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Abstract: Extraction of correct and precise rules from experts

is a difficult problem. Morcover, even when the extracted rules are
correct, all of them may not have equal importance to achieve the
goal of the fuzzy system. Rule tuning is usually achieved through
modification of membership functions. Effect of changing a memn-
bership function is global in the sense, it influences all rules that
involve the membership function. Here we propose an effective ex-
tension of the ordinary fuzzy controller model which incorporates
an importance factor for cach rule. The importance factor allows
tuning of the systemn at the rule level. Of course, one can still tune
the membership functions. The extended model enables us to cope
with incorrect and/or incompatible rules and thereby enhances the
robustness, flexibility and systeimn modeling capability, 1t also helps
us to eliminate redundant rules casily, For the Takagi-Sugeno frame-
work, we derive the learning algorithun for the rule importance factor
as well as that for the consequent. We demonstrate the superiority
of the extended model through extensive siimulation results using the
inverted penduhun.

Keywords: rule iimportance, rule selection, fuzzy logic con-
trollers, rule tuning

1. Introduction

The essential part of a fuzzy logic coutroller (FLC) is a set of linguistic control
rules cquipped with some fuzzy implication operator and a rule of inferencing
Harris, Moore and Brown (1993), Lee (1990), Yamakawa (1992), Driankov, Hel-
lendoorn and Reinfrank (1993). Literature suggests that FLCs sometimes per-
form better than the conventional confrol algoritlhims. In particular FLC appears
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more attractive when the processes is too complex to analyze by conventional
quantitative technique or when the available sources of information are quali-
tative, inexact or imprecise. Since Mamdani and Assilian (1975) FLC has been
successfully used in many applications Sugeno (1985), Yasunobu and Miyamoto
(1985), Yagishita, Itho and Sugeno (1985), Procyk and Mamdani (1979), Shao
(1988), Park, Moou and Lee (1995), Nomura, Hayashi and Wakami (1991), Jang
(1992), Guely and Siarry (1993).

Two major factors which may restrict the application domain of FLCs arc
sound techinique of knowledge acquisition and the availability of hiuman experts.
An operator can casily control a systemn, but may fail to express properly the
rules (s)he uses for decision making. So there is a great need of learning, and
tuning the control rules and associated parameters to achieve a desired level of
controller performance.

Given a rule-set, tuning of any fuzzy set A will influence all rules that involve
that particular fuzzy set A. Thus such tuning schemes have global impact on
the rule-base. The designer has no tool to tunc only a particular rule. Further,
cach rule may not have equal importance to control the system also. We extend
the convenfional fuzzy models to equip the designer with a steering to realize
a more flexible system by adjusting each rule separately. The extended model
associates an importance factor to each rule . The importance factor enhances
the robustness, flexibility and modeling capability of the system. Initially we
assume the importance factors to be unrestricted in sign. We derive the learn-
ing algorithm for the importance factor and establish its power for handliug
inconsistent rules using an inverted pendulum. Then we show how we can make
importance factors non-negative and nse them for rule selection.

The organization of this paper is as follows. Section 2 provides a brief review
of some existing tuning schemes. Section 3 introduces the extended model, its
motivation and merits. In Section 4 we present the tuning algorithins for the
extended model. The proposed tuning scheme is used to control an inverted
pendulum.  Results are reported in Section 5. Section 6 discusses how non-
negative importance factors can be realized and applied to rule climination.
Finally, the paper is concluded in Section 7.

2. Some existing tuning schemes

A fuzzy controller is defined in ferms of if-then rules. In this investigation we

use the Takagi-Sugeno (TS) model. Suppose the control system has n input

variables (z1,...,7,) and one output variable v. The r-th rule, R(r), for the

TS type of controller takes the form

R(r) If (z1 is Xpq) and ... (2, is X,) then v = u, = Fo(mq,...,2,); 7 =
L 2suvwaiks

where X,.;'s are fuzzy scts defined on o, and w,.’s are crisp values provided by

the function F,.
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The TS model works as follows. For the given input values of the process
state variables my, @9, ..., 2, the wmembership value p(x;) is calculated for cach
i=1,...,n. Each p(z;) gives the extent to which the corresponding fuzzy
sct is satisfied. The minimun of all p(a;)’s or the product of all p(x;)’s is
usually taken as the firing strength. However, any T-norin can also be used to
compute the firing strength. We denote the firing strength of the r-th rule by f,.
The firing strength modulates the output (cousequent) function. A well known
method of defuzzification (counflict resolution) is to find the weighted normalized
s of all pairs ( f,, w,) which is given by

k
Uf — Z‘r:l fr il
ui T k =
Lpaylr

This erisp output will be the plant input in next phase.

