the mean square error (MSE) a few experiments are 
sufficient to find the largest value for which the MSE is still acceptable and does 
not decrease quickly when ..\1 is decreased. Smaller values of ..\ 1 should be used 
to obtain more accurate networks (larger sets of rules). The final value of ..\2 

near the end of the training is always set to larger values than the maximum 
value of ..\1 at the beginning of the training. 

The dynamics of the learning process is illustrated using the well-known 
example of the Iris data. For each of the 3 different classes of t he Iris flowers 
50 samples are given, described by 4 numbers, the length and the width of 
flower's sepals and petals. The final structure of the simplest network that 
solves the problem is shown in Fig. 3. Only two of the four inputs have non­
zero weights and only the second class needs the full 1-unit, the weights in other 
1-units became sufficiently small to delete corresponding connections. There is 
no additional output layer since a single neuron classifies all data from the 
first class correctly (this class represents lris-setosa variety) and the two other 
neurons make only 3 errors on the remaining two classes (Iris virginica and 
versicolor). 

In Fig. 4 contours of decision borders are shown at various training stages. 
5 output values around 0.5 are shown. In the beginning of the training contours 
are broadly spaced and at the end they collapse to a single line. At the beginning 
of the training (first subfigure, after 20 learning epochs with ..\ 1 = 10-5 and 
7] = 0.1) the network has slopes {3 = 1 and the absolute value of the largest 
weight is around 4; sigmoidal functions are smooth and the position of the 
0.5 contour is influenced (through the MSE minimization) by all vectors in 
the training set . The next two subfigures show contours after 100 and 400 
epochs, with t he same learning and regularization parameters. The largest 
weight grew to about 13. The next subfigure shows contours after another 
200 epochs of training with ..\ 1 = 10-3 and {3 = 3, and the fifth subfigure 
after another 200 epochs with ..\1 = 0 and ..\2 = 10-2 . Finally, the last figure 
shows t he logical network with {3 = 10000 and ±1 weights. P lease note that the 
decision border between the first class (left corner, Iris-Setosa) and the other two 
classes is at the optimal position, x3 < 2.55. Some machine learning algorithms 
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Figure 4. Contours of decision borders during training on the Iris data. The data 
is displayed in X3 (petal length in centimeters) and x 4 (petal width) coordinates. 
Top left figure shows constant values of the network outputs at the beginning of 
the training when small slopes of the sigmoidal functions are used. During the 
training slopes gradually increase and contours collapse to a single line. The 
final subfigure at the bottom right corresponds to the infinite slopes of sigmoidal 
functions . 

vectors in it . Such systems obviously produce rules giving poor generalization 
in crossvalidation tests. 

The final rules obtained from this network are: 

IF (x3 < 2.55) THEN Classl 
IF (x4 > 1.66) THEN Class3 
IF (x3 > 2.55 1\ x 4 < 1.66) THEN Class2 

MLP is changed into a logical network by increasing the slope {3 of sigmoidal 
functions to infinity, changing them into the step-functions. Such training pro­
cess should be done carefully since very steep sigmoidal functions have non-zero 



Neural methods of knowledge extraction 1009 

vectors contributing to the learning process goes to zero. Therefore, when con­
vergence becomes slow for large slopes, it is necessary to stop network training, 
extract logical rules and optimize the intervals of the linguistic variables. This 
optimization step, described below, is performed at the level of the rule-based 
classifier, not the MLP network, and is independent of the methods used to 
generate the rules. 

4. Optimization and application of logical rules 

Optimization of linguistic variables, that the rules are based on, is done by 
minimization of the number of wrong predictions minM[Li#j P(Ci, Cj)] (where 
P( C;, Ci) is the confusion matrix for a rule-based classifier M), simultaneously 
with maximization of the predictive power of the classifier maxM [Tr P( Ci, Cj) J 

over all intervals Xk, X~ contained in model M. This is equivalent to minimiza­
tion without constraints of the following cost function E(M): 

E(M) = 1 L P(C;, Cj)- TrP(C;, Cj) 2: -n, 
i-!j 

(9) 

where parameter 1 decides whether high overall accuracy with low rejection rate 
or high reliability with larger rejection rate is desired. Minimization of this for­
mula is difficult if P( C;, Cj) depends in a discontinuous way on the parameters 
in M, requiring non-gradient minimization methods. This is unfortunately the 
case if a crisp logic rule-based classifier is used. 

