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Abstract: Extraction of correct ami precise rules from experts 
is a difficult problem. l\!Ioreovcr, even when the extracted rules are 
cOITE)Ct, all of them may not have equal importance to achieve the 
goal of the fu,-;,-;y system. Rnlc tuuiug is usually achieved through 
modification of membership functious. Effect of changing a mem­
bership functiou is global in the sense, it iuflucnces all mlcs that 
involve the membership function. Here we propose an effective ex­
tensiou of the ordinary fn,-;,-;y controller model which incorporates 
an importance factor for each rnlc . The importance factor allows 
tnning of the system at tlJC rule level. Of comse, one can still tunc 
the membership functions. The extended model enables us to cope 
with incorrect and/or im:ornpatiblc rnles and thereby enhances the 
rolmstncss, flexibility and system modeling capability. It al::;o helps 
us to eliminate redundaut. mlcs easily. For the Takagi-Sugcuo frame­
work, we derive the learning algorithm for the rule importance factor 
as well as that for the consequent. V/e demonstrate the superiority 
of the extencleclmodel through exteusive siumlation results using the 
inverted pendulum. 

Keywords: rule importauce, mle selection, fuz,-;y logic con­
trollers, rule tuniug 

1. Introduction 

The esseutial part of a fu,-;zy logic coutroller (FLC) is a set of liuguistic control 
rules equipped with some fuzzy implication operator and a rule of infcrencing 
Han·is, l\!Ioorc and I3rown (HJD3), Lee (lDDO), Yamakawa (1DD2), Driaukov, Hel­
lendoorn and Ileinfrank (1DD3). Literature suggests that FLCs sometimes per­
form better than the conventional control algorithms. In particular FLC appears 
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more attractive when the processes is too complex to analyze by conventional 
quantitative technique or when t he available sources of information arc quali­
tative, incxac:t or imprecise. Since l\!Iarnclani and Assilian (1975) FLC has been 
successfully used in many applications Sugeno (1985), Yasunobu and Miyarnoto 
(1985), Yagishita, Itho and Sugeno (1985), Procyk and Mamdani (1979), Shao 
(1988), P ark, Nioon and Lee (1995) , Nomma, Hayashi and Wakami (1991), J aug 
(1992), Guely and Siarry (1993) . 

Two major factors which may restrict the application domain of FLCs arc 
sound tcc:lmique of knowledge acquisitim1 and t he availabili ty of lmmau experts. 
An operator can easily control a ::;ystem, but may fail to express properly the 
rules (s)hc nses for decision making. So t here is a great need of lcarniug, and 
tuniug the control rules and as::;ociatccl parameters to achieve a desired level of 
controller performance. 

Given a rule-set, tuning of any fuzzy set A will influence all rules that involve 
that particular fuzzy set A. Thus such tuniug schemes have global impact ou 
t he rule-base. The designer has no tool to t unc only a par ticular rule. Further, 
each rule may not have equal importance to control the system also. We extend 
the conventioual fuzzy models to equip the designer with a steering to realize 
a more flexible system by adjusting each rule separately. The extended model 
associates an importance factor to each rule . The importance factor enhauce::; 
the robustness, flexibility and mocleling capability of the system. Initially we 
assume the importance factors to be unrestricted in sign. We derive the learn­
ing algori thm for the importance faetor and establish its power for hanclliug 
inconsistent rules using an inverted pendulum. Then we show how we can make 
importance factors non-negative and use them for rule selection. 

The orgauization of this paper i::; as follows. Section 2 provides a brief review 
of some existing tuning scheme::; . Section 3 introduces the extended model, its 
motivation and merits . In Section 4 we present t he t uning algorithm:; for the 
extended model. The proposed t uning scheme is used to control an inverted 
pendulum. Results are reported in Section 5. Section G discusses how 11011-

negative importance factors c:an be realized and applied to m ic elimination. 
Finally, the paper is couc:luded in Section 7. 