Literature coutains many methods for tuning of fuzzy controllers. We briefly
discuss a few of them here.

Nomura, Hayashi and Wakami (1991) used the gradient descent method to
tune rule-base paramecters of TS rules with constant ontputs and symmetric
triangular membership functions. They used product as the conjunction (and)
operator to find the firing strength of a rule. This method siimultancously mod-
ifics the crisp consequent value aud, the center and width of the triangular
input fuzzy scts. The tuning process continues nutil the change in the objective
function between two successive iterations becomes snitably small.

Gradient descent method has also been used by Jang (1992) with TS rules
having affine ontput function, asswning it to be potentially more cfficient than
the constant output function. Guely and Siarry (1993) cinpirically show that
affine output functions were not more efficient than constant output functions.
Guely and Siarry (1993) counsidered tuning of constant and affine ontput func-
tions, and symmetric and asyimnetric membership functions with minimunn and
multiplication as conjunction operators. Guely and Siarry used a modified form
of TS rule, called the “centered Takagi Sngeno Rule” and showed on an example
that it can achieve a much better learning accuracy in the same case. Bereuji
and Khedkar (1992), Berenji (1992) used softmin as their conjunction operator
and used a reinforcement type tuning algorithin.

Lui, Gu, Goh and Wang (1994) proposed a self-tuning adaptive resolution
(STAR) fuzzy control algoritlin. STAR changes constantly the fuzzy linguistic
concepts in response to states of the input signals. STAR is a heuristic algorithm
that attempts to minimize both rise time and overshoot. Isomursu and Ranma
(no date) also used meta rules to modify the scaling factor of one output variable
and membership functions for a temperature controller. The meta rules use a
performance measure based on oscillation amplitude and frequency.

Maeda and Murakami (1992) proposed fuzzy rle-based schemes for adjust-
ment of input-output scaling factors as well as for tuning of couftrol rules for
Takagi - Sugeno (TS) model. The fuzzy rule-base for tuning has three sets of

(1)
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rules based on three different performance measures, overshoot, rise time and
amplitude. After tuning of scaling factors the crisp consequent parts of the con-
trol rules are modified in each sampling time considering a fuzzy performance
index and the deviation of the actual control response from a predefined target
response.

Karr and Genfry (1993) have used genetic algorithms for tuning of member-
ship functions of a FL.C for pH control of a system where the process dynamics
change in different ways. Homaifar and McCormick (1995) used GA for simul-
taneous determination of membership functions and the rule set.

The gain tuning method of Yoshida, Tsutswini and Ishida (1990) assumnes all
processes as first order systems with dead time. The input and output scaling
factors are calculated by some empirical relations involving process parameters.
Good control performances for higher order systems cannot be ensured by this
technique. Auto-tuning fuzzy controller of Hayashi (1991) considers two tuning
functions. From the approximate parameters of the identified plant model (first-
order lag with dead time) the input and output scaling factors are calculated
using the concept of Chien-Hrones-Reswick (CHR) tuning rules for a conven-
tional PI controller. Then the crisp consequent parts are modified using the
overshoot value and rise time as perforiance measures. Lincar first-order plant
models with dead time have also been considered in the auto-tuning scheme of
Iwasaki and Morita (1990). Here the paramcters of the plant model are identi-
fied through fuzzy inference, using differences between the actual plant features
(rise time and overshoot) and the plant model features. This procedure is re-
peated until the feature differences are smaller than some specified thresholds.

Palm (1995) proposed to achieve an optimal adjustment in the input scal-
ing factor with the help of input-output cross-correlation function; though he
assigned a higher priority to the tuning of output scaling factor over that of
input scaling factors. Here the input data are assumed to follow a Gaussian
distribution whose parameters arc unknown. An optimal input scaling factor
is obtained by maximizing the cross-correlation function which is a measure of
the statistical dependence between input and output.

