
Control and Cybernetics

vol. 29 (2000) No. 4

Neural methods of knowledge extraction

by

Wlodzislaw Duch, Rafal Adamczak,
Krzysztof Gr<lbczewski and Norbert Jankowski

Department of Computer Methods, Nicholas Copernicus University
ul. Grudzi<3rdzka 5, 87-100 Torm't, Poland

E-mail: d uch,raad,kgrabcze,norbert@phys. uni. to run. pl

Abstract: Contrary to the common opinion, neural networks
may be used for knowledge extraction. Recently, a new methodology
of logical rule extraction, optimization and application of rule-based
systems has been described. C-MLP2LN algorithm, based on con­
strained multilayer perceptron network, is described here in details
and the dynamics of a transition from neural to logical system il­
lustrated. The algorithm handles real-valued features, determining
appropriate linguistic variables or membership functions as a part of
the rule extraction process. Initial rules are optimized by exploring
the accuracy /simplicity tradeoff at the rule extraction stage and the
one between reliability of rules and rejection rate at the optimization
stage. Gaussian uncertainties of measurements are assumed during
application of crisp logical rules , leading to "soft trapezoidal" mem­
bership functions and allowing to optimize the linguistic variables
using gradient procedures. Comments are made on application of
neural networks to knowledge discovery in the benchmark and real
life problems.

Keywords: data mining, decision support, logical rules , fuzzy
rules, optimization, medical diagnosis.

1. Introduction

In many applications the rule-based classifiers may be created automatically by
extracting the rules from data using machine learning (Mitchel, 1997), fuzzy
logic (Kosko, 1992) or neural network methods (Duch et al., 2000). Classical
crisp logic rules are obtained from fuzzy rules if all membership functions are
rectangular (i .e. their values are 0 or 1). Rectangles allow to define logical lin­
guistic variables for each feature by intervals or sets of nominal values and thus
allow to express logical rules in simple sentences like "IF the odor is fishy THEN
the mushroom is poisonous". If rectangular functions are softened or chane-ed

998 W. DUCH, R . ADAMCZAK, K. GRJ\BCZEWSKI, N. JANKOWSKI

Fuzzy logic classifiers are frequently based on a few triangular membership func­
tions for each input feature, a further simplification comparing to trapezoidal
functions.

If the number of rules is relatively small and their accuracy is sufficiently
high, then rule-based classifiers are the optimal choice. Crisp logical rules are
desirable since they are most comprehensible, but they have several drawbacks.
First, when using crisp rules only one class is identified as the correct one, thus
providing a black-and-white picture where some gradation could be appropri­
ate. Second, reliable crisp rules may reject some cases as unclassified. Third,
using the number of errors given by the crisp rule classifier for the cost function
makes optimization difficult , since only non-gradient optimization methods may
be used. All these problems are overcome if continuous membership functions
are used, leading to the fuzzy rather than crisp rules. Fuzzy rules have two dis­
advantages: they are not so comprehensible as the crisp rules, and they usually
involve more parameters determining positions and shapes of the membership
functions.

Systems based on fuzzy logic frequently use a fixed set of membership func­
tions with predetermined shapes. Although it helps to avoid overparameteri­
zation it creates some problems. Defining linguistic variables in such context­
independent way amounts i effect to a regular partitioning of the whole input
space into convex regions. This approach suffers from the curse of dimension­
ality, since with k linguistic variables in d dimensions the number of possible
input combinations is kd. Fuzzy rules simply pick up those areas in the input
space that contain vectors from a single class only, but without the possibility of
adapting membership functions to individual clusters in a single rule they do not
allow for optimal description of these clusters. Much better results may be ob­
tained with context-dependent linguistic variables (Duch et al., 1999), different
in each rule.

Machine learning methods are frequently tested in artificial, noiseless do­
mains (see the three Monk problems, Thrun et al., 1991), while their utility for
real problems with large amount of data, overlapping classes and the need for
simplified, although less accurate, data description is not apparent. Neural net­
works are universal classifiers used in such problems, but they have an opinion of
being opaque black boxes. Several neural methods have been compared exper­
imentally on the mushroom and the three Monk problems benchmark datasets
(Andrews et al., 1995) , and recently a comparison with some machine learning
methods has been given (Duch et al., 2000). There is no reason why a simple
classification model based on logical rules should always work, but in some cases
it does and is certainly worth using. In many applications simple crisp logical
rules proved to be more accurate and were able to generalize better than many
machine and neural learning algorithms (Duch et al., 1998, 1999). One should
always try to use the simplest description of the data possible, but not sim­
pler. In a few applications fuzzy rules proved to be more accurate (Duch et al.,

Neural methods of knowledge extraction 999

is too large, other, more sophisticated classification models are needed - thus,
a hybrid, neuro-logical algorithm is described in this paper.

Although interpretation of crisp rules seems to be straightforward, in fact it
may be quite misleading. A small change in the value of a single feature may
lead to a complete change of the predicted class. Thus, interpretation of crisp
rules is not stable against small perturbations of input values. Fuzzy rules are
better in this respect since estimation of probabilities of different classes change
smoothly. There is a tradeoff between fuzziness and the degree of precision.
If the membership functions are too broad, all classes have similar probability.
In the opposite case perturbation of the input vector may significantly change
classification probabilities, even if the size of the perturbation is within the range
of accuracy of the measured input values. Interpretation without exploration
of alternative diagnoses may in such cases be rather dangerous. Rough rules
suffer from the same interpretative problems even to a greater degree, because
rough classifiers (Pal and Skowron, 1999) produce a large number of unstable
rules (Breiman, 1998, on the importance of stability).

