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Abstract: We consider a hierarchical classification problem in­
volving sets of attributes and criteria. The problem of classification 
concerns an assignment of a set of objects to pre-defined classes. The 
classification to preference-ordered classes is called sorting. The ob­
jects are described by two sorts of attributes: criteria and regular 
attributes, depending on whether the attribute domain is preference­
ordered or not. The hierarchical classification and sorting is made 
in finite number of steps due to hierarchical structure of regular 
attributes and criteria in the form of a tree. We propose a method­
ology based on the decision rule preference model. The model is 
constructed by inductive learning from examples of hierarchical de­
cisions made by the Decision Maker on a reference set of objects. To 
deal with inconsistencies appearing in decision examples we adapt 
the rough set approach to the hierarchical classification and sorting 
problems. Due to inconsistency and their propagation from the bot­
tom to the top of the hierarchy, the description of an object on a 
particular attribute may be not a simple value but either a subset 
of a regular attribute domain or an interval on a criterion scale. An 
example illustrates the methodology presented. 

Keywords: multicriteria decision problems, classification, sort­
ing, hierarchical structure, rough sets, decision rule preference model. 

1. Introduction 

The aim of decision analysis is to answer two basic questions. The first question 
is to explain decisions in terms of the circumstances in which they were made. 
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The second is to give a recommendation as to how to make a good decision under 
specific circumstances. According to Roy (1985), it is possible to distinguish the 
following, most frequent decision problems: choice, ranking and classification 
or sorting. The choice problem consists in selection of the best object from 
a given set (often called actions in decision problems). The ranking problem 
consists in ordering the objects from the best to the worst, with respect to the 
Decision Maker's (DM's) preferences. Classification concerns an assignment of 
the objects to pre-defined classes. In the case where the classes are preference­
ordered it is called the sorting problem. 

In general , decisions are based on some characteristics of objects. For ex­
ample, when buying a car, the decisions can be based on such characteristics 
as price, maximum speed, fuel consumption, colour, country of production, etc. 
These characteristics are called attributes or, more precisely, condition attributes. 
Let us observe that, depending on the interpretation given to the attributes by 
the DM, some of them may have ordinal properties expressing preference scales, 
while others may not. The former attributes are called criteria, while the latter 
are called regular attributes or, briefly, attributes. In the above example, price, 
maximum speed and fuel consumption may be criteria because, for instance, low 
price is better than high price; most probably, colour and country of production 
are not criteria but regular attributes because, for instance, red is not better 
than green. However, one can imagine that also those attributes could become 
criteria. 

Moreover, decisions may be also ordinal. For example, a standard classifi­
cation of cars for a catalogue does not impose any preference order among the 
classes (sport cars, family cars, utility cars, etc.), however, choice of the best 
car, or ranking of a set of cars from the best to the worst surely impose a prefer­
ence order. Let us also observe that, depending on the interpretation assigned 
given to the classification by the DM, the classes may express a preference, so 
also classification may be ordinal. For instance, the DM could be interested in 
classification of cars into three categories: acceptable, hardly acceptable, non­
acceptable. This type of classification is called sorting. 

In many real life situations, the process of decision making is decompos­
able into subproblems; this decomposition may either follow from a, natural, 
hierarchical structure of the evaluation, or from a need of simplification of a 
complex decision problem. These situations are called Hierarchical Decision 
Problems (HDP), in particular, Hierarchical Classification/Sorting Problems 
(HCSP). They are considered in our paper. The hierarchical structure of HCSP 
has the form of a tree whose nodes are attributes and/ or criteria describing ob­
jects. In the root of the tree there is an overall evaluation making assignment of 
objects to classes, then in the intermediate nodes are subattributes and/or sub­
criteria, called hierarchical and, finally, in the leafs there are attributes and/ or 
criteria that do not branch further - they are called fiat attributes or criteria. 
The hierarchy of attributes and criteria seems to be a natural and intuitive 
concept. For example, when considering car sorting, the criterion of fuel con-
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sumption may be considered as a hierarchical one consisting of following sub­
criteria: fuel consumption in urban drive, in highway drive, at 60 km/h, and at 
120 km/h. 

Consideration of hierarchical decision problems is supported by psycholog­
ical arguments, as pointed out by White, Wilson and Wilson (1969): "the use 
of hierarchical ordering must be as old as human thought, conscious and un­
conscious". Psychologists have proven that the human brain is limited to about 
seven (seven, plus or minus two) items in both short term memory capacity and 
its discrimination ability (Miller, 1956). Humans have learned how to deal with 
complexity by hierarchical decomposition. Surprisingly, the hierarchical decom­
position of decision problems has gained little attention in scientific decision 

~~. -
The best-known exception is the controversial Analytic Hierarchy Process 

(Saaty, 1980, Belton and Gear, 1983, Barzilei, 1997). Two other methods for 
handling a hierarchical structure of attributes and criteria are V.I .S.A. (Belton, 
1999) and MACBETH (Bana a Costa and Vansnick, 1999). It is well known 
that a multicriteria decision problem has no solution unless a preference model 
is defined. Traditionally, in multicriteria decision analysis (MCDA) two major 
preference models: functional and relational have been considered. For example, 
Analytic Hierarchy Process, V.I.S.A. and MACBETH use utility function as a 
preference model. The main difficulty with application ofMCDA methods based 
on functional and relational preference models lies in acquisition of the DM's 
preferential information. Very often, this information has to be given in terms 
of pairwise comparisons over all objects or in terms of such parameters like 
importance weights, substitution rates and various thresholds. It is generally 
acknowledged, however, that people prefer to make exemplary decisions rather 
than to explain t hem in terms of the preference model adopted by an analyst . 
Our approach to HCSP is based on another type of preference model, which is 
a set of logical statements i.e. "if. .. , then . .. " decision Tules, characterised by 
Greco, Matarazzo and Slowi1iski (1998a, 1998b, 2001a). The decision rules are 
induced from decision examples given by the DM. In the case of classification 
and sorting the decision examples concern assignment of some TejeTence objects 
to decision classes. The reference objects are those objects in a set which are 
relatively well-know to the DM so that she/he is able to make decision with 
them. For the reasons mentioned above, the idea of inferring preference models 
from exemplary decisions provided by the DM is very attractive. 

Very often, in a set of decision examples on reference objects, there may 
appear some inconsistency corresponding to the situation where two reference 
objects having the same description are assigned to different classes. To deal 
with such an inconsistency, the Tough set appmach has been proposed by Pawlak 
in the early 1980s (1982, 1991). The rough set theory is based on the assump­
tion t hat objects analyzed may be considered only in the perspective of available 
information about them. This leads to the conclusion that knowledge has gran­
ular structure. Due to granularity of knowledge some objects of interest cannot 
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be discerned or appear as identical or similar. The indiscernibility relation con­
stitutes a mathematical basis of the rough set theory; it induces a partition 
of the universe into blocks of indiscernible objects, called elementary sets or 
granules that can be used to bui~d knowledge about a real or abstract world. 
A set of objects (or class), whichfcannot be precisely described by elementary 
sets (is not a union of some elementary sets) is called rough (approximate) -
otherwise it is referred to as a crisp (exact) set (class). A rough set is described 
by two ordinary sets called the lower and the upper approximation; the lower 
approximation consists of all elementary sets which surely and totally belong to 
the described set of object, while the upper approximation contains, addition­
ally the elementary sets which partially belong to the described set of objects. 
Obviously, the difference between the upper and the lower approximation con­
stitutes the boundary region of the set, whose elements cannot be characterized 
with certainty as belonging or not to the described set of objects, using the 
available information. 