Real input values are obtained by measurements that are carried with finite 
precision, therefore it is natural to assume that instead of a crisp number x 
a Gaussian distribution Gx = G(y; x, sx) centered around x with dispersion Sx 
should be used. Performing a Monte Carlo sampling from Gaussian distributions 
for all input features and using the rule-based classifier M to assign a class 
to all vectors X' from the distribution Gx = G(Y, X, Sx) allows to compute 
probabilities p(C;IX). Dispersions Sx = (sxt,Sx2 ... SxN) define the volume 
of the input space around X that has an influence on computed probabilities. 
Assuming that uncertainties s; = Sxi are independent of feature values is a 
useful approximation justified if the data is properly standardized. 

Since the erf function obtained from integration of Gaussian distributions 
is quite similar to the logistic function with a very good approximation a rule 
R[a,bj(x) which is true (R=1) if x E [a,b] and false otherwise (R=O) is fulfilled 
by a Gaussian number Gx with probability: 

p(R[a,bj(Gx) = T) ~ ri((J(x- a))- ri((J(x- b)), (10) 

where (J = 2.4/ v"isx defines the slope of the logistic function ri( x ) = 1/ (1 + 
exp(-(Jx)). For large dispersion Sx this probability is significantly different 
from zero well outside the interval [a, b]. Thus, crisp logical rules for inputs with 
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membership functions deiined by the difference of the two sigmoids, used with 
crisp input value. The slopes of these membership functions, determined by 
the parameter {3, are inversely proportional to the uncertainty of the inputs. In 
our neural network approach to rule extraction such membership functions are 
computed by the network's "linguistic units". 

The probability that x belongs to a rule R = r1 1\ ... I\ r N (each ri is the rule 
condition, a subset or an interval) may be defined as a product of probabilities 
of x E ri for i = 1, ... , N . Such definition assumes that all the attributes 
which occur in rule R are mutually independent, which is usually not the case. 
However, if the rule generator produces as simple rules as possible there should 
be no pairs of strongly dependent attributes in a single rule. Therefore, the 
product should be very close to real probability. Obviously the rule may not 
contain more than one premise per one attribute, but it is easy to convert the 
rules appropriately if they do not satisfy this condition. 

Another problem occurs when probability of x belonging to a class described 
by more than one rule is estimated. Rules usually overlap because they use 
only a subset of all attributes and their conditions do not exclude each other. 
Summing and normalizing probabilities obtained for different classes may give 
results quite different from real Monte Carlo probabilities. To avoid this problem 
probabilities are calculated as: 

P(x E C)= L (-1)1RI+Ip(x E nR), (11) 
RE2"R.c 

where Rc is a set of classification rules for class C, iR..c is a set of all subsets 
of Rc' IRI is the number of elements in R and n R is the subspace (for discrete X 

a set) created from conjunction of all rules R. If there are k rules for class C and 
they do not overlap this equation reduces to a sum P(x E R1 1\ R2 1\ ... 1\ Rk), 
otherwise regions where pairs are overlapping should be subtracted. Since this 
subtraction removes regions where 3 rules are overlapping twice they have to be 
added etc., hence the need for the (-l)IRI+I factor . 