Although the biggest advantage of rule-based classifiers is their comprehen­
sibility, interpretation of rules in practice is not so simple. On the other hand,
neural networks may easily be converted into systems that are equivalent to
crisp or fuzzy rule-based classifiers and thus may have transparent interpreta­
tion. In this paper only one classical neural model, the constructive multilayer
perceptron (C-MLP), constrained to work as a logical-like network (hence the
name of the method, C-MLP2LN, Duch et a!., 1998), is described. However, it
should be clear that using neural network models based on localized separable
transfer functions (Duch and Jankowski, 1999), such as the triangular functions,
or soft trapezoidal functions, allows for a smooth transition from crisp to fuzzy
rules and enables natural interpretation of rules. Such neurofuzzy systems (see
Duch and Diercksen, 1995; Duch eta!., 1997) may also be used for quite complex
data analysis (Duch eta!., 1999).

In the next section a short overview of recent work on extraction of knowledge
from data is presented. The third section describes the latest developments of
the C-MLP2LN model and illustrates the transition process from complex data
description to simple decision borders realized by sets of crisp logic rules. The
fourth section deals with optimization and application of sets of rules and the
fifth section illustrates the method on a couple of problems. The paper ends
with a short discussion.

2. Neural methods of knowledge extraction

A good strategy in data mining is to extract the simplest crisp logical rules
first. If the number of logical rules required for high accuracy of classification is
large, then more sophisticated methods, such as fuzzy rules, capable of providing
complex decision borders, should be used. Are neural methods competitive to

1000 W. OUCH, R. ADAMCZAK, K. GRJ\BCZEWSKI, N. JANKOWSKI

are two issues here: understanding what neural networks really do, and using
neural networks to extract logical rules describing the data. There is a strong
competition from decision trees (Quinlan, 1993, Michie et al., 1994), which are
fast, accurate and can easily be converted to sets of logical rules, from inductive
methods of machine learning (Mitchell, 1997), and from systems based on fuzzy
(Kosko, 1992) and rough sets theories (Pal and Skowron, 1999).

Despite this competition, neural networks seem to have important advan­
tages, especially for real-life problems with continuously-valued inputs. Good
linguistic variables may be determined simultaneously with logical rules, selec­
tion and aggregation of features into smaller number of more useful features
may be incorporated in the neural model, adaptation mechanisms for contin­
uously changing data (on-line learning) are built in, wide-margin classification
provided by neural networks leads to more robust logical rules. An overview of
neural methods used for extraction of logical rules has recently been published
(Duch et al., 2000), therefore only a summary of our recent work on this subject
is given here.

Knowledge that is understandable to humans may come in different forms.
The simplest form of knowledge is contained in the standard IF . . . THEN
prepositional rules used in many expert systems. Non-standard rules, such as
the M-of-N rules (M out of N antecedents should be true) are quite natural for
the most common MLP neural networks, where the basic operation performed
by the neurons is to compare weighted combination of input values with the
threshold B. The output function

(1)

has usually the sigmoidal shape (for example it may be a logistic function a(I) =
1/(1 + e-!3I), where (3 is a constant determining the slope), and becomes at the
limit of infinite slope a step function. On the other hand, the Radial Basis
Function (RBF) networks (Bishop, 1995) frequently use Gaussian functions as
transfer functions . Triangular functions and symmetric trapezoidal functions
are also radial and may be used in RBF networks. In general, the separable
output functions

o(X) = IT t-ti(Xi), (2)

computing products of one-dimensional function have a straightforward inter­
pretation as the membership functions of linguistic variables (Duch and Dierck­
sen, 1995). In the MLP network "natural" membership functions are obtained
as a difference of two sigmoidal functions, /-Li(Xi) = a(Xi) - a(Xi - Bi) or the
product of sigmoidal functions a (Xi)(1 - a(Xi)) in all dimensions. It is not
difficult to prove that after normalization the two forms are identical:

a(X+ b)(1- a(X- b)) a(X +b)- a(X- b)

Neural methods of knowledge extraction 1001

These membership functions are easily realized using a pair of constrained
MLP neurons (Fig. 1), where the weights are either zero or ±1 and the thresholds
define the linguistic variables. In the limit of high gain (large (3 in logistic
functions) they are converted into crisp linguistic variables: Sk is true if the
input value X; E [X;,k, XI,k], i.e. linguistic variables for a given feature X; are
parameterized by interval values Sk(Xi,k , x:,d.

+1 b
cr(~ X+b) ~

~1 / ',, §
X

,,_

',
' ~ /
~ ~;e·c;(~ X+b')

+1 b'

Type 1
b b'

Type3

....

b'
Type2

Type4

Figure 1. Two sigmoidal neurons are used to construct a linguistic unit con­
verting continuous inputs to linguistic variables. Four basic types of "window"
functions are obtained, depending on the W and S weight values.

Since crisp logical rules are the simplest and most comprehensible, they
should be tried first. They provide hyperrectangular decision borders in the
feature subspaces corresponding to variables appearing in rule conditions. This
approximation may not be sufficient if complex decision borders are required,
but it may work quite well if the problem has an inherent logical structure.

The classifier based on logical rules provides an approximation to the pos­
terior probability p(C;IX;M), where the classification model M is composed of
the set of rules. Crisp rules give p(C;IX ; M) = 0, 1 but if clusters belonging to
different classes overlap this is obviously wrong. Fuzzy rules, for example in the
form

11-(kl(X)
p(Ck iX; M) = 2:::; p,(il(X), (4)

where p,(k) (X) is the value of the membership function defined for the cluster k,

1002 W. OUCH, R. ADAMCZAK, K. GRJ)BCZEWSKI, N. JANKOWSKI

dependent or cluster-dependent membership functions are rarely used in
classification systems based on fuzzy logic, although they are quite natural in the
neurofuzzy systems (Duch and Diercksen, 1995, Duch et a!., 1997). Neurofuzzy
systems adapt the number as well as the shapes of the membership functions
to the data. Although various fuzzy, rough and neurof zzy systems differ in
their ability to discover and use logical rules for data description, their ultimate
capability depends on the decision borders they may provide for classification.
For example, if a simple rule X1 +X2 > 1 classifies data correctly a large number
of fuzzy or crisp rules may be created to obtain a poor description of the data,
while systems that use rotated decision borders handle it perfectly with a single
rule.