Rough set analysis is naturally adapted to problems of multiattribute clas­
sification because it is possible to extract all the essential knowledge contained 
in the set of examples using indiscernibility relation (Pawlak and Slowinski, 
1994). However, as pointed out by Greco, Matarazzo and Slowinski (1996), 
the original rough set approach is insufficient for multicriteria sorting problems. 
Consider, for example two firms, A and B, where the firm A is characterized 
by better economical parameters, but it is assigned by the DM to a class of 
higher bankruptcy risk than the firm B. This is obviously inconsistent with 
the dominance principle that requires that an object having a better (in gen­
eral, not worse) evaluation on considered criteria cannot be assigned to a worse 
class. Within the original rough set approach, called the Classic Rough Set 
Approach (CRSA), the two firms will be considered as just discernible and no 
inconsistency will be stated. 

Greco, Matarazzo and Slowinski (1996, 1998b, 1999, 2002a, 2002c) have pro­
posed an extension of the rough set theory called Dominance-based Rough Set 
Approach (DRSA) that is able to deal with inconsistencies typical to exemplary 
decisions in MCDA problems. In difference to CRSA, the indiscernibility rela­
tion is substituted by the dominance relation that identifies the dominating and 
the dominated sets as granules of knowledge. The dominating set of object x 
contains objects that are not worse then x on all considered criteria, while the 
dominated set of objects x contains objects that are not better than x on all 
considered criteria. DRSA prepares, moreover, a conceptual ground for inducing 
rules having syntax concordant with the dominance principle. 

As Greco, Matarazzo and Slowinski (2001b) have proved, the decision rule 
preference model resulting from the rough set approach is more general than 
all the existing models of conjoint measurement due to its capacity of handling 
inconsistent preferences. Moreover, it is more understandable for the users 
because of its natural syntax. The decision rules explain a decision policy of the 
DM and may be used for classification or sorting of new objects. 
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In this paper, a methodology of hierarchical classification and sorting is 
presented. In this case, the decision examples specify a classification or sorting 
made by the DM at each node of the tree. To deal with inconsistencies in the set 
of decision examples we propose to adapt the rough set approaches. In HSCP, 
the main difficulty consists in propagation of inconsistencies along the tree, i.e. 
taking into account at each node of the tree the inconsistent information com­
ing from lower level nodes. In the proposed methodology, the inconsistencies 
are propagated from the bottom to the top of the tree in the form of subsets 
of possible attribute values. In the case of hierarchical criteria, these subsets 
are intervals of possible criterion values. Subsets of possible values may also 
appear in leafs of the tree. To deal with multiple values of attributes for object 
description, we adequately adapt the rough set approaches: CRSA and DRSA. 
The rough set approaches based on generalized definitions of indiscernibility re­
lation and dominance relation will be called Multi- Valued CRSA (MV-CRSA) 
and Interval- Valued DRSA (IV-DRSA), respectively. The sets of decision rules 
are induced from rough approximations at each node of the tree. The classi­
fication or sorting of new objects proceeds from the bottom to the top of the 
hierarchy, where the final decision is made. 

T he paper is organized as follows. In Section 2, a brief reminder of the 
decision rule methodology for non-hierarchical sorting and classification is given. 
In particular, data representation, decision rule preference model and formal 
description of CRSA and DRSA are presented. Section 3 contains description 
of the proposed methodology for classification and sorting with hierarchical 
structure of attributes and criteria. There we introduce the tree representation 
of the hierarchy, the extended rough set approaches: MV-CRSA and IV-DRSA, 
propagation of inconsistencies along the tree and application of decision rules to 
hierarchical classification or sorting of new objects. In Section 4 an illustrative 
example is presented. Section 5 contains conclusions. 

I 

2. Definitions and preliminaries 

2.1. Data representation 

Data are often presented as a table , where columns are labelled by regular at­
tributes and/ or criteria, rows by reference objects, and entries of the table are at­
tribute/criteria values. Formally, a decision table is the 4-tuple S = (U, A, V, f), 
where U is a finite set of reference objects, A is a finite set of attributes and/or 
criteria, V= UaEA Va, where Va is the domain of the attribute/criterion a, and 
f : U x A ~ V is an information function such that f(x, a) E Va for every 
(x, a) E U x A. The set A is divided into condition attributes (set C :j:. 0) and 
decision attributes (set D :j:. 0), such that CUD = A and C n D = 0. More­
over, the set C is composed of subsets W and Q including regular attributes 
and criteria, respectively (Q U W = C; Q n W = 0). The set D is a singleton 
(D = { d} ), where d is a regular attribute or a criterion. 
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It is assumed that the domain of a criterion q E Q is completely pre-ordered 
by an outranking relation tq; x tq y means that x is at least so good as y with 
respect to criterion q. The symmetric part of tq is an indifference relation "'q, 
and the asymmetric part of tq is a strict preference relation >-q (Roy, 1985). In 
the following we are considering criteria having a numerical domain, i.e. if q is a 
criterion , then Vq ~ ~ (~denotes a set of real numbers), and belonging to one 
of the two following types: gain criteria and cost criteria. For the gain criterion: 
x tq y =? f(x, q) 2: f(y, q); for the cost criterion: x tq y =? f(x, q) ~ f(y, q), 
where q E Q, x,y E U. 

Decision attribute d, whose domain vd = {V~ ' t E T}' T = { 1' ... ' n} involves 
a partition Cl(d) = { Clt, t E T} of U into a finit e number of classes Clt = { x E 

U : f(x, d) = v~}. Partition Cl is called classification. Each object x E U 
is assigned to one and only one class Clt E Cl(d). If decision attribute d is 
a criterion (it is assumed, without loss of generality, that a decision criterion 
is always of the gain type), then the classes from Cl( d) are preference-ordered 
according to increasing order of class indices, i.e. for all r, s E T, such that r > s, 
the objects from Clr are strictly preferred to the objects from Cl8 • In this case, 
classification Cl(d) is called sorting. In the problem of sorting we will consider 
the upward and the downward unions of classes defined, respectively, as: 

Clf = U Cl" Clf = U Cls, t ET. 
s~t s~t 

The statement x E Clf means "x belongs to at least class Clt'', while 
X E Clf means "x belongs to at most class Clt". Observe that Clf- =Cl[? = u, 
Cl~ = Cln and Cl[= Clt. Furthermore, fort= 2, ... , n, it is: Cl~_ 1 = U -Clf 

> < and Clt: = U- Clt:_ 1. 

If the set C of condition attributes contains regular attributes only, then 
the decision problem represented by the table is a multiattribute classification 
problem, independently of whether d is criterion or attribute; if decision attribute 
d is a criterion and set C contains at least one criterion, then the corresponding 
decision problem is a multicriteria sorting problem. 

2.2. Decision rules 

Greco, Matarazzo and Slowinski (1998a, 1998b) have proposed and character­
ized the decision rule preference model for multicriteria sorting. According to 
Slovic (1975), people make decisions by searching for rules that provide good 
justification of their choices. Thus, it is natural to build the preference model 
in terms of "if .. , then ... " decision rules. The decision rules are induced from 
decision examples given by DM where the decision examples concern assignment 
of some reference objects to decision classes. Then, these rules can be applied 
to a set of new objects (potential actions) in order to obtain recommendations. 

The induction of rules from examples is a typical approach of artificial in­
telligence. It is concordant with the principle of posterior rationality of March 
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(1988) and with aggregation-disaggregation logic of Jacquet-Lagreze (1981). 
The rules explain the preferential attitude of the DM and enable her/his un­
derstanding of the reasons of her /his preferences. The recognition of the rules 
by the DM (Langley and Simon, 1998) justifies their use for decision support. 
So, the preference model in the form of rules derived from examples fulfils both 
explanation and recommendation tasks that are the principal aims of decision 
analysis. 