2. Some existing tuning schemes 

A fuzzy controller is defined in terms of if-then mles. In t his investigation we 
use t he Takagi-Sugeno (TS) model. Suppose the control system has n input 
variables (:1: 1 , . .. ,xn) and one output variable v .. T he r-th mle, R(r), for the 
TS type of controller takes the form 

R(r) If (xl is X r1) and ... (:rn i::; X,.,.) then v. = 11.,. = F,.(:r1, ... , :J:n); r = 
1, 2, .. . ) k; 

where X,._i' s are fu zzy sets defined on T.,. a nd 11'T 's arc crisp values provided by 

the function F,.. 
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The TS model works as follows . For the given input values of the process 
state variables 1: 1 , :r2 , ... , 1:, the meml.Jershi p value 11.( 1:;) is calculated for each 
i = 1, ... , n. Each fJ.(J:;) gives the extent to which the corresponding fu:6:6Y 
set is satisfied. The minirnmn of all p.(1:;) 's or the product of all p,(.'r:;) 's i::; 
usually taken as the firing strength. However, any T-norm can also be used to 
compute t he firiug strength. vVe denote tl1e firing strength of the r-th rule by fr· 
The firing strength modulates the output ( cousequent) fuuc:tion. A well knowu 
method of dcfuzzification (conflict resolution) is to find tlw wcightecluonnali:6ed 
sum of all pairs Un v.r) which i::; given by 

(1) 

This crisp output will be tlw plant input in next phase. 
Literature contains many methods for tuning of fuzzy controllers. Vve briefly 

discuss a few of them here. 
Nornura, Hayashi and VVakarni (1001) used the gradient descent method to 

t une rule-base parameters of TS rule::; with con::;tant outputs awl symmetric 
triangular membership functions. They nsed product as the coujunction (and) 
operator to find t he firiug strcugtl1 of a rule. This method sirrmltaueously mod­
ifies the crisp cousequent value and, the center and width of the triangular 
input fu:6zy t>ds. The tuning process continues uutil the change in the objective 
function between two successive iteratious becomes suitably small. 

Gradient descent method has also been used by Jang (1002) with TS rules 
having affiue output function, assuming it to be potentially more efficient thau 
the coustaut output function. Gucly awl Siarry (1000) empirically show that 
affine output functions were not more ci£cieut than constaut output functious. 
Gucly and Siany (1993) co11sidcrcd Luuiug of constant and affine ontput fuuc­
tious, allCl symmetric and asymmetric membership functions witl1 minimum allCl 
multiplicatiou a.;; coujunctiou operators. Gucly awl Siarry used a modified form 
of TS rule , called the "centerecl Takagi Sugcuo llulc" aud showed on au example 
that it can achieve a much better learuiug accnracy in the same case . Berenji 
and Khedkar (1902), Derenji (Hl92) usccl softmin as their conjnuction operator 
and used a reinforcement type tuniug algorithm. 

Lui, Gu, Goh and \i\Tang (1004) proposed a self-tuning adaptive resolntion 
(STAll) fuzzy control algorithm. STAll changes constautly the fuL:L:Y linguistic 
concepts in response to t>tatcs of the input signals . STAll is a heuristic algori thm 
that attempts to minirniL:e both rise time and overshoot. Isommsu and llamna 
(no date) also used meta mlcs to modify the scaling factor of one output variable 
and mcml.Jership functions for a temperatnre controller. The meta rules use a 
performance measure based 011 oscillat ion amplitude and frequency. 

Niaeda and Murakami (1002) proposed fuzzy mlc-bascd schemes for adjust­
ment of iuput-output scaling factors as well as for tuning of control rules for 
Takagi - Sugeno (TS) model. The fn:6:6Y rule-ba..."'c for tuning has three sets of 
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rules based on three different performance measures , overshoot, rise time and 
amplitude. After tuning of scaling factors the crisp c:onsequent parts of t he con­
trol rules are modified in each sampling time c:onsidcring a fu:0zy performance 
index and the deviation of the actual control response from a predefined target 
response. 

KarT and Gentry (1 993) have used genetic algorithms for t uning of member­
ship functions of a FLC for pH control of a system where the process dynamics 
change in different ways. Homaifar and McCormick (1990) used GA for simul­
taneous determination of membership functions and the rule set. 

The gain tuning method of Yoshida, Tsutsmni and Ishicla (1990) assumes all 
processes as first order systems with dead time. The input and output scaling 
factors are calculated by some empirical relations involving process parameters . 
Good control performances for higher order systems cannot be ensured by this 
technique. Auto-tuning fuzzy controller of Hayashi (1991) considers two tuning 
functions. From the approximate parameters of the identified plant model (first­
order lag with dead time) the input and output scaling factors are calculated 
using the concept of Chien-Hroncs-Reswick (CHR) tuning rules for a conven­
tiona l PI controller. Then the crisp consequent parts are modified using the 
overshoot value and rise time as performance measures. Linear first-order plant 
models with dead time have also been considered in the auto-tuning scheme of 
Iwasaki and Morita (1990). Here the parameters of t he plant model arc identi­
fied through fu:0zy inference, using cliffcrcnc:es between the ac:t ual plant features 
(rise t ime and overshoot) and the plant model feat ures . This procedure is re­
peated until the feature differences arc smaller than some specified t hresholds. 