Extraction of linguistic variables and sets of logical rules proceeds in the
following manner (Duch et a!. , 2000):

• Select linguistic variables. In case of continuous features Xi the linguis­
tic variable sk is true if the input value Xi E [Xi,k• Xf k], i. e. they are
parametrized by interval values Sk(Xi,k, x:,JJ. '

• Extract rules from the data using neural, machine learning or statistical
techniques.

• Optimize linguistic variables (intervals they depend upon) using the rules
and exploring the accuracy /rejection rate tradeoff.

• Repeat previous steps until a stable set of rules is found.
• Introduce and optimize input uncertainties.

The last step will be explained in Section 4. We have described several meth­
ods of initial rule extraction, based on decision t rees (usi g the SSV separabil­
ity criterion, Grqbczewski and Duch, 1999), Feature Space Mapping Network,
search-based discretized networks and standard MLP networks trained with the
backpropagation procedure (Duch et a!., 2000). Since the constructive MLP
network gave very simple and accurate sets of rules in a number of applications
we have developed it further and present the algorithm in details below.

3. C-MLP2LN model

MLP2LN is a smooth transformation between the MLP network and a network
performing logical operations (Logical Network, LN) (Duch et a!., 1998). This
transformation should simplify the network as much as possible to facilitate
logical rule extraction. Skeletonization of a large MLP network is the method
of choice if our goal is to fi nd logical rules for an already t rained network. Oth­
erwise, the constructive approach, starting from a single neuron and expanding
the logical network during t raining (called further C-MLP2LN method) is faster
and more accurate. Smooth transition from an MLP to a logical-type of network
performing similar functions is achieved during network t raining by:
a) simplifying the network structure by decreasing the weights during the train-

Neura l methods of knowledge ext raction 1003

b) gradually increasing the slope j3 of sigmoidal functions a(j3x) to obtain crisp
decision regions;
c) enforcing the integer weight values 0 and ±1, interpreted as 0 = irrelevant
input, + 1 = positive and -1 = negative evidence.

To achieve these objectives two additional terms are added to the standard
mean square error function Eo(W) to form the total cost function E(W):

E(W) = Eo(W) + R1 (W) + R2(W)

= ~I: I:(vrl- Fk(x<Pl ; W))2
p k

AI "" 2 A2 "" 2 2 2 +2 ~ Wii + 2 ~ W;1(W;1 -1) (Wij + 1)
i,j i,j

(5)

The first part is the standard mean square error measure of matching the
network output vectors F(X(Pl; W) with the desired output vectors y(p) for
all training data samples X(Pl. The first regularization term RI (W), scaled
by AI , is frequently used in the weight pruning or in the Bayesian regularization
method (Bishop, 1995) to improve generalization of the MLP networks. The
second regularization term R2 (W), scaled by A2 , is a sum over all weights and
has a minimum (zero) for weights approaching zero or ± 1.

A naive interpretation why regularization works (for a more sophisticated
view see Bishop, 1995, and references there) is based on observation that small
weights and thresholds mean that only the linear part of the sigmoid around a(O)
is used. Therefore, the decision borders are rather smooth. On the other hand,
for logical rules decision borders should be sharp and the network should be as
simple (skeletal) as possible. Therefore the regularization term that we have
used so far may not be the most appropriate. Another regularization term:

A1 "" wi~
RI(W) = 2 L.- 1 + WlJ· '

t)

(6)

does not grow to infinity for large weights and thus allows those weights that
should not vanish at the end of the training to stay sufficiently large. It in­
duces an extra weight change that is easy to implement in the backpropagation
training procedure:

(7)

where 17 is the learning constant .
The first regularization term is used at the beginning of the training to force

as many weights as possible- without a sharp increase of the mean square error
term E0(W) - to become sufficiently small to be removed. This term is switched

- I , ;

1004 W. DUCH, R. ADAMCZAK, K. GRJ\BCZEWSKI, N. JANKOWSKI

stage of the training. This allows the network to increase the remaining weights.
Large weights, together with increasing slopes of sigmoids, lead to sharp decision
borders of rectangular shape. Although non-zero weights have values restricted
to ±1, increasing the slopes {3 is equivalent to using the network with one, large
non-zero weight value W = ±{3 with sigmoidal functions of a unit slope.

An obvious generalization is to use several different maximal W values in
the final network, for example by adding, after skeletonization of the network,
the following penalty term:

~)O'(Wij + 1)- O'(Wi1- 1)).
i,j

(8)

This term will not restrict the weights to ±1 but will allow them to grow beyond
these values. If the network is used to extract the logical rules at the end of the
training the slopes should be infinitely steep, corresponding to infinite non-zero
weights (in practice W = ± 10000 is used), so t hat nothing is gained. However, if
the final goal is a hybrid, network-rule based neuro-logical system that provides
logical description of data whenever possible, and more complex decision borders
wherever necessary, this may be an attractive solution.

The architecture of the network is presented in Fig. 2. Logical (binary)
inputs may be directly connected to the rule nodes (R-nodes), while all continu­
ous inputs go through L-units creating linguistic variables. In some applications

x4---­
A-units L-units

Figure 2. MLP network with linguistic and rule units. An additional aggregation
layer provides the Xi inputs to the L-units; X 1- X3 are real-valued, X4 is a logical

Neural methods of knowledge extraction 1005

with a large number of features an aggregation of features belonging to the
same type is possible, leading to a smaller number of linguistic variables that
carry more information. Groups of features that are of the same type are com­
bined together by an additional layer of neurons between the input and the
1-units. These aggregation units (A-units) should incorporate domain knowl­
edge about the type of input features and usually may be linear. In some cases
one may use information theory or separability criteria (Wettschereck, 1997) to
set up the weights for these units, decreasing the number of adaptive parameters
during the network training.