More formally, decision rule is a logical expression in the form: 

if L, then K, 

where L is an antecedent (condition part) and K is a consequent (decision part), 
meaning that an object satisfying L will be classified to class or classes described 
by K. 

The condition part Lis a conjunction of elementary conditions (selectors) w: 

L = W1 1\ W2 1\ .. . 1\ Wz(r), 

where l(r) is the number of elementary conditions, called rule length. The 
selector Wi is defined as (f(x, ai) ex vaJ, Vai E Va., where f(x, ai) denotes a 
value of attribute ai for object x; ex denotes relation operator=, ;:::, :::;, etc. and 
term Vai denotes a value from Vai (Michalski, 1983, Stefanowski, 2001). 

The decision part K is, in general, a disjunction of elementary decisions 

X E Clr U Cls U ... U Clt, r,s,t ET. 

An object x E U supports a decision rule r if it satisfies both the condition 
part and the decision part of the rule. We also say that decision rule r covers 
object x if it matches at least the condition part of the rule. Each decision rule 
is characterized by its strength defined as the number of objects supporting the 
rule. 

Procedures for generation of decision rules from a decision table use an in­
ductive learning principle. When inducing the decision rules with consequent 
K, examples concordant with K are called positive and all the others negative. 
A decision rule is discriminant if it is consistent, i.e. distinguishes positive ex­
amples from the negative ones. By minimal decision rule we understand such 
implication that there is no other implication with an antecedent of at least the 
same generality, and a consequent of at least the same particularity. It is also 
interesting to look for partly discriminant rules. These are rules that, besides 
positive examples, cover also a limited number of negative ones. 

It is assumed that a set of rules has to reclassify all examples from decision 
table. Such set of rules is called complete. If a decision table contains some 
inconsistent examples, then the induced set of rules should reflect such situation. 
This is possible while using the rough set approach. 
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2.3. Rough sets 

2.3.1. Indiscernibility relation and dominance relation 

In the case of multiattribute classification the CRSA is used. The relation that 
identifies the granules of knowledge is defined as follows. 

For a given decision table S, where C = W, the indiscernibility relation 
la is a binary relation defined on U with respect to attribute a E C, such 
that: xlaY {::} f(x, a) = J(y, a), x, y E U, what means that objects x and y are 
indiscernible on attribute a. Objects x and y are indiscernible on subset B ~ C, 
when xlay, \fa E B, what is denoted by xlBY· 

The indiscernibility relation thus defined is an equivalence relation (reflexive, 
symmetric and transitive). The family of all the equivalence classes of the 
relation IB is denoted by UIIB. The equivalence class id_entified by the relation 
IB is called B-elementary set. The B-elementary set coritaining x E U is defined 
as: IB(x) ={yE U: x!By}. 

The DRSA extends the CRSA by substituting the indiscernibility relation 
by a dominance relation. 

Given decision table S, where decision d is a criterion and Q =f 0, it is 
said that x dominates y with respect to B ~ C, denoted by xDBy, if x Cq y, 
\/q E Q n B and xlay, \fa E W n B. For each B ~ C, the dominance relation 
DB is reflexive and transitive, i.e. it is a partial preorder. 

Given B ~ C and U, the granules of knowledge induced by dominance 
relation DB are: 

• a set of objects dominating x, D~(x) ={yE U: yDBx }, 
• a set of objects dominated by x, DJ3(x) = {yE U: xDBy}, 

called B-dominating set and B-dominated set with respect to x E U, respectively. 
The granules will be used for rough approximation. 

2.3.2. Lower and upper (rough) approximation 

The lower and the upper approximation of a set are two principal concepts of 
the rough set theory used to description of sets. 

In CRSA we are interested in approximation of classes. For given decision 
table S, where C = W, the B-lower and the B-upper approximation of class 
Clt, t ET, with respect to B ~ C, are defined, respectively, as: 

B(Clt) = {x E U: IB(x) ~ Clt}, B(Clt) = U IB(x). 
xECl, 

The B -boundary of Clt inS, denoted by BNB(Clt), is: 

BNB(Clt) = B(Clt) - B(Clt)· 

The lower approximation of Clt is composed of all B-elementary sets (gran­
ules of knowledge) included in Clt (whose elements, therefore, certainly belong 
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to Clt), while the upper approximation of Clt consists of all the B-elementary 
sets that have a non-empty intersection with Clt (whose elements, therefore, 
possibly belong to Clt). The B-boundary of Clt constitutes the "doubtful re­
gion" of Clt: nothing can be said with certainty about the membership of its 
elements with respect to the class Clt. The objects from the boundary are in­
consistent in the sense that they have been assigned to different classes while 
having the same description on considered condition attributes; such objects are 
also called inconsistent examples. 

If the B-boundary of Clt is empty (BNB(Clt) = 0), then the class Clt 
is an crisp (exact) set with respect to B; otherwise, the class Clt is a rough 
(approximate) set with respect to B. 

In the DRSA, the sets to be approximated are upward and downward unions 
of classes and the items (granules of knowledge) used for this approximation are 
B-dominating and B-dominated sets. 

For given decision table S, where decision d is a criterion and Q :j: 0, the 
B-lower and the B-upper approximation of Clt, t E T, with respect to B s;; C, 
are defined, respectively, as: 

> + > - > u + B(Clt) = {.1: E U : D 8 (x) s;; Clt}, B(Clt) = D 8 (x). 

xEClt 

I 
Analogously, the B-lower and the B-upper approximation of Clf, t E T, 

with respect to B s;; C, are defined, respectively, as: 

B(Clf) = {x E U: D"B(x) s;; Clf}, B(Clf) = U D"B(x). 

xEClt 

The B-boundaries of Clt and Clf are defined as: 

BNB(Clt) = B(Clt) - B(Clt), BNB(Clf) = B(Clf)- B(Clf). 

The interpretation of the above defined approximations is similar as in the 
case of CRSA. The objects from the boundary are inconsistent with the domi­
nance principle in the sense that an object from a worse class dominates another 
object from a better class on the considered criteria; such objects are also called 
inconsistent examples. Formal properties of rough approximations for CRSA 
and DRSA may be found in (Pawlak, 1991, Greco, Matarazzo and Slowi1iski, 
2002a). 

For CRSA and DRSA we can consider the quality of approximation of the 
partition Cl(d) by the set of attributes and/or criteria B s;; C. The definition 
is as follows: 

(
B d) = IUct, ECI(d} .fl.( Clt) I 

7 
' IUI ' 

where B( Clt) is the lower approximation of class Clt; in CRSA, B( Clt) is defined 
above, and in DRSA, B(Clt) = {x E Clt: D~(x) s;; Clt A D"B(x) s;; Clf}. The 
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quality expresses the ratio of all the B-correctly classified or sorted objects to 
all objects in the table. 

Each minimal subset B ~ C such that r(B,d) = 1(C,d) is called a reduct 
of Cl(d) and denoted by REDcz(d)· Let us remark that a decision table can 
have more than one reduct. The intersection of all reducts is called the core and 
denoted by COREcz(d)· 

In CRSA, the notion of a generalized decision is used. The B-generalized 
decision of x E U is a function 88 (x) : U ----) 2vd, defined as 88 (x) = {v E 

Vd : 3y E U, yiBx 1\ f(y, d) = v} where x E U and B ~ C. If an object is not 
inconsistent with any other object, then l8c(x)l = 1. 