3. An extended model with rule importance

Deciding on the rules to be used for a fuzzy system is a difficult task. The
problem becomes more difficult, when experts are not available. Even when
experts are available, it is often difficult to extract the correct rules from thein.
Existence of just a single incorrect or inconsistent rule may degrade the perfor-
mance of the system significantly. For the sake of arguments let us assume that
experts provided rules are correct and consistent. Normally in a conventional
fuzzy logic controller all rules are given equal importance. But, for all systems
this may not desirable. Different rules may have different level of influence on
the system behavior. Morecover, in a conventional FLC, tuning of a fuzzy set,
say A, influences all rules that involve A. Thus, alteration of a fuzzy set has
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a global impact on the rule-base. The designer usually cannot adjust only a
single rule in isolation. To overcome these problems and to incorporate relative
importance of rules in the fuzzy model, we propose the following extension of
the FLC.

Suppose the control system has n input variables (21, 22,...,2,) and one
crisp output variable . The extended model comprises rules of the form:
R(1) If (2 is X)) and ... (@, is X;,) then w = Uy with importance a;y

R(k) If (z1 1s Xpp) and ... (#n is Xi,) then v = U with importance ay.

Here x; and u are linguistic variables and X,;'s and U,'s are fuzzy sets
defined on the respective domains. For a given @ = (21, 29,...,2,), let the
firing strength of the 4-th rule be fr; r = 1,2,...,k Note that some of the f,.
may be equal to zero. Then the defuzzified output can be computed as

I
@ = zq-=1 f‘r * (iy % (L:f . (2)

Zi:l Jr¥an
where a} is the peak of the fuzzy set U,.. Equation (2) is a modification
of the height method Driankov, Hellendoorn and Reinfrank (1993) of defuzzi-
fication. Similarly, output can also be computed using extension of any other
defuzzification scheme.
Now we consider the extension for the TS type of controllers. A typical rule
under the extended TS model takes the form

If the temperature (t) is high and the pressure (p) is medium then the flow of
gasoline is u = f(p,t) with importance «

We call such model as “Extended Fuzzy Logic Controller under the T-S
model”; in short the extended TS (ETS) Model. In general, under ETS Model
the r-th (r =1,2,..., k) rule takes the form
R(r) If (21 is Xpq) and ... (% is Xpp) then v = wp = Fo(2y,...,7,) with

importance .
Now for a given input x € 17, the defuzzified value is computed by

k
T By T )
yi' = ’ (3)
Y=y frran
where f,. is the firing strength of the ™ rule and k is the total number of
rules that are fired.
We shall consider two versions of the model:
(i) a,’s are unrestricted, i.e. it can have positive, negative and zero values.
(ii) e's are all non-negative, i.c., a, > 0 Vr.
In this sequel, we illustrate that both models have distinct advantages in
different situations.
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Due to the presence of a., equation (2) or (3) can model much more complex
control surfaces than that by equation (1), resulting in more flexibility of the
fuzzy system. Oue may get a false impression that the same flexibility can be
obtained from equation (1) by tuning the parameters of consequent functions.
This is not true. A close inspection of equation (1) and equation (3) reveals
that when a, = ¢ ¥V r (¢ = a constant) equation (3) = equation (1), and under
this situation, tuning of wu, changes only the munerator of (1) and (3), the
denominator remains unaffected. In all other cases «, alters both munerator
and denominator of (3), and influences g;” in a nonlinear manner. Analogous
arguments can also be given with respect to equation (2).

Given a training data set (X,Y), X = {x1,X2,...,xy} C R and Y =
{y1,92,...,yn} € R, we can obtain suitable values for o, minimizing
21'11 (y; — y,-’)g. Note that as o, is mnrestricted in sign, theoretically the de-
nominator z:f:l [ * avp of equation (3) conld be very small, even zero. Bnt
the training process will never allow this. Becanse, if Z‘fle fr* . — 0 then
;" — oo, but y; is finite. This will result in infinite error. Thus when «,.'s
are learnt using training data with finite output values, Zle [r#* e will never
be zero. In other words, if we start with «, = 1 ¥r, then the gradient based
tuning algorithm (or any consistent tuning algorithin) will never change o in
such a manner that fol fr®a, poes to zero. And if the input-output relation
is smooth and the training data that are used to learn the ., adequately rep-
resent the relation so that the actual input-ontpnf relation is captured by the
identified fuzzy systemn, it is also not expected to occur for any test data.