Initial knowledge about the problem may be inserted directly into the net­
work structure, defining initial network parameters and structure that is modi­
fied during on-line training in view of the incoming data. Since the final network
structure becomes quite simple, insertion of partially correct rules to be refined
by the learning process is quite straightforward.

The training proceeds separately for each output class. Although the method
works with general multilayer backpropagation networks we recommend the C­
M1P21N constructive procedure that frequently leads to a satisfactory solution
in a much faster way. This is due to the fact that no experimentation is needed
to determine the network architecture and that a single neuron is trained at
a time instead of all neurons simultaneously. While the actual differences in
timing strongly depend on the problem, the constructive M1P21N method has
frequently been more than two orders of magnitude faster than the standard
network.

As with all neural procedures, for some data the network training may slow
down and require some experimentation so the procedure is not completely
automatic. Typical parameter values that work in most cases are given in the
description of the training procedure here.

1) Set up the structure of the aggregation layer and create 1-units for contin­
uous inputs, usually 1-3 units per input (too small number of the linguistic
variables will lead to low accuracy of rules).

2) Create one hidden neuron (R-unit neuron) per class.
3) Train the neuron on data for the first class using backpropagation proce­

dure with regularization. Start with small ,\ 1 = w-5 and .-\2 = 0 and the
unit slope a-((3x), (3 = 1.

4) If convergence is too slow add another R-unit neuron and train two neurons
simultaneously; in rare cases training even more neurons may significantly
speed up the training.

(a) Train as long as the error decreases; then increase .-\1 t- 10,\1 and
the slope of sigmoidal functions (3 t- (3 + 1 and train further; repeat
this step until a sharp increase of the error is noticed when .-\1 is
increased.

(b) Decrease .-\1 slightly until the error is reduced to the previous value

1006 W. OUCH, R. ADAMCZAK, K. GRJ\BCZEWSKI, N. JANKOWSKI

(c) Take ..\2 = ..\ 1 and put ..\ 1 = 0; train slowly increasing the slopes
and ..\2 until the remaining weights reach 0 ± 0.05 or ±1 ± 0.05.

(d) Set very large slopes (3 ~ 1000 and integer weights 0, ±1.

5) Analyze the weights and the threshold(s) obtained by checking the combi­
nations of linguistic features that activate the first neuron(s). This analysis
allows to write the first group of logical rules that cover the most common
input-output relations.

6) Freeze the weights of existing neurons during further training. This is
equivalent to training only new neurons (usually one per class at a time) .

7) Add the next neuron and train it on the remaining data in the same way
as the first one. Connect it to the output neuron for the class it belongs
to (if more than one R-neuron for this class has been created).

8) Repeat this procedure until all data are correctly classified, or the number
of rules obtained grows sharply, signifying overfitting (for example one or
more rules per one new vector classified correctly are obtained) .

9) Repeat the whole procedure for data belonging to other classes.

The network expands after a neuron is added and then shrinks after connec­
tions with small weights are removed. A set of rules R 1 V R2 V . . . V Rn is found
for each class separately. The output neuron for a given class is connected to
the hidden neurons created for that class - in simple cases only one neuron may
be sufficient to learn all instances, becoming an output neuron rather than a
hidden neuron (Fig. 3). Output neurons performing summation of the incom­
ing signals are linear and have either positive weight + 1 (adding more rules) or
negative weight -1. The last case corresponds to those rules that cancel some
of the errors created by the previously found rules that were too general. They
may be regarded as exceptions to the rules.

C1
x3

C2
x4

C3

Figure 3. Structure of the simplest network solving the Iris problem.

Since each time only one neuron per class is t rained the C-MLP2LN training
is fast. Both standard MLP architecture with linguist ic inputs or the L-R
network may be used with the C-MLP2LN training algorithm. The first neuron
for a given class learns the most general pattern, covering the largest number of
instances. Therefore rules obtained by this algorithm are ordered, starting with

Neural methods o f knowledge extraction 1007

cases. An optimal balance between the number of rules and the generalization
error is usually obtained when only the rules that cover larger number of cases
are retained. The final solution may be presented as a set of rules, or as a
network of nodes performing logical functions, with hidden neurons realizing
the rules, and the hidden-output neuron weights set to ±1. However, some
rules obtained from analysis of the network may involve spurious conditions
and therefore the optimization and simplification steps are necessary.

The ..\ 1 and ..\2 parameters determine the simplicity/ accuracy tradeoff of the
generated network and extracted rules. If a very simple network giving only a
rough description of the data (and thus simple logical rules) is desired, ..\ 1 should
be as large as possible. Although one may estimate the relative size of the
regularization term versus the mean square error (MSE) a few experiments are
sufficient to find the largest value for which the MSE is still acceptable and does
not decrease quickly when ..\1 is decreased. Smaller values of ..\ 1 should be used
to obtain more accurate networks (larger sets of rules). The final value of ..\2

near the end of the training is always set to larger values than the maximum
value of ..\1 at the beginning of the training.

The dynamics of the learning process is illustrated using the well-known
example of the Iris data. For each of the 3 different classes of t he Iris flowers
50 samples are given, described by 4 numbers, the length and the width of
flower's sepals and petals. The final structure of the simplest network that
solves the problem is shown in Fig. 3. Only two of the four inputs have non­
zero weights and only the second class needs the full 1-unit, the weights in other
1-units became sufficiently small to delete corresponding connections. There is
no additional output layer since a single neuron classifies all data from the
first class correctly (this class represents lris-setosa variety) and the two other
neurons make only 3 errors on the remaining two classes (Iris virginica and
versicolor).