A similar concept may be defined for DRSA. The B-generalized decision of 
object x E U with respect to the dominance relation is an interval 8~ (x) = 
[l(x, d), u(x, d)], where: 

l(x, d) = min{ v E Vd: 3y E U, yDBx 1\ f(y, d)= v }, 
u(x, d) = max{ v E Vd : 3y E U, xDBy 1\ f(y, d)= v }, 

and x, y E U, B ~ C. 
In other words, l(x, d) is the lowest decision class of objects dominating x, 

and u(x, d) is the highest decision class of objects dominated by x. Remark that 
if an object does not cause inconsistency in decision table, then l(x, d) = u(x, d). 

2.3.3. Decision rules induced from rough approximations of decision 
classes 

If the input decision table contains inconsistent examples, the lower and up­
per approximations of particular decision classes or unions of decision classes 
are computed. The decision rules are generated from these approximations 
and boundary regions. As a consequence, three basic kinds of rules are distin­
guished: 

• certain rules induced from lower approximations of classes or unions of 
classes, 

• possible rules induced from upper approximations of classes or unions of 
classes, 

• approximate rules induced from boundary regions of classes or unions of 
classes. 

Let us notice that certain rules are discriminant, while possible rules are 
partly discriminant. Moreover, the certain and possible rules indicate a unique 
decision to be made while approximate rules lead to a few possible decisions. 

There are distinguished three different types of decision rule selectors: 

1) f(x, a)= r, where a E W, rE Va, 
2) f(x, q) 2: r, where q E Q, rE Vq, 
3) f(x,q).:::; r, where q E Q, rE Vq 
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In the case of CRSA, when inducing the certain and possible rules describing 
a class Clt, the positive examples are all examples belonging, respectively, to 
C( Clt) and C( Clt); the negative examples are all examples not belonging to 
corresponding approximations of Clt. 

Theapproximate rules are induced from boundary regions composed of in­
consistent examples. Let Y denote the set of examples having the same value 
of generalized decision function 8c(x) = 8 , where [8[ > 1. For each Y identi­
fied with a set of positive examples, approximate decision rules are generated. 
Such decision rules have the consequent concordant with generalized decision 
function of objects belonging toY. The negative examples are all examples not 
belonging toY (Stefanowski, 2001). 

In CRSA, the selectors of decision rules are the form 1). The decision part 
for these rules may take three possible forms: 

• x E Clt , for certain rules , 
• x could belong to Clt, for possible rules, 
• x E Clr U Cls U ... U Clt, r, s, t E T, for approximate rules. 

For example, in classification of cars for a catalogue, the following decision 
rule could be induced: if (f(x, speed) = high) 1\ (f(x, colour) = black), then 
x E sports car. 

In the case of DRSA, the decision rules are generated from approximations of 
upward and downward unions of classes. For a given upward or downward union 
of classes, Clt or Clt, the decision rules induced from examples belonging to 
C(Clt) or C(Clj) suggest a possible assignment to "class Clt or better" or to 
"class Cls or worse", respectively. On the other hand, the decision rules induced 
from objects belonging to the intersection C(Clj) n C(Clt) are suggesting an 
assignment to some classes between Cl 8 and Clt (s < t). 

The form of decision rules in DRSA is more general. We are distinguishing 
the following types of decision rules: 

• certain 'at least' D>-decision rules, where selectors are in the form1), and 
2), when q is a gain criterion, or 3), when q is a cost criterion, and the 
consequent is in the form: X E Clt' where t E T . 

• possible 'at least' D>-decision rules, where selectors are in the form 1), 
and 2), when q is a gain criterion, or 3), when q is a cost criterion, and 
the consequent is in the form: X could belong to X E czt-' where t E T. 

• certain 'at most' D:s;-decision rules, where selectors are in the form 1), 
and 3), when q is a gain criterion, or 2), when q is a cost criterion, and 
the consequent is in the form: x E Clt, where t E T. 

• possible 'at most' D<-decision rules, where selectors are in the form 1), 
and 3), when q is a gain criterion, or 2), when q is a cost criterion, and 
the consequent is in the form: x could belong to Clt, where t E T. 

• approximate D2'::o;-decision rules, where selectors are in all the forms given 
above, and the decision part in the form: x E Cl 8 U Cls+l U ... U Clt, 
where 's, t E T , and s < t. 
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For example, in sorting of cars to preference-ordered classes: acceptable, 
hardly acceptable, non-acceptable, the following decision rule could be induced 
(price and fuel consumption are cost criteria): 

if (f(x,price) :S: 9000) 1\ (f(x,fuelconsumption) :S: 10 lit./100 km), then 
x E hardly acceptable-:;,. 

Let us observe that decision rules may be generated not only on the basis 
of all condition attributes/criteria but also with respect to a reduct or to any 
other subset of attributes/criteria. 

Generation of decision rules from decision tables is a complex task. A num­
ber of procedures based on the rough set theory have been proposed to solve 
it (for example see: Grzymala-Busse, 1992, 1997, Skowron, 1993, Skowron and 
Polkowski, 1997, Slowinski and Stefanowski, 1992, Stefanowski, 1998; with re­
spect to decision rule within DRSA see Greco et al., 2002b). The existing 
induction algorithms use one of the following strategies: 

• generation of a minimal set of rules, 
• generation of an exhaustive set of rules, 
• generation of a set of satisfactory set of rules . 

The first category of algorithms is focused on describing input objects using 
the minimum number of necessary rules covering all objects from a decision 
table, while the second group try to generate all decision rules in the simplest 
form. The third category of algorithms gives as a result the set of decision rules, 
which satisfy the a priori user's requirements, for example, the user can prefer 
to get decision rule characterized by a specified length of a rule (Stefanowski, 
1998). 

3. Methodology of hierarchical classification and sorting 
problem (HSCP) 

As mentioned in the introduction, decision problems, in particular, classifica­
tion and sorting problems, may have a hierarchical structure. In this case ob­
jects are described by regular attributes and/ or criteria, which are organized 
in a hierarchical structure. In consequence, the problem analysis proceeds with 
respect to the hierarchy, such that decisions performed on subproblems (subat­
tributes/subcriteria) influence the final decision. 

Figure 1. The hierarchy of attributes and criteria for a car sorting problem 
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An illustrative structure of a hierarchical sorting problem is shown in Fig. 1. 
The cars are sorted to three classes: acceptable, hardly acceptable, non-accept­
able, on the basis of five characteristics, where one of them - fuel consumption 
- is further made more detailed. 

Let us remind that the hierarchy can be represented by a tree, where sub­
trees represent subproblems and each node of the tree, different from the leaf, 
branches into succesive nodes called direct descendents. The root of the tree 
refers to an overall decision, each subnode refers to hierarchical attribute or cri­
terion (subdecision or intermediate decision) and leafs are fiat regular attributes 
and criteria. Notice that if a root of subtree is a hierarchical attribute, then 
the analysis of the relevant subproblem proceeds according to multiattribute 
classification; otherwise if a root is a hierarchical criterion, then the analysis 
proceeds according to multicriteria sorting. 

In HSCP, the main difficulty consists in propagatzon of inconsistencies along 
the tree, i.e. taking into account at each node of the tree the inconsistent in­
formation ,coming from lower level nodes. In the proposed methodology, the 
inconsistencies are propagated from the bottom to the top of the tree in the 
form of subsets of possible attribute values. To deal with multiple values of at­
tributes for object description, we propose the extended rough set approaches: 
MV-CRSA and IV-DRSA. Moreover, thanks to above adaptation we can deal 
with imprecise evaluations of objects on flat attributes/ criteria. 

The preference model corresponding to HSCP has the form of sets of decision 
rules for each subproblem. The particular sets of decision rules are generated 
from rough approximations at each node of the hierarchy. The application of 
the model consists in progressive classification or sorting of new objects at each 
node of the attribute and/or criteria hierarchy. 

