PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

A mixed problem for a parabolic equation of higher order with integral conditions

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we investigate the solvability of a mixed problem with integral conditions for a parabolic equation of higher order. The existence and uniqueness of the strong solution are established with the help of a priori bound and the density of the image of the operator generated by the problem in consideration.
Rocznik
Strony
313--322
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
  • Department of Mathematics, University of Tebessa, Tebessa 12002, Algeria
autor
  • Department of Mathematics, University of Tebessa, Tebessa 12002, Algeria
autor
  • Faculté des Sciences, Département de Mathématiques, U.S.T.H.B, Alger, Algerie
Bibliografia
  • [1] A. Bouziani, N. E. Benouar, Problème mixte avec conditions intégrales pour une classe d’équations paraboliques, C.R. Acad. Sci. Paris Sér. I Math., 321 (1995) 1177-1182.
  • [2] A. Bouziani, Solution forte d’un problème mixte avec une condition intégrale pour une classe d’équations paraboliques, Maghreb Math. Rev., 6 (1) (1997) 1-17.
  • [3] N. E. Benouar, N. I. Yurchuk, Mixed problem with an integral condition for parabolic equations with the Bessel operator, Differ. Uravn., 27 (12) (1991) 2094-2098.
  • [4] R. Cannon, The solution of heat equation subject to the specification of energy, Quart. Appl. Math., 21 (1963) 155-160.
  • [5] J. R. Cannon, Y. Lin, J. Van Der Hoek, A quasi-linear parabolic equation with nonlocal boundary condition, Rend. Mat. Appl. (7), 9 (1989) 239-264.
  • [6] L. Gårding, Cauchy problem for hyperbolic equations, University of Chicago, Lecture Notes, 1957.
  • [7] N. I. Ionkin, Solution of boundary value problem in heat conduction theory with nonlocal boundary conditions, Differ. Uravn., 13 (1977) 294-304.
  • [8] N. I. Ionkin, Stability of a problem in heat conduction theory with nonlocal boundary conditions, Differ. Uravn., 15 (7) (1979) 1279-1283.
  • [9] N. I. Ionkin, E. I. Moiseev, A problem for the heat conduction equation with two-point boundary condition, Differ. Uravn., 15 (7) (1979) 1284-1295.
  • [10] N. I. Kamynin, A boundary value problem in the theory of heat conduction with non classical boundary condition, Theoret. Vychisl. Mat. Fiz., 4 (6) (1964) 1006-1024.
  • [11] A. V. Kartynnik, Three point boundary value problem with an integral space variables conditions for second order parabolic equations, Differ. Uravn., 26 (1990) 1568-1575.
  • [12] A. A. Samarskii, Some problems in differential equations theory, Differ. Uravn., 11 (16) (1980) 1925-1935.
  • [13] P. Shi, M. S hillor, Design of contact patterns in one dimensional thermoelasticity, in theoritical aspects of industrial design, Society of Industrial and Applied Mathematics, Philadelphia 1992.
  • [14] N. I. Yurchuk, Mixed problem with an integral condition for certain parabolic equations, Differ. Uravn., 22 (12) (1986) 2117-2126.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0001-0926
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.