In Fig. 4 contours of decision borders are shown at various training stages.
5 output values around 0.5 are shown. In the beginning of the training contours
are broadly spaced and at the end they collapse to a single line. At the beginning
of the training (first subfigure, after 20 learning epochs with ..\ 1 = 10-5 and
7] = 0.1) the network has slopes {3 = 1 and the absolute value of the largest
weight is around 4; sigmoidal functions are smooth and the position of the
0.5 contour is influenced (through the MSE minimization) by all vectors in
the training set . The next two subfigures show contours after 100 and 400
epochs, with t he same learning and regularization parameters. The largest
weight grew to about 13. The next subfigure shows contours after another
200 epochs of training with ..\ 1 = 10-3 and {3 = 3, and the fifth subfigure
after another 200 epochs with ..\1 = 0 and ..\2 = 10-2 . Finally, the last figure
shows t he logical network with {3 = 10000 and ±1 weights. P lease note that the
decision border between the first class (left corner, Iris-Setosa) and the other two
classes is at the optimal position, x3 < 2.55. Some machine learning algorithms

1008 W . OUCH, R. ADAMCZAK, K. GRJ\BCZEWSKI, N. JANKOWSKI

4.-------.--.,---~-------,

3 3

2

2 4 6

4 .-------~-n----~-------,

4 .-------~r-------------.

3

Figure 4. Contours of decision borders during training on the Iris data. The data
is displayed in X3 (petal length in centimeters) and x 4 (petal width) coordinates.
Top left figure shows constant values of the network outputs at the beginning of
the training when small slopes of the sigmoidal functions are used. During the
training slopes gradually increase and contours collapse to a single line. The
final subfigure at the bottom right corresponds to the infinite slopes of sigmoidal
functions .

vectors in it . Such systems obviously produce rules giving poor generalization
in crossvalidation tests.

The final rules obtained from this network are:

IF (x3 < 2.55) THEN Classl
IF (x4 > 1.66) THEN Class3
IF (x3 > 2.55 1\ x 4 < 1.66) THEN Class2

MLP is changed into a logical network by increasing the slope {3 of sigmoidal
functions to infinity, changing them into the step-functions. Such training pro­
cess should be done carefully since very steep sigmoidal functions have non-zero

Neural methods of knowledge extraction 1009

vectors contributing to the learning process goes to zero. Therefore, when con­
vergence becomes slow for large slopes, it is necessary to stop network training,
extract logical rules and optimize the intervals of the linguistic variables. This
optimization step, described below, is performed at the level of the rule-based
classifier, not the MLP network, and is independent of the methods used to
generate the rules.

4. Optimization and application of logical rules

Optimization of linguistic variables, that the rules are based on, is done by
minimization of the number of wrong predictions minM[Li#j P(Ci, Cj)] (where
P(C;, Ci) is the confusion matrix for a rule-based classifier M), simultaneously
with maximization of the predictive power of the classifier maxM [Tr P(Ci, Cj) J

over all intervals Xk, X~ contained in model M. This is equivalent to minimiza­
tion without constraints of the following cost function E(M):

E(M) = 1 L P(C;, Cj)- TrP(C;, Cj) 2: -n,
i-!j

(9)

where parameter 1 decides whether high overall accuracy with low rejection rate
or high reliability with larger rejection rate is desired. Minimization of this for­
mula is difficult if P(C;, Cj) depends in a discontinuous way on the parameters
in M, requiring non-gradient minimization methods. This is unfortunately the
case if a crisp logic rule-based classifier is used.

Real input values are obtained by measurements that are carried with finite
precision, therefore it is natural to assume that instead of a crisp number x
a Gaussian distribution Gx = G(y; x, sx) centered around x with dispersion Sx
should be used. Performing a Monte Carlo sampling from Gaussian distributions
for all input features and using the rule-based classifier M to assign a class
to all vectors X' from the distribution Gx = G(Y, X, Sx) allows to compute
probabilities p(C;IX). Dispersions Sx = (sxt,Sx2 ... SxN) define the volume
of the input space around X that has an influence on computed probabilities.
Assuming that uncertainties s; = Sxi are independent of feature values is a
useful approximation justified if the data is properly standardized.

Since the erf function obtained from integration of Gaussian distributions
is quite similar to the logistic function with a very good approximation a rule
R[a,bj(x) which is true (R=1) if x E [a,b] and false otherwise (R=O) is fulfilled
by a Gaussian number Gx with probability:

p(R[a,bj(Gx) = T) ~ ri((J(x- a))- ri((J(x- b)), (10)

where (J = 2.4/ v"isx defines the slope of the logistic function ri(x) = 1/ (1 +
exp(-(Jx)). For large dispersion Sx this probability is significantly different
from zero well outside the interval [a, b]. Thus, crisp logical rules for inputs with

1010 W. OUCH, R. ADAMCZAK, K. GRJ\BCZEWSKI, N. JANKOWSKI

membership functions deiined by the difference of the two sigmoids, used with
crisp input value. The slopes of these membership functions, determined by
the parameter {3, are inversely proportional to the uncertainty of the inputs. In
our neural network approach to rule extraction such membership functions are
computed by the network's "linguistic units".

The probability that x belongs to a rule R = r1 1\ ... I\ r N (each ri is the rule
condition, a subset or an interval) may be defined as a product of probabilities
of x E ri for i = 1, ... , N . Such definition assumes that all the attributes
which occur in rule R are mutually independent, which is usually not the case.
However, if the rule generator produces as simple rules as possible there should
be no pairs of strongly dependent attributes in a single rule. Therefore, the
product should be very close to real probability. Obviously the rule may not
contain more than one premise per one attribute, but it is easy to convert the
rules appropriately if they do not satisfy this condition.

Another problem occurs when probability of x belonging to a class described
by more than one rule is estimated. Rules usually overlap because they use
only a subset of all attributes and their conditions do not exclude each other.
Summing and normalizing probabilities obtained for different classes may give
results quite different from real Monte Carlo probabilities. To avoid this problem
probabilities are calculated as:

P(x E C)= L (-1)1RI+Ip(x E nR), (11)
RE2"R.c

where Rc is a set of classification rules for class C, iR..c is a set of all subsets
of Rc' IRI is the number of elements in R and n R is the subspace (for discrete X

a set) created from conjunction of all rules R. If there are k rules for class C and
they do not overlap this equation reduces to a sum P(x E R1 1\ R2 1\ ... 1\ Rk),
otherwise regions where pairs are overlapping should be subtracted. Since this
subtraction removes regions where 3 rules are overlapping twice they have to be
added etc., hence the need for the (-l)IRI+I factor .