3.1. Data representation 

The hierarchical decision table is presented as a tree T composed of subtables. 
At the node Nk of T , there is a subtable Sk containing decision attribute or 
criterion corresponding to the node Nk and condition attributes and/or criteria 
being direct descendants of Nk. 

More formally, the subtable is the 4-tuple Sk = (U, Ak, Vk, f), where U is a 
finite set of objects; Ak = Ck U { dk} is a finite set of attributes and/ or criteria, 
such that ck = wk u Qk denotes a set of condition attributes and criteria, 
respectively, corresponding to subnodes b~ing direct descendents of Nk , and dk 
is a decision attribute or criterion corresponding to Nk; Vk = UaEAk Va, Va 
is a domain of attribute a; and f : U x C __, 2Va is an information function 
such that f(x , w) s;; Vw , for each regular attribute w E Wk , and f(x , q) E 

[l(x, q), u(x, q)] s;; Vq, for each criterion q E Qk, where x E U. For each Sk 
a partition of U is considered with respect to decision attribute or criterion 
dk, i.e. classification or sorting Cl(dk)· We assume that in Sk each object is 
assigned to only one class, therefore, the information function for dk is defined 
as f: U x { dk} __, Vdk and f(x , dk ) E Vdk for each x , yE U. 
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3.2. Rough set approach for attribute subset values and interval 
order 

3.2.1. Indiscernibility relation for subsets of attribute values and 
MV-CRSA 

Two objects x, y E U, described by the subsets of attribute values will be 
considered as indiscernible on attribute a E Wk if and only if f( x, a) n f(y, a) -f:. 
0. The corresponding indiscernibility relation is denoted by I~ . Two objects 
x, y E U are indiscernible with respect to the subset of attributes B s;; Wk, 
if and only if xf~y is true for each a E B. The B-indiscernibility relation is 
denoted by Jfl. 

The above defined indiscernibility relation is reflexive , symmetric, but not 
transitive. This relation satisfies requirements of a tolerance relation. Compa­
rable definitions were given, for example, by Slowinski (1992), Orlowska (1998), 
Stepaniuk (2000). 

All definitions concerning CRSA, given in point 2.3, may be easily general­
ized for the above relation. For example, the lower and the upper approxima­
tions of a class Clt , t ET, are defined, respectively, by: 

B(Clt) = {x E U: I~(x ) s;; Clt}, B(Clt) = U I~(x) 
xECl, 

where I~(x) ={yE U : xi~y} is aB-elementary set and B s;; Ck. 

f{x ,a) 

j[y,a) 

f{x,a) 

j[y,a) 

f{x,a) 

j[y,a) 
+--+ 

f{x ,a) 
+--+ 

fly,a) 

a) J (x,a )r'lj(y,a )o"0Aj(x,a )vj(y,a )o"j(x,a )Aj(x,a )vj(y,a )"'j(y,a )=>xi. "y 

b)J(x,a)=f(y,a)=> xla"Y 

c) j{x,a )r'lj(y,a )=j(y,a )Aj{x,a )vj(y,a )=j{x,a )=>xi. "y 

d) j{x,a )r'lj(y,a )=j{x,a )Aj{x,a )vj(y,a )=j(y,a )=>xla "y 

f{x,a) f{x ,a) c)j{x,a)r'lj(y,a)=0=>---. xl/y 
+--------+ +--------+ 

Figure 2. All possibilities of intersection of description of two objects on attribute a. 
Two objects x and y are indiscernible when their description has a common part. 
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3.2.2. Interval order and IV-DRSA 

In order to enable imprecise description of objects on criteria, it is required to 
introduce the definition of interval order and dominance relation based on it. 

The interval order is a binary relation R on set U if and only if there exist 
two functions g : U ___. 3t (where 3t is a set of real numbers) and h : U ___. 3t+ 
such that: 

xRy 9 g(x) + h(x) :::0: g(y), and x, yE U. 

Let us observe that: 

xRy A yRx 9 -h(x) ::=; g(x)- g(y) ::=; h(y) 

and 

xRy A -,yRx 9 g(x)- g(y) :::0: h(y) 

and if R is an outranking relation ~, then the first above situation corresponds 
to indifference ~, and the second to preference >-- . 

Let us assume, that there exist two functions l : U ___. 3t and u : U ___. 3t 
defined as follows: l(x) = g(x) and u(x) = g(x)+h(x) , such that xRy 9 ·u(x) :::0: 

l(y). If R is an outranking relation >-- , then x ~ y 9 u(x) :::0: l(y) A u(y) :::0: l(x) 
and x >-- y 9 l(x) > u(y). 

Let us observe that an interval order is a strongly complete and Ferrers 
transitive binary relation. Ferrers transitivity could be illustrated as follows. 
Let us consider four objects, x , y, w, z E U, such that x ~ y and w ~ z; x ~ y 
means (1) u(x) :::0: l(y) and w ~ z means (2) u(w) :::0: l(z). Ferrers transitivity 
says that if x ~ y and w ~ z, then at least one between x ~ z and w ~ y is 
verified. In fact if x ~ z is not verified, we have (3) l(z) > u(x). From (1), 
(2) and (3) we obtain: (4) u(w) :::0: l(z) > u(x) :::0: l(y). From (4) we obtain: 
u(w) :::0: l(y) , i.e. w ~ y. 

The above definitions lead us to the following dominance relation defined on 
the basis of indiscernibility relation for subsets of attribute values and outrank­
ing relation ~q being interval order. 

Let us assume, without loss of generality, that each criterion q E Q~;; is 
a gain type criterion. For each we consider an outranking relation ~q on a 
set U on the basis of values l(x, q) and u(x, q) such that ~q=>--q U ~q, thus: 
x ~q y 9 u(x, q) :::0: l(y, q). The dominance relation with respect to B ~ Ck> 
considering objects description by both attributes and criteria, is defined as: 

xD~y 9 x ~q y, Vq E Q~;; n B A xi;:y, Va E W~;; n B . 

The dominance relation D~ is reflexive but it is not Ferrers transitive even 
if the considered attributes are all criteria. The following is a counterexample 
proving this point. 

Let us consider four objects, x, y, w, z E U, and two criteria q1 , q2 E Q~;; such 

that x ~q1 y, x ~q2 y, w ~q1 z and w ~q2 z and therefore xD~y and wD~z, 
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where B = {q1,qz}. Let us suppose that (1) u(w,ql) 2: l(z,ql) > u(x,q1) 2: 
l(y, q1) and (2) u(x, q2 ) 2: l(y, q2) > u(w, qz) 2: l(z, qz). Let us remark that (1) 
and (2) are concordant with: (a) x ~q2 y (in fact u(x, ql) 2: l(y, ql)), (b) x ~q2 y 
(in fact u(x, qz) 2: l(y, qz)), (c) w ~q1 z (in fact u(w, q1) 2: l(z, ql)), (d) w ~q2 z 

(in fact u(w, q2 ) 2: l(z, q2 )). Remark that (a) and (b) gives xD~y while (c) 

and (d) wD~z. However, from xD~y and wD~z neither xD~z nor wD~y is 
derived. In fact, xD2z cannot hold because l(z, ql) > u(x, q1) while wD~y 
cannot hold because l(y, q2) > u( w, qz). 