In the present investigation, we consider the most simple form of the TS
model, where the consequent of each rule is a crisp value. In other words, the
r-th rule has the form
R(r) If (21 is Xpq) and ... (2, is X)) then v = w,. = Fro(mq,...,2,) with

importance o,

But how do we get o, 7 = 1,2,...,k If an expert is available, a,. can be
obtained from him/her. This may not always be possible. Moreover, if is better
to learn . from a set of reliable input-ontput data.

First we counsider the case with unrestricted e, and then in Section 6, we
will concentrate on the case with non-negative a,.

4. Learning of importance factors

Let (X,Y), X = {x1,...,xn}, and Y = {41,...,yn}, be a set of input-output
data. Here y; is the control action corresponding to state vector x;. In order
to learn the importance factor of each rule, like Nomura, Hayashi and Wakaimi
(1991), we minimize the squared crror function £ given by

N 19
B — (yi —yi)°
> e R

i=1
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This nonlinear optimization problem is solved by the steepest descent method.
This is an iterative algorithin that reduces the value of the objective function
with ecach iteration. Like online training in neural networks we minimize E
by moving a small amount in the negative direction of the instantancous crror
function e;. The instantancous crror function for (x;,y;) is given by

W—9)? . _.,
B,;.=?: ?1:].,_,...,
We can minimize e; with respect to one or more parameters of the rule-base,
like peak and base of the membership function, consequent parameters and
rule importance factor. Here we derive update equations for ouly the relative
importance «a, and the consequent value wu, for cach rule.
Suppose for the input-output data point (x;, ;) the control output is (re-
calling equation 3)

k
?}.! = Z?':l f‘l" * Uy * Xy
#i k .
Er=1 fr' * (Xp

Let jiy be the membership function of a fuzzy set defined on the j-th an-
tecedent variable of the r-th rule. Different types of membership functions can
be used. For simplicity, we use symmetric triangular membership function g,
defined as

N. (4)

(5)

2| x—ar | .
fag () = 1 = HLE= 001 (6)
T
where a,; is the peak (i.c., the membership value is 1 at 2 = a,;) and by; is
the base or support of ;. Given (6) and (5), the update equations for a, and

1y to minimize (4) can be obtained by gradient descent as

ap(t+1) = ap(t) — 1a(t) * j{: (7)
and -
de;
Up(t + 1) = up(t) — nu(t) * B (8)

7 and 7, are the learning co-efficients respectively for the importance factor
and consequent value of the rules.
With some algebraic manipulation, we get
dei _ (i —yi) * (ur —53) * fr (9)
v E
day 2i=1fixay
and
Oei  (¥i —¥i) * frx oy
; k N
Gl Yim1fixa
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If we start with e, = 1¥r, then > fr#a, # 0 for all data points to start with.
The question is, can the learning process take 3 f * a, to zero. Intuitively it
will not, because then y;" will be infinitely large (positive or negative) resulting
in an infinite error, but gradient descent attempts to reduce the error. However,
one can argue that due to bad choice of step-length (learning co-cfficient) it
could happen theoretically at some stage of training, then the remedy is to alter
the value of @, of one of the fired rules by some amount ¢. Note that, it does
not matter whether € is positive or negative or large or small. The idea is to get
out of the degenerate case. In practice, the probability of getting exact zero for
the denominator is practically zero, but if it becomes very small, as explained
earlier due to bad choice of step-length, the successive steps of gradient descent
will modify the value of & in a direction so that Y f, * @, moves away from zcro
in order to reduce the error.

The algorithm for funing «, proceeds as follows: For cach pair of (x:,¥:),
update @, using (7) and (9). Repeat the process until || a(f) —a(t+1) || /k < ¢,
where € is a small positive quantity and a(t) is the vector of weights after ¢
epochs. A complete pass through the data is called an epoch. Tuning of u, can
be done in a similar manner using (8) and (10). We next provide a schematic
description of the tuning algorithm.

Algorithm for tuning of rule importance

Algorithm Importance-Tune (X,Y, &, na, T'mazq, €)
Input : XY, 0, 7a, T'maxg, €
Here X = (x1,...,xn) is the set of input vectors and YV = (y1,...,yn) is
the set of corresponding output vectors. The constant € and T'maz, are used
for termination of the algoritlun, 7, is the learning co-efficient for all a,., a =
((}.'1 i 5 PR (}fk)T.
Begin Algorithm
L. nt=mns,6(0)=0.
2. For t =1 to Tmaz,s do
(a) Repeat for each x; € X
i. Compute f, forallr=1,...,k
ii. Compute g;/ using equation (5)
iti. Do for each rule r which is fired
A. modify a,. using Equs. (7) and (9).
B. Recompute g using cquation (5)
iv. End Do
(b) End Repeat
(¢) Calenlate Ey =|| a(t) — a(t+1) || /&
(d) If E; < ¢ then stop
(e) Adjust n,
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3. End For
End Algorithm