An assumption that the uncertainty of inputs s; is identical in all points of
the input space may not be justified. A more general approach to compute clas­
sification probabilities is based on a direct calculation of optimal soft-trapezoidal
membership functions. Linguistic units of the LR-network provide such window­
type membership functions, L(.1:; a, b) = a({3(x- a))- cr({3(x- b)). Relating
the slope (3 to the input uncertainty allows to calculate probabilities that are
the same as from the Monte Carlo sampling. A general rule node computes
normalized product-type bicentral function:

Rj(X ;tj, hj,sf,sf)

IlEI(Rj) a((Xi- tij + bij)st)(1- a((X i - tij- b;j)sm)
(12)

Neural methods of knowledge extraction 1011

where I(Ri) is a set of indices of features used in a given rule Rj. The out­
put Oj(X) of a neuron j that combines rules for separate clasess Ci is:

Oj(X) =a(L Ri(X;p;)- 0.5),
iET(Cj)

(13)

where I(Ci) is a set of rules indices for a given class Ci and p is a set of all
parameters in (12). Probability of the class Ci for given vector X is given by:

(14)

and probability of class Ci for a given vector X and rule Ri is

(15)

Optimization of centers t, biases b and slopes s is done by the Kalman filter
approach (Jankowski, 1999) or the batch version of gradient descent learning
algorithm. Since probabilities p(Gil X; M) depend now in a continuous way
on the linguistic variable parameters of the rule system M the error function
comparing the true class C(X) with the class Ci predicted with probability
p(CilX; M) is:

E(M, Sx) = ~ L L(p(Ci lX; M)- o(C(X), C;)) 2
. (16)

Xi

This function depends on the Gaussian uncertainties of inputs Sx or param­
eters of bicentral functions used to calculate probabilities. Confusion matrix
computed using probabilities instead of the number of errors allows for opti­
mization of (9) using gradient-based methods. This minimization may be per­
formed directly or may be presented as a neural network problem with a special
network architecture. Assuming that the uncertainty of Sx is a percentage of the
range of X values optimization is reduced to a one dimensional minimization of
the error function. Uncertainties Sx of the values of features may also be treated
as additional adaptive parameters for optimization on the training data.

This approach leads to the following important improvements of any rule-
based system:

• Crisp logical rules are used for maximum comprehensibility.
• Uncertainties of inputs are taken into account.
• Instead of 0/1 decisions the probabilities of classes p(C;IX; M) are ob­

tained.
• Uncertainties of inputs sx provide additional· adaptive parameters.
• The neighborhood of X is explored and alternative classes discovered with

increasing Sx.

• Inexpensive gradient methods are used allowing for optimization of very

1012 W. OUCH, R. ADAMCZAK, K. GRJ\BCZEWSKI, N. JANKOWSKI

• Rules with wider classification margins are obtained, overcoming the brit­
tleness problem.

Wide classification margins are desirable to improve generalization of the
classifier by optimizing the placement of the decision borders. If the vector X of
unknown class is quite typical to one of the classes ck increasing uncertainties
of inputs Sx to a reasonable value (several times the real uncertainty, estimated
for a given data) should not decrease the p(CklX; M) probability significantly.
If this is not the case, X may be close to the class border and a detailed anal­
ysis of the influence of each feature on the classification probability should be
performed.

An alternative way to go beyond the logical rules introduced in Jankowski
(1999), Duch et al. (2000a) is based on confidence inter-vals and pr-obabilistic
confidence inter-vals. Confidence intervals are calculated individually for a given
input vector while logical rules are extracted for the whole tr-aining set.

5. Summary of empirical results

Using the early version of theoretical ideas described above we have analyzed a
large number of benchmark datasets (detailed comparison with other systems is
given in Duch et al., 2000) . These methods were also used in a real-life project,
analyzing the psychometric data (Duch et al., 1999). Many results, including
explicit logical rules, are collected in the Web page:
http:/ jwww.phys.uni.torun.pl/kmk/projects/rules.html

Rules are most useful when they are simple, comprehensible and accurate.
Many sets of rules of various complexity have been generated using the C­
MLP2LN approach. They may be used as a reference or benchmark for other
rule extraction systems. Quite frequently only the reclassification accuracy (in­
sample or overall accuracy) on t he whole dataset for extracted rules is quoted.
This may not be sufficient to estimate statist ical accuracy of rules. When per­
forming crossvalidation different rules are extracted for different partitions of
the dataset and it becomes impossible to present a single set of rules or to com­
pare rules obtained by different methods. The best com arison of accuracy is
offered on large datasets with separate test parts, such as the hypothyroid or
the NASA shuttle problem (both stored in the UCI repository, Murphy and
Aha, 1994). The simplest rules are usually quite stable in crossvalidation tests
and for such rules reclassification accuracy is close to stat istical estimations.