Further definitions given in point 2.3 for DRSA may be easily generalized 
for the above dominance relation. Below we present as examples the definitions 
of the granules of knowledge and the approximations of class unions. 

l(y,q) 

• 

l(x,q) 

• 
u(y,q) 
) 

u(x,q) 
) 

l(x,q) 

• 
l(y,q) 

• 

u(x,q) 
) 

a) u(x,q)?.l(y,q)Au(y,q)?.l(x,q)~xDq)l/\YDqX d) u(y,q)?.l(x,q)Au(x,q)?.l(y,q)~ yDqXAXDq)l 

l(x,q) 

• 
u(x,q) 

) 

l(y,q) u(y,q) 
••--))> 

l(x,q) u(x,q) . ) 
l(y,q) u(y,q) . ) 

b) u(x,q)?.l(y,q)Au(y,q)?.l(x,q)~xDq)l/\YDqX e) u(y,q)?.l(x,q)Au(x,q)?./(y,q)~yDqX/\XDq)l 

l(y,q) 

• 

l(x,q) 

• 
u(x,q) 

) 
l(x,q) 

• 
u(x,q) 

) 
l(y,q) 

• 
c) u(x,q)?.l(y,q )Au(y,q )<l(x,q )=>XDq)IA-o)ID qX I) u(y,q )?.l(x,q )Au(x,q )< l(y,q )=>yD qXA-.xD q}' 

l(x,q) 

• 
u(x,q) 
) 

l(y,q) u(y,q) . ) 

g) u(x,q)=u(y,q)Al(x,q)=l(y,q)=>xDqY/\YDqX 

Figure 3. All possible relations between two object described using intervals on crite­
rion q. Object x dominates object y when the upper bound of x is greater than the 

lower bound of y . 

The B-dominated and the B-dominating sets are defined, respectively, as 
follows: 

Dr (x) ={yE U: yD~x}, D~- (x) ={yE U: xD~y}, where B s;; Ck. 

The lower and the upper approximations of Cl[ and Clf, for t E T, are 
defined as: 
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B(Clt) = {x E U: Dr (x) ~ Clt}, B(Clt) = U Dr (x), 

xECl~ 

B(Clt) = {x E U: Dr (x) ~Cl(}, B(Clt) = U Dr (x). 

xEClf 

3.2.3. Decision rules 

The form of decision rules taking into account the imprecise description of ob­
jects, i.e. MV-CRSA and IV-DRSA rules, is changed in comparison with the 
form known from CRSA and DRSA. Moreover, the negative examples are de­
fined differently. 

The selectors for attributes are in the form: 
1) f(x, a) n V ::j:. 0, where a E wk and V~ Va is a value subset of attribute a. 
The selectors for criteria are in the following forms: 
2) u(x, q) ~ r, where q E Qk is of gain type, r E Vq, and u(x, q) is a upper 

boundary of interval value of object x on q, 

3) l(x, q) ::; r, where q E Qk is of gain type, r E Vq , and l(x, q) is a lower 
boundary of interval value of object x on q, 

4) l(x, q) ::; r, where q E Qk is of cost type, r E Vq, and l(x, q) is a lower 
boundary of interval value of object x on q, 

5) u(x , q) ~ r, where q E Qk is of cost type, rE Vq, and u(x, q) is an upper 
boundary of interval value of object x on q. 

The decision parts of rules keep the same form as in the case of traditional 
classification and sorting problems. Below, we list the types of IV-DRSA rules 
only, because they are the only ones that change: 

• certain 'at least ' D>-decision rules, where the selectors are in the form: 
1), 2) and 4), and the decision is in the form: X E Clf, 

• possible 'at least' D>-decision rules, where the selectors are in the form: 
1), 2) and 4) , and the decision is in the form: x could belong to x E Clt, 

• certain 'at most' D<-decision rules, where the selectors are in the form: 
1) , 3) and 5), and the decision in the form: x E Cl(, 

• possible 'at most' D<-decision rules, where the selectors are in the form: 
1), 3) and 5), and th~ decision is in the form : x could belong to x E Cl(, 

• approximate D;:::~ -decision rules, where selectors are in all the forms given 
above, and the decision is in the form: x E Cls U Cls+l U ... U Clt, where 
s, t E T, and s < t. 

Because the generalized indiscernibility and dominance relations are not 
transitive, while generating any decision rule with a consequent K, the negative 
examples with respect to K are those examples that are not concordant with K 
and either are not indiscernible with the positive examples by an indiscernibility 
relation or are not indifferent with the positive examples in the sense of mu­
tual dominance. This is explained below. Assume that there are three objects 
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w , y, z E U described on gain criterion q only, such that u(w, q) = 7, l(w, q) = 6, 
u(y, q) = 8, l(y, q) = 4, u(z, q) = 5 and l(z, q) = 2, and w, y belong to class 
Cl2 , while z belongs to class Ch. Lower approximation of Cl~ with respect to 

B = {q} contains only w, because Dr(w) = {w,y} and Dr(y) = {w,y,z} . 

If y were considered as negative example, no certain rule for Cl~ (supported 
by positive examples from lower approximation of Cl~) would be induced. The 
following rule: 

if(u(x,q) 2: 6), thenx E Cl~ 

covers w E Cl~, because u( w, q) = 7 2: 6, but it covers also y E Cl~ because 
u(y , q) = 8 2: 6. vVe accept, however, the above rule, even if it covers object y 
which is not included in the lower approximation of Cl~, because it is concordant 
with the consequent of the rule . 

3.3. Propagation of inconsistencies and application of decision rules 

Let us comment on the propagation of inconsistencies along the tree. Incon­
sistencies arf! propagated from the bottom to the top of the hierarchy. Let Sk 
denote a decision subtable corresponding to node Nk ofT and S1 a subtable of 
N 1 being a direct descendent of Nk. If object x E U is inconsistent with other 
objects in St, then in the decision subtable sk, the value of X on d~ E ck is the 
following: 

• Dc1 (x), if d1 is an attribute, 
• Di;

1 
(X), if dt is a criterion 

and d1 corresponds to the decision attribute or criterion in S1. 
When new objects are submitted to hierarchical classification or sorting, the 

sets of decision rules are to be used progressively, starting from the lowest level 
of hierarchy. The decision from each node is propagated upward the hierarchy. 

Let us comment on the application of decision rules to an object in a par­
ticular node using a car classification problem as an example. There are two 
possible cases. First , the node may correspond to an attribute and then the rules 
are in the form specified in MV-CRSA. In this case, if an object is matched by 
rules suggesting the same class Clt, then the object is assigned to Clt without 
any doubt. Nevertheless, the following doubtful situations can occur: 

• object x matches one or more approximate decision rules, e.g.: 

if [conditions], then x E sport ca1·s U family cm·s, 

if [conditions], then x E utility cars U familycm·s, 

• object x matches certain or possible decision rules suggesting different 
classes, e.g.: 

if [conditions], then x E util·ity cars, 

if [conditions], then x E family cars. 
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In all the above situations, the object is assigned imprecisely to all classes 
pointed by the matching decision rules. When an object does not match the 
condition part of any decision rule, then it is reasonable to conclude that it 
belongs to all classes. 

Secondly, if a node corresponds to a criterion, then the decision rules are 
in the form specified in IV-DRSA. When applying D::o:-decision rules to object 
x, it is possible that x either matches condition part of at least one decision 
rule or does not match condition part of any decision rule. In the case of at 
least one matching, it is reasonable to conclude that x belongs to class Clt, 
being the lowest class of the upward union Clf resulting from intersection of 
all consequents of rules matching x. In the case of no matching, it is concluded 
that x belongs to Ch , i.e. to the worst class. 

Analogously, when applying D::;-dccision rules to object x, it is concluded 
that x belongs either to class Clt. being the highest class of the downward union 
Clf resulting from intersection of all consequents ofrules matching x, or to class 
Cln, i.e. to the best class, when x does not match any rule. 