The algorithm for tuning of ., can be written in the saime manner, Nofe that
such an algorithm imposes no restriction on the sigu of o, and hence a, could
be negative also. This may appear to be connter-intuitive as importance factor
should preferably be non-negative. Later we shall see, that it is indeed a powerful
featnre and can help us to cope with inconsistenut rules. However, we shall also
show, hlow we can impose the non-negative constraint on the importance factor.

5. Implementation and results

To illustrate the effectiveness of the proposed extended model, we use the in-
verted pendulum problem as an example, becanse its physical model is well
kunown and fairly simple. The iuverted pendulun is a systein, in which a rod
of mass m is hinged on a cart (Fig. 1). Although the pendulun can fall in any
direction, we restrict ourselves to the 2-dimensional version where the pendu-
lum (rod) can move only in a vertical plaue (L.c., in the plane of the page). We
assune that the mass of the pendulmn is concentrated at the end of the rod
and the rod is massless. The control force n is applied to the cart to keep the
pendulum in an equilibrivm position. Let @ be the angle of the rod from the
vertical line. The slanted pendubun can be brought back to the vertical position
when a suitable control force is applied to the cart. If the cart is at rest, the
stick is in the vertical position and the force u is zero then the system is in
equilibrivm. This equilibrimin position is unstable in the sense that with any
perturbation from this position, no matter how small, the stick will fall down.
For this systemn we have two types of fuzzy control rules; one for confrolling the
rod and the other for the cart. In onr investigation, for the sake of simplicity,
we have considered only the pole balancing part. _

The range of cach iuput linguistic variable (@ and ) are divided into 7
overlapped intervals. We decided to choose the initial rule set in such a manner
that for cvery possible input at least two rules are fired. If ouly one rule fires,
then the fuzziness in the output will be lost and fexibility of the system will be
reduced. The antecedent clanses of the rule set nsed are shown in the Table 1
with cross marks. The linguistic values for cach linguistic variables (6 aud 6)
are: NB = Negative Big, NM = Nepative Medinun, NS = Negative Small, Z =
Zero, PS = Positive Small, PM = Positive Medinin, PB = Positive Big. The
consequent of the rules are not shown in Table 1. We start with somne arbitrary
value of force for each rule. A good choice of the rule set and consequent values
gives rise to faster convergence and better perforinance. The only reason for the
selection of this particular rule set is the nniformity of rules over the entire rule
space, except near the equilibrium position where we have more deuse rules.
There could be other choices too. In addition to this set of 29 rules, we also
experimented with 49 rules.

We use the following computational protocols: half rod length 0.5 m; pole
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M

Figure 1. The inverted pendulum

0 NB|NM|NS| Z |PS|PM|PB
NB X X X X
NM X b4 X
NS X X | x| X X

Z X A X
PS X S X
PM X % be
PB X X X X

Table 1. Rule set for the inverted pendulum
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0 ¢ NB NM NS Z PS | PM | PB
NB -10.13 1.75 3.70 8.89
NM -23.44 5.48 -1.38
NS 25.28 13.57 | 5.22 | 7.21 1.27

Z -1.26 | 15.96 | 5.73 | 7.67 | 3.35
PS 4.03 12.26 | 8.55 | 4.64 1.32
PM 30.05 -0.38 (.10
PB 75.48 6.9 2.65 .00

Table 2. Values of a for different rules after 3,000 epochs, corresponding to
Figs. 2(b) & 3(b).

mass 0.1 kg; cart inass 2 kg, The initial value of cacli . is taken as 1. However
we also experimented with initial e, chosen randowly in [0,1]. With random
initialization, tuning is usually more ciunbersome and o = 1 is found to be a
better choice for initialization. For all results reported, we started with o, =1
Wr, i.c., each rule is given equal importance at the beginning. The firing strength
Las been computed using product as the conjunction operator. The learning rate
N for a, was changed dynamically. We started with a high value of 95, 74
is kept the same, as loug as the total square crror F reduces with iteration.
Whenever F is found to increase after a pass through the training data, ne is
reduced by 10%.