An assumption that the uncertainty of inputs s; is identical in all points of 
the input space may not be justified. A more general approach to compute clas­
sification probabilities is based on a direct calculation of optimal soft-trapezoidal 
membership functions. Linguistic units of the LR-network provide such window­
type membership functions, L(.1:; a, b) = a({3(x- a))- cr({3(x- b)). Relating 
the slope (3 to the input uncertainty allows to calculate probabilities that are 
the same as from the Monte Carlo sampling. A general rule node computes 
normalized product-type bicentral function: 

Rj(X ;tj, hj,sf,sf) 

IlEI(Rj) a((Xi- tij + bij)st)(1- a( (X i - tij- b;j)sm) 
(12) 
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where I(Ri) is a set of indices of features used in a given rule Rj. The out­
put Oj(X) of a neuron j that combines rules for separate clasess Ci is: 

Oj(X) =a( L Ri(X;p;)- 0.5 ), 
iET(Cj) 

(13) 

where I( Ci) is a set of rules indices for a given class Ci and p is a set of all 
parameters in (12). Probability of the class Ci for given vector X is given by: 

(14) 

and probability of class Ci for a given vector X and rule Ri is 

(15) 

Optimization of centers t, biases b and slopes s is done by the Kalman filter 
approach (Jankowski, 1999) or the batch version of gradient descent learning 
algorithm. Since probabilities p( Gil X; M) depend now in a continuous way 
on the linguistic variable parameters of the rule system M the error function 
comparing the true class C(X) with the class Ci predicted with probability 
p(CilX; M) is: 

E(M, Sx) = ~ L L(p(Ci lX; M)- o(C(X), C;)) 2
. (16) 

Xi 

This function depends on the Gaussian uncertainties of inputs Sx or param­
eters of bicentral functions used to calculate probabilities. Confusion matrix 
computed using probabilities instead of the number of errors allows for opti­
mization of (9) using gradient-based methods. This minimization may be per­
formed directly or may be presented as a neural network problem with a special 
network architecture. Assuming that the uncertainty of Sx is a percentage of the 
range of X values optimization is reduced to a one dimensional minimization of 
the error function. Uncertainties Sx of the values of features may also be treated 
as additional adaptive parameters for optimization on the training data. 

This approach leads to the following important improvements of any rule-
based system: 

• Crisp logical rules are used for maximum comprehensibility. 
• Uncertainties of inputs are taken into account. 
• Instead of 0/1 decisions the probabilities of classes p(C;IX; M) are ob­

tained. 
• Uncertainties of inputs sx provide additional· adaptive parameters. 
• The neighborhood of X is explored and alternative classes discovered with 

increasing Sx. 

• Inexpensive gradient methods are used allowing for optimization of very 
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• Rules with wider classification margins are obtained, overcoming the brit­
tleness problem. 

Wide classification margins are desirable to improve generalization of the 
classifier by optimizing the placement of the decision borders. If the vector X of 
unknown class is quite typical to one of the classes ck increasing uncertainties 
of inputs Sx to a reasonable value (several times the real uncertainty, estimated 
for a given data) should not decrease the p(CklX; M) probability significantly. 
If this is not the case, X may be close to the class border and a detailed anal­
ysis of the influence of each feature on the classification probability should be 
performed. 

An alternative way to go beyond the logical rules introduced in Jankowski 
(1999), Duch et al. (2000a) is based on confidence inter-vals and pr-obabilistic 
confidence inter-vals. Confidence intervals are calculated individually for a given 
input vector while logical rules are extracted for the whole tr-aining set. 

5. Summary of empirical results 

Using the early version of theoretical ideas described above we have analyzed a 
large number of benchmark datasets (detailed comparison with other systems is 
given in Duch et al., 2000) . These methods were also used in a real-life project, 
analyzing the psychometric data (Duch et al., 1999). Many results, including 
explicit logical rules, are collected in the Web page: 
http:/ jwww.phys.uni.torun.pl/kmk/projects/rules.html 

Rules are most useful when they are simple, comprehensible and accurate. 
Many sets of rules of various complexity have been generated using the C­
MLP2LN approach. They may be used as a reference or benchmark for other 
rule extraction systems. Quite frequently only the reclassification accuracy (in­
sample or overall accuracy) on t he whole dataset for extracted rules is quoted. 
This may not be sufficient to estimate statist ical accuracy of rules. When per­
forming crossvalidation different rules are extracted for different partitions of 
the dataset and it becomes impossible to present a single set of rules or to com­
pare rules obtained by different methods. The best com arison of accuracy is 
offered on large datasets with separate test parts, such as the hypothyroid or 
the NASA shuttle problem (both stored in the UCI repository, Murphy and 
Aha, 1994). The simplest rules are usually quite stable in crossvalidation tests 
and for such rules reclassification accuracy is close to stat istical estimations. 