However, four other situations may occur: 

(i) object x matches one or more approximate rules, e.g.: 

if [conditions], then :r E non-acceptable U hardly acceptable 

(ii) object x matches rules with intersecting downward and upward unions of 
classes, e.g.: 

if [conditions], then x E hardly acceptable::O: 

if [conditions], then x E acceptable:":: 

(iii) object x matches rules with disjoint downward and upward unions of , 
e.g.: 

if [conditions], then x E acceptable?. 

if [conditions], then x E hardly acceptable:":: 

(iv) object x matches one or more approximate rules and certain rules with 
intersecting downward and upward unions of classes, e.g.: 

if [conditions], then x E non-acceptable U hardly acceptable 

if [conditions], then x E acceptab[e::O:. 

The above situations correspond to: ambiguous [(i) and (iv)], incomplete 
[(ii)] and controversial [(iii) and (iv)] knowledge. In all the above situations 
object x is sorted imprecisely to an interval of classes. In the first situation 
object xis assigned to the interval of classes between the worst and the best class 
suggested by the rules matching x (from non-acceptable to hardly acceptable). 
In the second and in the third situation, object x is assigned to the interval of 
classes between the worst class of the matching at least rules and by the best 
class of the matching at most rules (i.e. in both situations to classes from hardly 
acceptable to acceptable). In the fourth situation, object x is assigned to the 
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interval of classes which are extreme in the classes suggested by all approximate 
rules and the worst class from intersection of at least rules and/ or the best class 
from the intersection of at most rules matching x. 

4. Illustrative example 

The illustrative example presented in this section will serve to explain the con­
cepts introduced in previous point. Let us consider a problem of student qualifi­
cation to the upper level of study. We are considering students of the Computer 
Science faculty choosing their specialization after third year of master course. In 
the considered problem the DM is looking for good students interested in study­
ing Intelligent Decision Support Systems. The students are sorted into three 
classes: desirable, acceptable, and non-acceptable. Since during the first stage 
of study (bachelor studies) there are not many lectures linked directly with de­
cision support systems, the decision is taken on the basis of all credits received 
by students. In the following example we consider six students described by 
means of the following two regular attributes and five criteria of gain type (see 
Table 1): 

• Additional project 
• Training 
• examination in Statistics 
• examination in Computer Networks 
• project in Computer Networks 
• examination in Databases 
• project in Databases. 

Assume that attributes "Additional project" and "Training" have the same 
domain composed of the following values: Artificial Intelligence (AI), Statistics 
(Stat), Databases (DB), and Programming (Progr). The domain of all the 
the above criteria is composed of the following evaluations: bad, sufficient and 
good. Of course, "good" is better than "sufficient" and "sufficient" is better 
than "bad". 

The first step of the proposed methodology is to develop a hierarchy of 
the above evaluation. It seems natural that evaluations from examination and 
project from "Computer Networks" and "Databases", may be grouped into two 
independently subproblems. Similarly, it may be done with two other attributes: 
"Additional project" (AddProj) and "Training". On the basis of these two 
attributes we can judge the area of interest of a student. The structure of 
decomposed problem is presented in Fig. 4. The hierarchical criteria "Computer 
Network skills" (CN skills) and "Database skills" (DB skills) have the same 
domain as the above criteria, i.e. bad, sufficient and good. The hierarchical 
attribute "Area of Interest" (A. of I.) is described by following values: "Decision 
Support" (DS), "Knowledge Discovery" (KD) and "Other" (OT). 



Table 1. Evaluations of students during bachelor studies 

Student Statistics Computer Networks Computer Networks Data bases 
(Examination) (Examination) (Project) (Examination) 

1 Sufficient Bad-Sufficient Good Good 
2 Good Sufficient Good Good 
3 Good Good Sufficient Sufficient 
4 Sufficient Sufficient Sufficient-Good Sufficient 
5 Good Good Good Sufficient 
6 Bad Sufficient Bad Bad 
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The next step of proposed methodology is the analysis of each subproblem. 
The analysis consists of following phases: evaluation of objects according to at­
tributes and/or criteria characteristic for a subproblem, inconsistency analysis 
using MV-CRSA or IV-DRSA and induction of decision rules based on approxi­
mations of decision classes. After this the inconsistencies are propagated upward 
the hierarchy (if the root of hierarchy is not reached, of course). 

Figure 4. The hierarchy of student qualification problem 

Consider for example the "Area of Interest" subproblem where the decision 
is in the form of hierarchical attribute, i.e. it is a multiattribute classification 
problem. The subattributes are: "Additional project" and "Training". The 
evaluation of DM is given in Table 2. For this subproblem the analysis consists 
in a multiattribute classification. Students are classified into three classes: 

• students 1, 4 and 6 belong to class DS (Decision Support) , 
• students 2 and 5 belong to class KD (Knowledge Discovery), and 
• student 3 belongs to class OT (Other). 

Table 2. The subtree of the Area of Interest - the imtltiattribute classification problem 

Student Additional project Training Area of Interest 

1 Pmgr· AI DS 

2 Pmgr· AI KD 

3 DB DB OT 

4 Progr Stat DS 

5 AI DB, Stat KD 

6 AI Stat DS 

Observe that students 1 and 2 have the same description but belong to 
different classes. A very interesting situation occurs in the case of student 5, 
with training having concerned both: "Databases" and "Statistics". According 
to the generalized indiscernibility relation student 5 could not be discerned 
from student 6. The inconsistent examples are marked out by italics in the 
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table. Assuming that B = {Additional project, Tmining}, the approximation of 
classes are as follows: 

B(DS) = {4}, B(DS) = {1,2,4,5,6}, BNB(DS) = {1,2,5,6} 
B(KD) = 0, B(KD) = {1,2,5,6}, BNB(KD) = {1,2,5,6} 
B(OT) = {3}, B(OT) = {3}, BNB(OT) = 0. 

The following decision rules (certain and approximate) are induced: 

if (f(x, AddProj) n {Progr} =f- 0) 1\ (J(x, Tmining) n {Stat} =f- 0), 
then x E DS 

if (f(x, AddProj) n {DB} =f- 0), then x E OT 

if (J(x, Training) n {AI} =f- 0) , then x E DS U K D 

if (J(x, AddProj) n {AI} =f- 0), then x E DS U KD. 

(4) 

(3) 

(1,2) 

(5,6) 

The inconsistencies between students 1 and 2, and students 5 and 6, are 
propagated and presented according to generalized decision function in the form 
of subsets of values on the hierarchical attribute "Area of Interest", i.e. on the 
upper level, as it is shown in Table 4. 

The subsequent analysis concerns the "Computer Network skills" subprob­
lem. It is described by two criteria: "Project" and "Examination". This prob­
lem is analysed according to the multicriteria sorting problem. The students 
are sorted into three classes: bad, sufficient and good. The evaluations given by 
DM are shown in Table 3. 

Table 3. The subtree of the Computer Network skills - the mult.icriteria sorting 
problem 

Student Examination Project Computer Network skills 

1 Bad-Sufficient Good Good 

2 Sufficient Good Good 

3 Good Sufficient Sufficient 

4 s~\fficient Sufficient- Good Sufficient 

5 Good Good Good 

6 Sufficient Bad Bad 

The students 1, 2 and 5 belong to the class "good". The students 3 and 4 be­
long to the class "sufficient", and student 6 belongs to the class "bad" . Observe 
that considering the interval order student 4 is not worse than students 1 and 2, 
i.e. student 4 dominates students 1 and 2. Nevertheless, student 4 is assigned to 
a worse class ( "sufficient") than students 1 and 2 ("good"). Therefore, students 
1,2 and 4 are inconsistent with respect to dominance principle. Italics in the 
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table mark out the inconsistent examples. The approximations of all downward 
and upward unions of classes (for B = {Examination, Project}) are mentioned 
below: 

B( sufficient?.) = { 1, 2, 3, 4, 5}, B( sufficient?.) = {1 , 2, 3, 4, 5}, 

BNB(sufficient?.) = 0, 
> - > > B(good-) = {5}, B(good-) = {1 , 2,4, 5}, BNB(good-) = {1 , 2,4}, 

B(sufficient'5.) = {3,6} , B(sufficient'5.) = {1,2 , 3,4,6} , 

BNB(sufficient'5.) = {1 , 2,4}, 

B(bad'5.) = {6} , B(bad'5.) = {6}, BNB(bad'5.) = 0. 