C-MLP2LN was tried on the symbolic benchmark problems, the three Monk
problems (Thrun et al., 1991) and the Mushroom problem (UCI repository). All
the three Monk problems have been solved with 100% accuracy (Duch et al.,
1997a). Four simple rules involving 6 features were found classifying all poi­
sonous and edible mushrooms without errors. Since for this dataset there are
8124 vectors, with 22 symbolic features corresponding to 118 logical input vari­
ables, the task is nontrivial and shows the potential of the method in applications

Neural methods of knowledge extraction 1013

Several small and noisy medical datasets were analyzed. Such datasets are
difficult for many methods since they require good regularization or a very
simple classifier to avoid overfitting of the data. Without regularization some
methods may produce results that on the test set or in crossvalidation tests
are below the base rate (frequency of the majority class). Although a good
statistical approach to computational learning theory exists (Bishop, 1995) it is
difficult in practice to find classifiers with complexity that would be optimized
for a given dataset. When extracting logical rules with C-MLP2LN algorithm
one immediately sees that the most general rules discovered at the beginning
cover many cases while rules created with lower regularization parameters .-\1 , .-\2

cover a few cases only and thus give too complex description of the dataset.
Consider the appendicitis dataset (Weiss and Kulikowski, 1991) . It contains

only 106 cases, with 8 attributes (results of medical tests), and 2 classes: 88 cases
with acute appendicitis and 18 cases with other problems. Two simple rules:

MNEA > 6650 v MBAP > 12, (17)

giving an overall accuracy of 91.5% result from a single neuron. Classification
accuracy is improved by adding two more logical rules resulting from a second
neuron created by the C-MLP2LN algorithm, but the first of these rules covers
just two cases and the second just one case. Such rules are more likely due to
the noise in the data then to a highly specific and rare cases of interest to an
expert. What may be more interesting is to find rules of similar accuracy using
other input features. Since initialization of the MLP network is random it has
a chance to find several different solutions, for example

WBC1 > 8400 V MBAP 2 42, (18)

has a slightly lower overall accuracy of 89.6%.
Another small dataset, the Ljubljana cancer data (from UCI repository,

Murphy and Aha, 1994) contains 286 cases, 201 no-recurrence-events (70.3%)
and 85 are recurrence-events. There are 9 input features, with 2 to 13 different
values each. A single logical rule for the recurrence-events:

involved nodes > 2 1\ degree-malignant > 2 (19)

with ELSE condition for the second class, gives over 77% accuracy in crossval­
idation tests . Although more accurate optimized rules have been found (Duch
et al., 2000) crossvalidation tests showed no improvement. It is doubtful that
there is more knowledge that may be extracted from this data than contained
in the simple statement based on the rule given above: recurrence is expected if
the number of involved nodes is bigger than 2 and the cells are highly malignant.

The quality of solutions that may be achieved using the C-MLP2LN al­
gorithm is perhaps exemplified in the best way on a hypothyroid dataset. It
contains 3772 cases for training, 3428 cases for testing, 22 attributes (15 binary,

- - - - ~

1014 W. DUCH , R. ADAMCZAK, K. GRJ\BCZEWSKI, N. JANKOWSKI

and normal (no hypothyroid). The class distribution is very unbalanced: in the
training set it is 93, 191, 3488 vectors and in the test set 73, 177, 3178. Our
final optimized rules for the fi rst two classes are (reliability of each rule is in
parentheses):

Rt(Ct): TSH 2:: 30.48 /\ FTI < 64.27

R 2(Ct): TSH E [6.02 , 29.53)/\ FTI < 64.271\ T3 < 23.22

R1(C2): TSH 2:: 6.02 /\ FTI E [64.27, 186.71)/\ TT4 E [50, 150.5)

(97.06%)

(100%)

1\ on thyroxine = no 1\ surgery= no (98.96%)

The ELSE condition has 100% reliability on the training set. These rules make
only 4 errors on the training set (99.89%) and 22 errors on the test set (99.36%) .
They are more accurate than any other classification method that we have tried
on this data, except for C4.5 decision t ree (Quinlan, 1993) which gave slightly
better test result.

The C-MLP2LN method may also fail in some cases, although it proba­
bly means that the data is not suitable for logical description. For example,
we have analyzed the hepatobiliary disorders dataset (Hayashi et a!. , 1990) ,
which contains medical records of 536 patients admitted to a university affili­
ated Tokyo-based hospital, with four types of hepatobiliary disorders: alcoholic
liver damage, primary hepatoma, liver cirrhosis and cholelithiasis. The records
included sex of the patient and the results of 9 biochemical tests. As in the
original study 163 cases were used as the test data. A fuzzy neural network
was trained until 100% correct answers were obtained on the training set. The
accuracy on the test set varied from less than 60% to a peak of 75.5% but since
there was no correlation between the results on the training and on the test set
the method is unable to find the best solution. This data has also been analyzed
by Mitra et a!. (1997) using a knowledge-based fuzzy MLP system. Accuracy
of results on the test set was between 33% and 66.3%, depending on the actual
fuzzy model used. For this dataset 49 crisp logical rules were initially obtained
by C-MLP2LN procedure, giving 83.5% accuracy on the t raining and 63.2% on
the test set. Optimization did not improve these results significantly. Fuzzy
rules derived using the FSM network, with Gaussian as well as with triangu­
lar functions, gave similar accuracy of 75.6- 75.8%. The best results for this
dataset, 83.4% on the training and 82.8% on the test set , were obtained with
the weighted nearest neighbor (k = 1) method. Clearly, in this case the decision
borders are too complex for logical rules.

6. Discussion

Machine Learning community has focused on art ificial problems where a few
symbolic attributes are defined (for example, t he three Monk problems). It is
quite hard to find results of machine learning methods for the datasets stored

Neural methods of knowledge extraction 1015

1994). In data mining problems many continuously-valued features may be
present and large sets of rules may be needed. Rule-based classifiers are useful
only if rules are reliable, accurate, stable and sufficiently simple to be under­
stood. Most classifiers are unstable (Breiman, 1998) and lead to rules that are
significantly different if the training set is slightly changed. Such rules contain
little useful information and in fact may be rather misleading. Even if stable
and robust rules are found the user should be warned about potential mis­
classifications, other classification options, and sensitivity of the classification
probability to small variations of each feature. Neural methods are capable of
providing simple and accurate sets of rules. They are wide-margin classifiers,
placing their decision borders as far from the data as possible and thus provid­
ing good linguistic variables with optimal discretization of continuous features.
They may also produce many sets of rules of various complexity (thanks to
different regularization levels) as well as different but equivalent sets of rules
(thanks to random initialization).