Palm (1990) proposed to achieve an optimal adjustment in the input scal­
ing factor with the help of input-output cross-correlation function; though he 
assigned a higher priority to the tuning of output scaling factor over that of 
input scaling fac:tors. Here the input data a rc assumed to follow a Gaussian 
distribution whose parameters arc unknown. An optimal input scaling factor 
is obtained by maximizing the cross-c:orrelation function which is a measure of 
the statistical dependence between input and output. 

3. An extended model with rule importance 

Deciding on the rules to be used for a fuzzy system is a difficult task. The 
problem becomes more difficult , when experts arc not available. Even when 
experts are available , it is often difficult to extract the correct rules from them. 
Existence of just a single incorrect or inconsistent rule may degrade the perfor­
mance of the system significantly. For the sake of arguments let us assume that 
experts provided rnles are correct and consistent. Normally in a conventional 
fuzzy logic controller all rules are given equal importance. But, for all systems 
this may not desirable. Different rules may have different level of influence on 
the system behavior . Moreover, ill a conventional FLC, tuning of a fuzzy set , 
say A, influences a ll rules that involve A. Thus, alteration of a fuzzy set has 
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a global impact on the rule-bao;e. The designer usually cannot adjust only a 
single rule in isolation. To overcome these problems and to incorporate relative 
importance of rules in the fuzzy model , we propose the following extension of 
the FLC. 

Suppose the control system has n input variables (x 1, x2, ... , :r,) and one 
crisp output variable v,. The extended model comprises rules of the form: 
R(1) If (x1 is X 11 ) and . . . (:rn is X 1n) then v. = U1 with importance u 1 

R(k) If (:rl is Xkl) and . '. (:rn is Xkn) then ?J, = uk with importance CYk. 
Here :ri and v, are linguistic variable,; aud X,./,; and U,. ',; arc fuzzy set,; 

defined on the reo;pective domains. For a given :r = (x1, .r 2 , ... , :Tn.), let the 
firing strength of the i-th rule be f, .; r = 1, 2, ... , k. Note that some of the fr 
may be equal to zero. Then the defuzzified output can be computed as 

v.* = (2) 

where a.~ is the peak of the fuzzy set U,.. Equation (2) is a modification 
of the height method Driankov, Hellendoorn and Reinfrank (1993) of defuzzi­
fication. Similarly, output can also be computed using extension of any other 
defuzzific:ation scheme. 

Now we consider the extcnsiou for the TS type of controllers. A typical rule 
under the extended TS model takes the form 

If the tempemtv:re (t) is high and the vressv:re (p) is rnediv.m then the flow of 
gasoline is v. = f (p, t) with impoTta:n.ce u 

vVe call such model as "Extended Fuzzy Logic: Controller under the T-S 
model"; in short the cxteudecl TS (ETS) Model. In general, under ETS Model 
the r- th ( r = 1, 2, ... , k) rule takes the form 
R(r) If (.rl is Xrl) and ... (xn is Xrn) then v. = 1l.r = Fr(xl , ... , Xn) with 

importance ar. 
Now for a given input x E RP, the clefuzzified value is computed by 

'\'k f 
L.,.;=l r * V.r * O'r 

'\'k 
L.,.,:=l fr * Cl'r 

I 
Yi = (3) 

where f,. is the firing strength of the rth. rule and k is the total number of 
rules that are fired. 

We shall consider two versions of the model: 
(i) ur's are unrestricted, i.e. it can have positive, negative and zero values. 
(ii) ar's are all non-negative, i.e., O'r ~ 0 Vr. 

In this sequel, we illustrate that both models have distinct advantagc~S m 
different situations. 
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Due to the presence of nn cq11at ion (2) or (3) cau model much more complex 
control surfaces than t lmt by cq 11ation (1), res11lting in more flexibility of the 
fuzzy system. One may get a false impression that the same flexibility can be 
obtained from equation (1) by tuniug the parameters of consequent functions. 
This is not t rue. A dose inspection of equation (1) and equation (3) reveals 
that when ar = c: V r (c = a coustaut) equatiou (3) = equation (1), aud under 
this sit uation, tuuing of v,,. changes only t he numerator of (1) and (3), the 
denominator remains unaffected. In all other cases ctr alters both nurncmtor 
and denominator of (3), and influences ?J/ in a nonlinea.r manner. Analogous 
arguments can also be given with respect to equation (2) . 