We have done many siimulation experiments and report here only a few
typical of them. For our first simulation, we nse a bad rle set with arbitrarily
chosen values of force and parameters of the membership functions. The rule set
was not able to bring the system to the equilibrivan position. The ETS controller
has been tuned using Importance-Tune algoritlnn for 3000 epochs. The values
of the importance factors (a,.) after tuning are shown in Table 2. Tn some cases
the values of weights are positive and for a few cases they are negative. Fig, 2
depicts the systemn response in terms of @ before and after weight-tuning. After
tuning of importance factors, the performance of the controller, in terms of
(j, is shown in Fig. 3. After tuning, we can sce a siguificant hinprovement in
the performance of the coutroller. It is clear from Figs. 2 and 3 that only an
appropriate choice of importance factors of rules can make an uncontrollable
system confrollable,

In order to establish the effectiveness of the proposed model we report resulfs
from another bad mle set (We nsed different values of force and paramcters of
membership functions than those used in Table 2). Initially the system was not
controllable, but after funing of o ouly for GOOO epochs, it becomes controllable.
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Figure 2. System response in terms of 6: (a) Before tuning of a, (b) After
tuning of a for 3000 cpochs
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Figure 3. System response in terms of 6 (a) Before tuning of a, (b) After
tuning of « for 3000 epochs
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Figure 4. Controller’s performance in terms of #: (a) Before tuning of a, (b)
After tuning of « for 6000 epochs

Figures 4(a) and 4(b) show the performance of the controller iu terms of # before
and after tuning of o, respectively. The system performance in terms of 0 is
shown in Fig. 5. Table 3 shows the values of o, after tuning.

To illustrate further that an improper or inconsistent choice of conscquent
value can be accounted for by modifyiug .., we counsider the rule set corre-
sponding to Table 3. The consequent value corresponding to the rule (PM,Z) is
122.07. We now change the cousequent value of the rule to -1.0. In other words,
the rule

If 6 is PM and @ is Z then u = 122.07 with o = 1.79

is changed to

If 0 is PM and 0 is Z then w= —1.0 with o = 1.79

Note that, not only we reduced drastically the magnitude of the force, but
also changed its sign. Fig. 6(a) (refers to the curve labeled (a) in Fig. G) shows
the system behavior (in terms of 8) after the rule damage. The variation of 6
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Figure 5. Coutroller’s performance in terns of 0: (a) Before tuning of e, (b)
After tuning of o for 6000 epochs

, O Inp|Nm|Ns | z | s | P | PB
NB | .78 T.0 1.9 G5
NM 5 03 79
NS 97 111 [ 1.44 [ 148 151

7 a7 [ 1a1 | 141 | 34 |11
PS 03 o5 | .8 | 2 00
PN 154 170 o1
PE | 04 51 07 73

Table 3. Values of o for different rules after 6,000 epochs, corresponding to

Figs. 4(b) & 5(b).
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Figure 6. Performance of the controller in terms of 6: (a) After damaging the
consequent of the rule If @ is PM and 0 is Z then u = 122.07 with importance
1.79 to -1.0 (b) After tuning of ouly « for 2000 epochs (corresponds to Table 4)

under the same situation is given by Fig. 7(a). These two curves clearly show
that with the damaged rule, the system is not coutrollable. The coutroller is
now tuned for only 2000 cpochs and Figs. 6(b) and 7(b) show the controller
performance after tuning; while the corresponding weights are included in Table
4. Here also the uncontrollable systemn becomes controllable with only adjust-
ment of relative importance factor. If is interesting to note that to account for
the damaged rule the relative importance of one of the neighboring rules (with
0 = PS and 6 = PS) has changed from a positive value (0.22) to a negative one
(-.13). Observe that not ouly the weight of the neighboring rules, but also the
nnportance of several other rules have changed.