C-MLP2LN was tried on the symbolic benchmark problems, the three Monk 
problems (Thrun et al., 1991) and the Mushroom problem (UCI repository). All 
the three Monk problems have been solved with 100% accuracy (Duch et al., 
1997a). Four simple rules involving 6 features were found classifying all poi­
sonous and edible mushrooms without errors. Since for this dataset there are 
8124 vectors, with 22 symbolic features corresponding to 118 logical input vari­
ables, the task is nontrivial and shows the potential of the method in applications 
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Several small and noisy medical datasets were analyzed. Such datasets are 
difficult for many methods since they require good regularization or a very 
simple classifier to avoid overfitting of the data. Without regularization some 
methods may produce results that on the test set or in crossvalidation tests 
are below the base rate (frequency of the majority class). Although a good 
statistical approach to computational learning theory exists (Bishop, 1995) it is 
difficult in practice to find classifiers with complexity that would be optimized 
for a given dataset. When extracting logical rules with C-MLP2LN algorithm 
one immediately sees that the most general rules discovered at the beginning 
cover many cases while rules created with lower regularization parameters .-\1 , .-\2 

cover a few cases only and thus give too complex description of the dataset. 
Consider the appendicitis dataset (Weiss and Kulikowski, 1991) . It contains 

only 106 cases, with 8 attributes (results of medical tests), and 2 classes: 88 cases 
with acute appendicitis and 18 cases with other problems. Two simple rules: 

MNEA > 6650 v MBAP > 12, (17) 

giving an overall accuracy of 91.5% result from a single neuron. Classification 
accuracy is improved by adding two more logical rules resulting from a second 
neuron created by the C-MLP2LN algorithm, but the first of these rules covers 
just two cases and the second just one case. Such rules are more likely due to 
the noise in the data then to a highly specific and rare cases of interest to an 
expert. What may be more interesting is to find rules of similar accuracy using 
other input features. Since initialization of the MLP network is random it has 
a chance to find several different solutions, for example 

WBC1 > 8400 V MBAP 2 42, (18) 

has a slightly lower overall accuracy of 89.6%. 
Another small dataset, the Ljubljana cancer data (from UCI repository, 

Murphy and Aha, 1994) contains 286 cases, 201 no-recurrence-events (70.3%) 
and 85 are recurrence-events. There are 9 input features, with 2 to 13 different 
values each. A single logical rule for the recurrence-events: 

involved nodes > 2 1\ degree-malignant > 2 (19) 

with ELSE condition for the second class, gives over 77% accuracy in crossval­
idation tests . Although more accurate optimized rules have been found (Duch 
et al., 2000) crossvalidation tests showed no improvement. It is doubtful that 
there is more knowledge that may be extracted from this data than contained 
in the simple statement based on the rule given above: recurrence is expected if 
the number of involved nodes is bigger than 2 and the cells are highly malignant. 

The quality of solutions that may be achieved using the C-MLP2LN al­
gorithm is perhaps exemplified in the best way on a hypothyroid dataset. It 
contains 3772 cases for training, 3428 cases for testing, 22 attributes (15 binary, 

- - - - ~ 
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and normal (no hypothyroid). The class distribution is very unbalanced: in the 
training set it is 93, 191, 3488 vectors and in the test set 73, 177, 3178. Our 
final optimized rules for the fi rst two classes are (reliability of each rule is in 
parentheses): 

Rt(Ct): TSH 2:: 30.48 /\ FTI < 64.27 

R 2(Ct): TSH E [6.02 , 29.53)/\ FTI < 64.271\ T3 < 23.22 

R1(C2): TSH 2:: 6.02 /\ FTI E [64.27, 186.71)/\ TT4 E [50, 150.5) 

(97.06%) 

(100%) 

1\ on thyroxine = no 1\ surgery= no (98.96%) 

The ELSE condition has 100% reliability on the training set. These rules make 
only 4 errors on the training set (99.89%) and 22 errors on the test set (99.36%) . 
They are more accurate than any other classification method that we have tried 
on this data, except for C4.5 decision t ree (Quinlan, 1993) which gave slightly 
better test result. 

