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Abstract: A Hellinger-Reissner variational principle is intro
duced to derive the weak form equation of thin generally orthotropic 
laminates. It leads naturally to a mixed finite-element approxima
tion that has the out-of-plane deflection and the bending and twist
ing moments as independent unknowns . A triangular element is 
derived that is used for both analysis and optimization purposes. 
Numerical simulations on example laminates of irregular geometry 
are presented to validate the theoretical framework. 
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1. Introduction 

Despite the huge amount of literature which has appeared in the last decades on 
modeling and optimization of composite structures, most results are concerned 
with orthotropic laminates of rectangular geometry. This may be attributed 
to the fact that, under these conditions, semi-analytical methods such as that 
of trigonometric sequences, or basic numerical approaches such as the original 
Rayleigh- Ritz method may be successfully applied. Irregular geometries call 
for the adoption of finite-element approximations for which we refer to Reddy 
(1984). However, t he displacement- based finite elements are usually very de
manding as far as the computational burden is concerned since the fourth order 
operator that governs the displacement of the structure finds its natural func
t ional space in H 2 , the space of measurable functions of integrable square along 
with their derivatives up to second order. Therefore, polynomials of high or
der are necessary to assemble a convergent finite-element scheme in the case of 
compatible approximations. This motivates the choice of a mixed approxima
tion to be developed hereafter for which the simplicity of the consequent finite 
element outweighs the increased number of equations to be solved. The paper is 
organized as follows . Classic relations governing thin generally orthotropic lam
inates arc briefly reviewed and a Hellinger- Reissner variational principle is then 
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introduced. The resulting functional drives toward the construction of a simple 
triangular element with linear shape functions having as nodal unknowns the 
displacement and the bending and twisting moments. Some optimality condi
tions for the design of this type of laminates arc then recalled before presenting 
a few numerical results on the analysis and optimization of irregular plates. 

2. Governing relations 

2.1. Constitutive law, compatibility and equilibrium 

Thin generally orthotropic laminates are considered complying with the hy
potheses that allow decoupling between bending and in-plane actions. There
fore, the structural constitutive law reads 

(1) 

where Nix and ~My are the bending moments and Mxy is the twisting moment. 
They are related to the curvatures Xx, Xy and Xxy by the classic lamination 
coefficients D;1 that are computed as 

1~- (3 3 
D;i = 3 L.)Q;i)k hk- hk-1) 

k=l 

where the Q;1 are given as 

Qll = Qu cos4 B + 2(Ql2 + 2QGG) sin2 Bcos2 B + Q22 sin4 B 
Q12 = ( Q ll + Q22 - 4QGG) sin2 B cos2 B + Q12 (sin4 B + cos4 B) 
Q22 = Qu sin4 B + 2(QI2 + 2QG6) sin2 B cos2 B + Q22 cos4 B 
Q16 = (Qn - Q12 - 2QGG) sin B cos3 B + (Q12 - Q22 + 2Q66)(sin3 B cos B) 
Q26 = ( Qn - Q12 - 2QGG) sin3 B cos B + ( Q12 - Q22 + 2QGG)(sin B cos3 B) 
Q66 = (Qn + Q22- 2Q12- 2QGo) sin2 B cos2 B + QGG(sin4 B + cos4 B) 

In the above, the local coefficients Q;1 are given as 

(2) 

(3) 

Qu = El ' Ql2 = vl2E2 ' Q22 = 1 E2 ' Q66 = G ( 4) 
1 - V12V21 1 - V12V21 - V12V21 

Under the Kirchhoff hypothesis, the compatibility equations may be written as 

(5) 

while equilibrium is governed by the well known relation 

82 Mx 
2

82 Mxy 82 My O --+ --+--+q= 
fl~2 ;:)~;:), fJ? ,2 

(6) 
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2.2. Variational principles 

When classic compatible elements are used, reference is made to the stationarity 
of the functional 

1 i' 1' Jl(w)=- {Mxxx+MyXy+MxyXxy}dfl+ qwdrl+ 
2 . n n 

f [Tnw + Mn¢n + MnscPs]ds Jan 
(7) 

in which moments and curvatures are expressed in terms of the out- of plane 
displacement w by means of (1) and (5). The resulting finite element formulation 
find its natural environment in H 2 (0) defined as 

H 2 (0) = { v measurable! v , Dv and D2 v E L2 (0)} (8) 

The downside of such an approach is represented by the high order that the 
polynomial shape functions are to be given to ensure a convergent behavior. 
A remedy is constituted by the adoption of a mixed formulation in which the 
displacement and the moments are discretized independently, thus increasing 
the number of equations to be solved and reducing the order of the problem. 
Toward the formulation of such an approach the constitutive law of equation 
( 1) is inverted as 

{ f, } [ ~: ~: H: ]{ E:, } 
where the compliance matrix V reads 

DlGDz6 - D1zD66 
DnD66- Di6 

Dl2Dl6 - DIID26 

D12D26 - D16D22] 
D1zD16 - D11D26 

DuD22- Diz 

(9) 

(10) 

and D = -Dr6D22 + 2D12D16D26- DnD~6 - Dr2 D66 + DnD22D66· By ex
pressing the elastic energy in terms of moments, imposing the equilibrium in 
weak form and after some algebra the following mixed functional may be derived 
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3. Finite element discretisation and optimal design 