5.1. The utility of negative «.,

Inspection of the Tables 2, 3 and 4 reveals that most of the weights are positive,
while a few are negative. As mentioned carlier at first sight, it might appear
counter-intuitive because a's are interpreted as “importance” of rules. Noj it is
not counter-intuitive; on the contrary, it is a very powerful flexibility which can
acconut for inconsistent or wrong rules that may be provided by the designer or
user of the system. Let us explain it with an example. Let 8 is PB and 0 is also
PB. Under this situation, the force should also be positive (preferably, PDB).
Suppose, the designer provides a rule with a negative high consequent value,
when 6 is PB and 6 is PB. This is a bad rule, and under the original TS model,
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Figure 7. System response in ters of 6 for 49 rules (corresponds to Strategy

1) (a) After damaging the consequent of the rule If 8 is PM and 0 is Z then
w = 122.07 with mportance 1.79 to -1.0 (b) After tuning of only « for 2000
cpochs (corresponds to Table 4)

o | NB|NM|Ns |z | Ps|PM| PB
NB .19 1.00 2.49 15
NM -.05 -.12 01
NS 1.31 1.14 | 47 | 1.72 1.67
Z 20 1125 | 69 | .04 | 1.7
PS 1.2 A8 | 176 | -.13 -.003
PM 1.69 D 1.10
PB .06 37 -.83 .02
Table 4. Values of « for different rules after 2,000 epochs, corresponding to

Figs. G6(b) & 7(b)
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Figure 8. Figure explaining the role played by negative weights (in terms of 8)
(a) After changing a positive consequent value (corresponding to Table 3) to a
negative one, (b) After tuning of a for 15000 epochs

the system may not be controllable. But ETS may convert this incousistent rule
to a consistent one by adjusting the sign and magnitude of importance factor of
the concerned rule and some of its neighboring rules; so that the coutribution
of this rule to the defuzzification scheme becomes negative. Changing the sign
and / or magnitude of only the corresponding rule may not always be enough
becanse the changed o influences both munerator and denominator of Equ. (5).
As an example, consider the following rule from Table 3,

if 0 is PM and 0 is Z, the force is 122.07 with importance 1.79.

Changing the value of the force for this rule to a negative big valne, say
-200.07 (by keeping the importance factor same as before) gives rise to a systemn
which is not controllable. After further tuning of the entire rule set for a with
the help of Importance-Tune algorithm, the system again becomes controllable.
Figs. 8 and 9 depict the system characteristics before and after modification of
the consequent value of the above particular rule, and after tuning of «. After
tuning, the values of weights are presented in Table 5. Comparison of Table
3 and Table 5 reveals that the change of the consequent value from 122.07 to
-200.07 leads to a change of weight from 1.79 to a negative value of -0.29 for
that particular rule we modified the consequent value of. We also obscrve that
the value of the importance factor of a neighboring rule (@ is PS and 6 is Z) is
also changed from 0.78 to 1.4. As expected, o, for other rules have not changed
much.
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Figure 9. Figure illustrating the role played by negative weights (in terms of 6)
(a) After changing a positive consequent value (corresponding to Table 3) to a
negative one, (b) After tuning of « for 15000 cpochs

, O Inp|Nm|Ns| z | ps | M| PB
NB 73 1.00 2.01 .62
NM = DT -.04 .84
NS 117 136 [ 1.21 | 1.50 151

Y/ .22 1.34 | 1.29 .61 1.12
PS 1.01 .79 1.4 .49 -.004
PM T35 39 997
PB 05 .50 =12 a1

Table 5. Values of a after tuning of 15000 epochs, when Table 3 is used as the
initial ¢ and the consequent of one rule is changed from 122.07 to -200.07.
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6. Non-negative importance factors

The proposed extended model discussed in Section 3 does not restrict the impor-
tance factor to be non-negative. This equips ns with the capability of dealing
with incounsistent rules. But as explained carlier, if the training data do not
adequately represent the system to be identified, it may lead to the degenerate
case with zero denominator. Morcover we cannot use a, for rule elimination.
However, if we could restrict the importance factor to be non-unegative, then if
would enable us to solve the difficult problem of rule sclection casily, and we
would be able to avoid the possibility of the degenerate case. Morcover, inter-
pretation of a,. as rule importance would then be very natural. To achieve this,
we modify the extended model with rules of the form:

R(r) If (z1 is X,1) and ... (2, is Xpn) then w = u, = Fp(2q,...,2,) with

importance o,
where a, > 0 (non-negative). Although we can start with a set of non-negative
o, we need to ensure that the learning process maintains the same. As such
gradient descent on 3 (1 — yi’)g does not. gnarantee that o, will remain non-
negative after the training. To impose this constraint we model oy by .7, i.c.,
we assue o = .2, where 3, is unrestricted in sign and we learn it using
gradient descent.
The defuzzification schieme is then accordingly modified as

Y = Zf=1 fr * Uy % (fr)?
R -

The learning rules for updating of 3, can be easily computed as

(11)

(i — 9i) * (ur — 97)
k 3
zj:l fi* ﬁ.fa

where ng is the learning co-cfficient for the importance factors of the rules.

