PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A model-theoretic version of the complement theorem : applications

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper treats of some consequences of the model-theoretic version of Gabrielov's complement theorem from [11], which asserts that the theories T[sub an] (introduced in [11] and T'[sub an] (defined herein) are model-complete. The theory T'[sub an] is a universal modification of T[sub an] in the language L'[sub an] of ordered rings expanded by the symbols of restricted analytic functions, arithmetic roots and multiplicative inverse l/x. We give a short proof of the curve selecting lemma, and next we demonstrate how quantifier elimination, within the structure R[sub an] expanded by multiplicative inverse 1/x (a result due to Denef-van den Dries [4], can be obtained from the complement theorem through a general method of logic. Also presented is an application to definability problems ; namely, a piecewise description of a subanalytic function by restricted analytic functions, arithmetic roots and l/x.
Rocznik
Strony
355--361
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
  • Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
Bibliografia
  • [1] E. Artin, O. Schreier, Algebraische Konstruktion reeller Körper, Abh. Math. Sem. Univ. Hamburg, 5 (1927) 85-99.
  • [2] J. Bochnak, M. Coste, M.-F. Roy, Géométrie Algébrique 'Mdle, Sprin¬ger, 1987.
  • [3] C. C. Chang, H. J. Keisler, Model Theory, North-Holland Publ. Co., Amsterdam 1973.
  • [4] J. Denef, L. van den Dries, p-adic and real subanalytic sets, Ann. Math., 128 (1988) 79-138.
  • [5] L. van den Dries, A. Macintyre, D. Marker, The elementary theory of restricted analytic fields with exponentiation, Ann. Math., 140 (1994) 183-205.
  • [6] M. Galbiati, Sur l'image d'un morphisme analytique réel propre, Ann. Scuola Norm. Sup. Pisa Cl. Sc., 3 (2) (1976) 311-319.
  • [7] W. Hodges, Model Theory, Cambridge Univ. Press, 1993.
  • [8] J.-M. Lion, J.-P. Rolin, Theoréme de préparation pour des fonctions logarithmico-exponentielles, Ann. Inst. Fourier (Grenoble), 47 (3) (1997) 859-884.
  • [9] K. J. Nowak, On a universal axiomatization of the real closed fields, Ann. Polon. Math., 65 (1) (1996) 95-103.
  • [10] K. J. Nowak, A model-theoretic criterion for quantifier elimination and its application to geometry, Bull. Pol. Ac.: Math., 46 (4) (1998) 377-381.
  • [11] K. J. Nowak, A model-theoretic version of the complement theorem, Bull. Pol. Ac.: Math., 47 (4) (1999), 345-353.
  • [12] A. Prestel, Lectures on Formally Real Fields, Lect. Notes Math., Springer, 1093 (1984).
  • [13] M. Raynaud, Anneaux Locaux Henseliens, Lect. Notes Math., Springer, 169 (1970).
  • [14] J. R. Shoenfield, Mathematical Logic, Addison-Wesley Publ. Co., Reading, Mass. 1967.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0001-0941
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.