For this subproblem following decision rules are generated (certain and approx­
imate rules) : 

if ( u( x , Project) 2: sufficient), then x E sufficient?. 

if (u(x, Examination) 2: good), then x E sufficient?. 

if (u(x , Examination) 2: good) 1\ (u(x, Project) 2: good) , 

then x E good?. 

if ( l ( x, Project) :::; sufficient), then x E sufficient'5. 

if ( l ( x, Project) :::; bad) , then x E bad?. 

if (l(x, Exam.):::; sufficient) 1\ (u(x , Project) 2: good), 

then x E sufficient U good. 

(1 , 2, 3,4,5) 

(3,5) 

(5) 

(3 , 4, 6) 

(6) 

(1 , 2,4) 

On the upper level, for the hierarchical criterion "Computer Network skills" , 
objects take the value according to the generalized decision interval, as shown 
in Table 4. 

We do not present the analysis of "Database skills" subproblem because it 
is similar to the above. The final evaluations may be found in Table 4 - notice 
that decision table for this subproblem must be consistent. 

The final problem is presented in Table 4. This decision table is composed 
of consistent examples. The evaluations modified on the basis of inconsistencies 
in the lower level are in italics. 

Table 4. Global evaluation- multicriteria sorting problem 

Statistics Computer Network Database skills Area of Global 

Student Interest 

(Examination) skills ( CN skills) (DB skills) (A. of I.) evaluation 

1 Sufficient Sufficient-Good Good OS, KO Acceptable 

2 Good Sufficient-Good Good OS , KO Desirable 

3 Good Sufficient Sufficient OT Non-Acceptable 

4 Sufficient Sufficient-Good Sufficient os Acceptable 

5 Good Good Sufficient OS , KO Acceptable 

6 Bad Bad Bad OS, KO Non-acceptable 
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The induced decision rules (certain and approximate) for final decision are 
presented below: 

if ( u( x, DB skills) 2: good), then x E acceptable~ 

if (u(x, CN skills) 2: sufficient) 1\ (u(x, A. of I.) n {DS} :/= 0), 

then x E acceptable~ 

if (u(x, Stat) 2: good) 1\ (u(x , DB skills) 2: good), 

then x E desirable~ 

if (u(x , Stat):::; sufficient), then x E acceptable'5. 

if ( u( x , DB skills) :::; S'Ufficient), then x E acceptable'5. 

if ( u( x, A. of I.) n { OT} :/= 0), then x E non-Acceptable'5. 

if ( u(x, CN skills) :::; bad), then x E non-Acceptable'5.. 

(1,2) 

(1,2,4,5) 

(2) 

(1,2,6) 
(3,4,5,6) 

(3) 

(6) 

Let us observe that the analysis of this problem, without partitioning into 
smaller subproblems, is not easy. The cognitive effort to evaluate students on 
the basis of these seven attributes and criteria (in real case much and much 
more) is quite severe. 

Finally, let us show the application of the model. Assume that there are two 
new students evaluated during bachelor studies as shown in Table 5. 

Following rules cover the first student: 

- subproblem of "Area of Interest": 
if (f(x, Training) n {AI}:/= 0), then x E DS U KD; 

- subproblem of "Computer Network skills" : 
if (u(x, Project) 2: sufficient), then x E sufficient~ 
if ( l(x, Project) :::; sufficient), then x E sufficient'5.. 

In the case of student 2 the following rules are satisfied: 

- subproblem of "Area of Interest": 
if (f(x, AddProj) n {DB} i= 0), then X E OT; 

- subproblem of "Computer Network skills" : 
if ( u( x, Examination) 2: good), then x E sufficient~ 
if (l(x, Project) :::; bad), then x E bad'5.. 

We assume that the students are assigned to the class "good" on the "Data­
base skills" criterion. Remark that on "Computer Network skills" subproblem 
the student 2 is described by controversial information. The evaluations of 
students on the upper level are presented in Table 6. 

On the final level the following rules cover student 1: 

if ( u( x, DB skills) 2: good), then x E acceptable~ 
if (u(x , CN skills) 2: sufficient) 1\ (f(x, A. of I.) n {DS} :/= 0) then x E 
acceptable~ 
if ( u( x, Statistics) 2: good) 1\ ( u( DB skills, x) 2: good) then x E desirable~. 



Table 5. New students evaluations during bachelor studies 

Student Statistics (only Computer Networks Computer 
Examination) (Examination) Networks (Project) 

1 Good Sufficient Sufficient 
2 Sufficient Good Bad 

---

Databases Data bases 
(Examination) (Project) 

Good Good 
Sufficient Good 

--- · ------

Additional Training 
Project 
Progr AI 

DB Progr 

<:.0 
f-' 
C)) 

~ 

tl 
t:':l 
$:: 
to 
0 
N 
--< z, 
(f) 

p 
(f) 

Cl 
::0 
t:':l 
0 
0 

? 
(f) 

t" 
0 
~ z, 
(f) 

~ 



Classification and sorting with hierarchical structure of attributes and criteria 

Table 6. Global evaluations of new students 

Student Statistics Computer Network Database ski lls Area of Interest 

(Examination) skills (CN skills) (DB ski lls) (A. of I.) 

1 Good Sufficient Good OS, I<D 

2 Sufficient Bad-Sufficient Good OT 

Student 2 is matched by the following rules: 
if (u(x, DB skills) 2: good), then E acceptable2 

if ( u( x, Statistics) ~ sufficient) then x E acceptable2 

if (u(x, CN skills)~ bad) then x E non-Acceptable'5. 
if (f(x, A. of I.) n {OT} =f. 0) then x E non-Acceptable'5. 
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Global 

evaluation 

? 

? 

Finally, student 1 is evaluated as "desirable", but student 2 is classified 
between "non-acceptable" and "acceptable", because of good evaluation on cri­
terion "Database skills". 

5. Conclusions 

In this paper, we presented an extension of a methodology of classification and 
sorting previously proposed by Greco, Matarazzo and Slowinski. The extension 
consists in taking into account the Hierarchical Decision Problems i.e. problems 
containing smaller and smaller subproblems. The use of decision rule preference 
model resulting from the rough set approach seems to be very convenient and 
meaningful. Such preference model is more general than the classical functional 
models considered within the multiattribute utility theory or relational models 
considered, for example, in outranking methods. The proposed methodology 
consists of four steps. In the first step the problem is structured by means a 
hierarchy of attribute and criteria. In the second step, preference information in 
the form of a set of examples of classification or sorting is given. The third step 
concerns induction of decision rule preference model handling inconsistencies. 
The last step is the application of the model to classification or sorting of new 
objects. The main problem of Hierarchical Decision Problems regards inconsis­
tencies from subproblems in making the intermediate and final decisions. The 
proposed methodology gives theoretically sound answer to this problem. A di­
dactic example illustrates the very relevant potentiality of this approach with 
respect to real world applications. 
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