The weak form of the governing equations, i.e. the stationarity of the func
tional in (11), suggests the adoption of the linear shape functions for all the 
unknowns. In fact, the convergence analysis for such an element may be car
ried out in H 1 (D) that means that piecewise linear shape functions guarantee 
convergence of the discrete solution to the actual one. As to the optimal de-

3 Nodal 
Unknowns 

[w M M M 
x y xy 

2 

Figure 1. The triangular finite element used in the numerical examples 

sign, several objectives may be pursued thanks to the flexibility offered by the 
finite- element approach. In Cinquini, Mariani and Venini (1995) , a Rayleigh
Ritz method was applied to determine the influence of elastic boundaries on 
the eigenfrequencies of rectangular laminates. In Cinquini, Mariani and Venini 
(1996), the influence of uncertainties on the optimal solution to eigenvalue based 
objectives was assessed by means of a stochastic Rayleigh- Ritz approach. In 
this paper, attention will be focused on optimizing the first three eigenfrequen
cies of an irregular laminate variously constrained at the boundary. By denoting 
with Ai the i- th eigenvalue, possible objective functions include 

max [min >.] = max >-1 
max [>.i+l - Ai] , i = 1, 2 

(12) 

The above objectives are known to be nondifferentiable and present peculiar 
problems when the multiplicity of an eigenvalue is greater than one. These 
topics are however left for future works. Herein a sequential quadratic program
ming (SQP) scheme is applied to find the extremum points of the first three 
eigenfrequencies in the case of no eigenvalue crossing and absence of repeated 
eigenvalues. A single lamina is the object of investigation and its lamination 
angle is the design variable. The section to come presents a few numerical re
sults from which extreme points may be found by inspection. However, they 
were also detected by the SQP approach in very few iterations. 

4. Numerical simulations 

A graphite- epoxy fiber- reinforced lamina is considered. T he elastic moduli of 
-. nfl -. f\() • , , n 6 _.. ..... : _ n 'J 1 '"' ~-. ..-1 /" . _ _ 
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laminate domain 

- 1 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 

Figure 2. Domain of the laminates under investigation and relevant mesh 

0.96 x 106 psi . A trapezoidal plate was considered, shown in Fig. 2 with the 
mesh used in the numerical study. In the first case, the lamina was considered 
clamped at all the edges. The results of the eigenanalysis are summarized in 
Figs. 3-8. In particular, Figs. 3, 4 and 5 present the first three modal shapes 
for various angles of lamination. The dominant role of the reinforcement for 
the vibrational behavior of the system is clearly enhanced. As to the optimal 
design, the variations of the first three frequencies are reported in Figs. 6, 7 and 
8. It is interesting to note that the optimal solutions for rectangular plates, i.e. 
e = 0°, e = 45° and e = 90° , see Cinquini , Mariani and Venini (1995), are no 
longer such in the case under investigation. One may - conversely - note that 
the optimal solution is approximately e = 60°) i. e. the direction normal to the 
inclined edge of the plate. The same analyses were then repeated by varying 
the boundary conditions. Starting from the horizontal edge, the four edges were, 
respectively, simply supported , simply supported, free and clamped. Figs. 9, 10 
and 11 present the first three modal shapes of the plate for different angles of 
lamination . The pattern is significantly affected by the presence of a free edge, 
but still the importance of the reinforcement on the behavior of the structure is 
clearly visible. Figs. 12, 13 and 14 show the first three eigenfrequencies of the 
plate for this case. It is worth noting that the situation is reversed ·with respect 
to the previous simulation as far as the optimal design is concerned. In this 
new configuration, e = 60° happens to be the worst design choice, while before 
it was the optimal one. This is due to the fact that the inclined edge is now 
unconstrained and therefore the internal reinforcement of the structure does 
not find an adequate partnershio in the boundarv constraints . This sue:e:ests to 
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Figure 3. First eigenmode for different lamination angles (I case) 
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Figure 4. Second eigenmode for different lamination angles (I case) 
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Figure 5. Third eigenmode for different lamination angles (I case) 
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Figure 6. First natural frequency for different lamination angles (I case) 
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1.6 L_ _ _..J.... __ .J__---,': __ .J_ _ ___J, __ _l_ _ ___.-,---_---'-,-_ ___J 

o 20 40 60 eo 100 120 140 160 1eo 
angle of lamination (deg) 

Figure 7. Second natural frequency for different lamination angles (I case) 
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Figure 8. Third natural frequency for different lamination angles (I case) 
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Figure 9. First eigenmode for different lamination angles (II case) 
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Figure 10. Second eigenmode for different lamination angles (II case) 
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Figure 11. Third eigenmode for different lamination angles (II case) 

include the boundaries themselves as optimization variables in a strategy where 
one chooses position and type of boundary. 

5. Conclusions 

A mixed- fini te-element approximation for thin generally orthotropic laminates 
was presented . The main motivation behind this choice was the capability of 
solving a fourth order problem with simple linear shape functions. The dis
cretized structure was the object of frequency- domain opt imization where ply 
angles were chosen as design variables. Ongoing extensions include more com
plicated optimal design objectives and dynamic analyses of the system in the 
presence of an active controller . 
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Figure 12. First nnt.mnl freqncnc.Y for dirkrcnl. L11nin>Jt.ion ;Ingles (II casr::) 
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Figure 14. Third natural frequency for different lamina tion angles (II case) 
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