Note that the learnt value of £, could be negative, but the actual rule iin-
portance factor «,. (= ﬂrg) wonld always be non-negative. To select a necessary
subset of rules, we propose to start with a large munber of rules, each having
thie same importance factor of unity, 1. Then after tuning (learning) of the im-
portance factor (52) we can delete all rules with 32 < € - a preassuned positive
constant.

We now illustrate the use of non-negative rule importance factors for rule
selection.

Bolt +1) = Br(t) (1) *

(12)

7. Results

We start with a set of 49 rules having initial iimportance factor of a,. = 1 for all
rules. Table 6 shows the values of a's after tuning the rule base with equations
(7) and (9); i.c., assuming unrestricted ;. as the rule importance. With Table
G the RMS error for the given data set is 7.84.
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0 NB | NM [ NS Z PS | PM | PB

NB 1.02 1 1.03 [ 1.05 | 099 | 0.9 | 1.03 | 1.93
NM 1.03 | 0.92 | 1.08 | 1.00 | 1.22 | 1.30 | 0.01
NS 0.94 | 0.68 | 0.75 | 1.23 | 0.62 | 1.07 | 0.00
Z 0.14 | 0.82 | 1.62 | 1.55 | 0.52 | -.78 | 0.00
PS -06 | -.65 | 0.63 | 1.19 | 0.90 | 0.5G | 0.98
PM 0.07 [ 0.86 | 0.99 | 0.97 | 0.98 | 0.94 | 1.03
PB 20 [ 1.18 [ 1.04 | 1.08 | 0.99 | 1.03 | 1.02

Table 6. Final values of e, for different rules after tuning for 5000 epochs with
(7) and (9)

The same initial rule set is again separately tuned using equation (12), i.c.,
assuming a, = .7, as the importance factor. Table 7 shows the values of 3,
(i.e., the positive square roots of the importance factors) after 5000 epochs of
training. Since £.2 (> 0) is used as importance, we dropped the sign of f3,,
and all are shown as positive values. The RMS error with Table 7 is found
to be 4.94, which is much smaller than that with Table 6. Observe that in
Table 7 many entries are practically zero. The rules, whose importance factors
arc nearly zero, do not contribute much to the computation of the defuzzified
values and hence they can be deleted. In this particular case after deleting all
rules with a, < 0.01, we get a rule base with ouly 26 rules. The deleted rules
arc marked with asterisk (*) in Table 6. The RMS error with this reduced rule
sct is 4.94 which is exactly the same as that before deletion. Thus we see that
the extended model can be easily used for rule selection / elimination.

8. Conclusion

We have extended the conventional fuzzy controller inodel with the introduction
of importance factor for each rule. In a rule based system, each rule may
not have equal influence to accomplish the objective of the system. Norcover,
rules obtained from experts may not always be reliable or consistent. | ue rule
importance factor can account for such uncertainty associated with rules. The
extended system enables the FLC to model more complex control surfaces and
thereby makes the system more flexible. We demonstrated the effectiveness
of this extended model under the Takagi-Sugeno framnework. We empirically
established (through extensive experiments) that an improper choice of rule-
base can be very efficiently handled by our extended model. We also disenssed
how one can impose the non-negativity constraiut on importance factors and
use them to select a small subset of rules to achieve the goal of the system.
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0
7

NDB 1.11 1.18 | 2.08 | 0.03 | *0.00 | *0.00 | *0.00
NM 118 | *0.00 | 3.21 | *0.00 | 0.90 [ *0.00 [ *0.00
NS *0.00 | *0.00 | 0.34 | 0.46 | 0.40 | *0.00 | *0.00
Z *0.00 | 0.03 | 254 [ 217 | 0.02 | *0.00 | *0.00
PS *0.00 | *0.00 | 0.07 | 0.75 | 0.16 | *0.00 | *0.00
PM *0.00 | *0.00 | *0.00 | 0.01 | 0.27 | *0.00 | 1.41
PB *0.00 | 114 | 0.17 | 298 | 0.62 | 1.41 1.30

NDB NM NS Z PS PM PB

Table 7. Final positive values of 4, for different rules after tuning for 5000
epochs with (12)

Experiments are underway to establish the nsefuluess of the importance factor
for fuzzy controllers having fuzzy consequent.
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