In this paper the C-MLP2LN constructive constrained multilayer perceptron
has been described in detail. An example was given illustrating the dynamics of
decision borders converging to a solution equivalent to logical rules. These ini­
tial rules are then optimized by exploring the reliability /rejection rate tradeoff.
In the final step an assumption about the uncertainties in the inputs is made,
allowing to use crisp logical rules to compute classification probabilities. Crisp
rules are then equivalent to fuzzy rules with soft trapezoidal membership func­
tions. In practical applications users are interested in relevant features and may
rarely be satisfied with answers to questions "why" based on quotation of com­
plex sets of logical rules. Similarity to prototypes, or case-based interpretation,
is an alternative to rule-based systems. Therefore one should not exaggerate
the importance of logical description as the only understandable alternative to
other classification methods.

Neural methods are so far restricted to relatively simple form of prepositional
rules based on linguistic variables. This is sufficient for classification problems,
where each case is described in the same feature space. In some applications
more complex descriptions are required, with stepwise concept building. Chem­
ical problems may be a good example here. Unfortunately it is difficult to find
benchmark data for such cases.

Acknowledgments: Support by the Polish Committee for Scientific Re­
search is gratefully acknowledged.

References

ANDREWS, R., DIEDERICH, J. and TICKLE, A.B . (1995) A Survey and Cri­
tique of Techniques for Extracting Rules from Trained Artificial Neural
Networks. Knowledge-Based Systems, 8, 373- 389.

BISHOP, C. (1995) Neural networks for pattern recognition. Clarendon Press,

1016 W. OUCH, R. ADAMCZAK, I<. GRJ\BCZEWSKI, N. JANKOWSKI

BREIMAN, L. (1998) Bias-Variance, regularization, instability and stabilization.
In: Neural Networks and Machine Learning, Bishop, C., ed., Springer.

BuTCHER, J.N. and RousE, S.V. (1996) Personality: individual differences and
clinical assessment. Annual Review of Psychology, 47, 87.

DucH, W. and DIERCKSEN, G.H.F. (1995) Feature Space Mapping as a uni­
versal adaptive system. Computer Physics Communication, 87, 341-371.

DUCH, W., ADAMCZAK, R. and GRJ\BCZEWSKI, K. (1997a) Extraction of crisp
logical rules using constrained backpropagation networks. Proc. of In­
ternational Joint Conference on Neural Networks (IJCNN'91) , Houston,
Texas, pp. 2384- 2389 .

DucH, W., ADAMCZAK, R. and GRJ\BCZEWSKI, K. (1998) Extraction oflogical
rules from backpropagation networks. Neural Processing Letters, 7, 1- 9.

DucH, W., ADAMCZAK, R. and GRJ\BCZEWSKI, K. (2000) Methodology of
extraction, optimization and application of crisp and fuzzy logical rules .
IEEE Transactions on Neural Networks (in print).

DucH, W., ADAMCZAK, R . and JANKOWSKI, N. (1997) New developments in
the Feature Space Mapping model. 3rd Conf. on Neural Networks, Kule,
Poland, Oct. 1991, pp. 65- 70.

DucH, W., GRJ\BCZEWSKI, K. , JANKOWSKI, N. and ADAMCZAK, R. (2000a)
Optimization and interpretation of rule-based classifiers. Intelligent Infor­
mation Systems IX, Bystra, Poland, June 2000 (submitted).

DucH, W. and JANKOWSKI, N. (1999) New neural transfer functions. Neural
Computing Surveys, 2, 639- 658.

DUCH, W., KUCHARSKI, T ., GOMULA, J. and A DAMCZAK , R. (1999) Metody
uczenia maszynowego w analizie danych psychometrycznych. Zastosowanie
do wielowymiarowego kwestionariusza osobowosci MMPI- WISKAD. To run,
650 pp.

GRJ\BCZEWSKI, K. and DucH, W. (1999) A general purpose separability cri­
terion for classification systems. 4th Conf. on Neural Networks and Their
Applications, Zakopane, pp. 203-208.

HAYASHI, Y., IMURA, A. and YOSHIDA, K. (1990) Fuzzy neural expert system
and its application to medical diagnosis. In: 8th International Congress on
Cybernetics and Systems, New York City, pp. 54-61.

JANKOWSKI, N. (1999) Ontogenic neural networks and their applications to clas­
sification of medical data. PhD thesis, Department of Computer Methods,
Nicholas Copernicus University, Toru1'i, Poland.

KOSKO, B. (1992) Neural Networks and Fuzzy Systems. Prentice Hall.
MICHIE, D., SPIEGELHALTER, D .J. and TAYLOR, C.C. (1994) Machine learn­

ing, neural and statistical classification. Elis Horwood, London.
MITCHELL, T.M. (1997) Machine Learning. McGraw-Hill.
MITRA, S., DE, R. and PAL, S. (1997) Knowledge based fuzzy MLP for clas­

sification and rule generation. IEEE Trans actions on Neural Networks, 8,

Neural methods of knowledge extraction 1017

MURPHY, P.M. and AHA, D.W. (1994) UCI repository of machine learning
databases. Univ . of California at Irvine, Dept. of Information and Com­
puter Science. http:/ fwww.ics.uci.edu;-mlearn/MLRepository.html

PAL, S.K. and SKOWRON, A. (1999) Rough Fuzzy Hybridization. A New Trend
in Decision-Making. Springer-Verlag.

QUINLAN J .R. (1993) 04.5: Programs for machine learning. Morgan Kaufman,
San Mateo.

THRUN, S.B . et al. (1991) The MONK 's problems: a performance comparison
of different learning algorithms. Carnegie Mellon University, CMU-CS-91-
197.

WEISS, S.M. and KULIKOWSKI , C.A., eds. (1991) Computer systems that learn.
Morgan Kauffman, San Mateo, CA.

WETTSCHERECK, D., AHA, D.W. and MOHR!, T. (1997) A Review and Empir­
ical Evaluation of Feature Weighting Methods for a Class of Lazy Learning
Algorithms. Artificial Intelligence Review, 11, 273-314.