The C-MLP2LN method may also fail in some cases, although it proba­
bly means that the data is not suitable for logical description. For example, 
we have analyzed the hepatobiliary disorders dataset (Hayashi et a!. , 1990) , 
which contains medical records of 536 patients admitted to a university affili­
ated Tokyo-based hospital, with four types of hepatobiliary disorders: alcoholic 
liver damage, primary hepatoma, liver cirrhosis and cholelithiasis. The records 
included sex of the patient and the results of 9 biochemical tests. As in the 
original study 163 cases were used as the test data. A fuzzy neural network 
was trained until 100% correct answers were obtained on the training set. The 
accuracy on the test set varied from less than 60% to a peak of 75.5% but since 
there was no correlation between the results on the training and on the test set 
the method is unable to find the best solution. This data has also been analyzed 
by Mitra et a!. (1997) using a knowledge-based fuzzy MLP system. Accuracy 
of results on the test set was between 33% and 66.3%, depending on the actual 
fuzzy model used. For this dataset 49 crisp logical rules were initially obtained 
by C-MLP2LN procedure, giving 83.5% accuracy on the t raining and 63.2% on 
the test set. Optimization did not improve these results significantly. Fuzzy 
rules derived using the FSM network, with Gaussian as well as with triangu­
lar functions, gave similar accuracy of 75.6- 75.8%. The best results for this 
dataset, 83.4% on the training and 82.8% on the test set , were obtained with 
the weighted nearest neighbor (k = 1) method. Clearly, in this case the decision 
borders are too complex for logical rules. 

6. Discussion 

Machine Learning community has focused on art ificial problems where a few 
symbolic attributes are defined (for example, t he three Monk problems). It is 
quite hard to find results of machine learning methods for the datasets stored 
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1994). In data mining problems many continuously-valued features may be 
present and large sets of rules may be needed. Rule-based classifiers are useful 
only if rules are reliable, accurate, stable and sufficiently simple to be under­
stood. Most classifiers are unstable (Breiman, 1998) and lead to rules that are 
significantly different if the training set is slightly changed. Such rules contain 
little useful information and in fact may be rather misleading. Even if stable 
and robust rules are found the user should be warned about potential mis­
classifications, other classification options, and sensitivity of the classification 
probability to small variations of each feature. Neural methods are capable of 
providing simple and accurate sets of rules. They are wide-margin classifiers, 
placing their decision borders as far from the data as possible and thus provid­
ing good linguistic variables with optimal discretization of continuous features. 
They may also produce many sets of rules of various complexity (thanks to 
different regularization levels) as well as different but equivalent sets of rules 
(thanks to random initialization). 

In this paper the C-MLP2LN constructive constrained multilayer perceptron 
has been described in detail. An example was given illustrating the dynamics of 
decision borders converging to a solution equivalent to logical rules. These ini­
tial rules are then optimized by exploring the reliability /rejection rate tradeoff. 
In the final step an assumption about the uncertainties in the inputs is made, 
allowing to use crisp logical rules to compute classification probabilities. Crisp 
rules are then equivalent to fuzzy rules with soft trapezoidal membership func­
tions. In practical applications users are interested in relevant features and may 
rarely be satisfied with answers to questions "why" based on quotation of com­
plex sets of logical rules. Similarity to prototypes, or case-based interpretation, 
is an alternative to rule-based systems. Therefore one should not exaggerate 
the importance of logical description as the only understandable alternative to 
other classification methods. 

Neural methods are so far restricted to relatively simple form of prepositional 
rules based on linguistic variables. This is sufficient for classification problems, 
where each case is described in the same feature space. In some applications 
more complex descriptions are required, with stepwise concept building. Chem­
ical problems may be a good example here. Unfortunately it is difficult to find 
benchmark data for such cases. 
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