Given a training data set (X, Y) , X = { x 1, x 2, .. . , XN} ~ 3tP and Y = 
{y1, y2 , .. . , YN} ~ at, we can obtain suitable values for O'r minimizing 
L~l (Yi - y/) 2 Note that as n·r is 11nrestrictcd in sign , theoretically the de­

nominator L;=l j,. * CYr of cquatiou (3) co11lcl be very small, even zero. But 

the training process will never allow this. Becam;e, if L;=l fr * Ur ---> 0 theu 
y/ ---> =, but Yi is finite . This will result in iufiuite error. Thus when O'r 's 
are learnt using training data with fin ite output values, L;=l fr * O'r will never 
be zero . In other words, if we start wit h CYr = 1 Vr, then the gradient based 
tuning algorithm (or any consistent t11ning algorithm ) will never change u iu 

such a manner that L;=l j,. * cvr goes to zero. And if t he input-output relation 
is smooth and the training data that are used to !cam the o~ ,., adequately rep­
resent t he relation so that t he actual iuput-o11 tput relation is captured by the 
identified fuzzy system, it is also not expected to occur for any test data. 

In the present investigation , we consider the most simple form of the TS 
model, where the consequent of each rule is a crisp value. In other words, the 
r-th rule has the form 
R(r) If (xl is X rd and .. . (:~;,. is Xrn.) tlwu 11. = 7l.r = Fr(:~:l, . . . , T,) with 

importance O'r 

But how do we get O'r, r = 1, 2, ... , k . If an expert is available, a,. can be 
obtained from him/her. T his may Hot always be possible. l\!Ioreover, it is better 
to learn O'r from a set of reliable inpnt-ontpnt data. 

F irst we consider the case with unrestricted Ur, and then in Section G, we 
will concentrate on t he case with non-negative Ur . 

4. Learning of importance factors 

Let (X ,Y), X= {x1, ... , xN}, all<l Y= {y1, .. . , ?JN} , be a set ofinpnt-ontpnt 
data. Here Yi is the control action corresponding to state vector Xi. In order 
to learn the importance factor of each rule, like Nomma, Hayashi and Wakami 
(1991), we minimize the squared error fnuction E given by 

N ( ')2 
E = L 1/i ~Yi 

i=l 
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This nonlinear optimizatiou problem i::; solved by the steepest descent method. 
This is an iterative algorithm that reduces the value of the objective function 
with each iteration. Like online traiuing iu neural uetworks we minimize E 
by moving a small amount in the negative direc:tiou of the instantaneous error 
function ei · The ins tantaueous error function for (xi, 7Ji) is given by 

( 11) • - 1/)2 
• t ,J i 

ei = 
2 

i=1 , 2, ... ,N. (4) 

'vVe eau miuimi<::c ei with respect to one or more parameters of the rule-base , 
like peak and ba::;e of the membership function , consequent parameter::; and 
rule importance factor. Here we derive update equation::; for only the relative 
importal!ce a, and t l1e con::;equent value 1L, for each rule. 

Suppose for the input-output data point (x i, 7;;.) the coutrol output is (re­
calling equation 3) 

1 L~=l f r * 1/_,. * CY,. 
7/i = k 

2::=;=1 fr *Or 

(5) 

Let 1-'·r.i be the membership fum:tion of a fu;,:;;,:;y ::;et defined on the j-th an­
tecedent variable of the r-th mlc. Differeut types of membership functions can 
be used. For simplicity, we u::;e symmetric: triangular membership function f-l.,.i 

defined as 

( ') _ 2 I X - ari I 
Jl-ri 1. - 1 - ----'-,..--"---'-

. b, .. i 
(G) 

where a,...i is the peak (i.e., the membership value is 1 at 1; = ar.i) and b, .. i is 
the base or ::;up port of fl-ri . Given (G) aucl ( 5), the update equations for CYr and 
u,.. to minirni<::e (4) call be obtained by gradient descent a..c; 

( ) ( ) ( ) 
Dei 

CYr 1; + 1 = CYr t - 'rJ o: 1; * -,­
OUr 

and 

( ) ( ) ( ) 
dei 

11.,.. t + 1 = 'U.r t - 'r/v. t * -D . 
1l.r 

(7) 

(8) 

'r/o: and 7], arc the learning to-efficient::; respect ively for the importance factor 
and consequent value of the rules. 

With some algebraic manipulation, we get 

and 

Dei 

ou, 

(0) 

(10) 
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If we start with a,. = 1 '1/r, then 2: f ,. HY,. =!= 0 for all dat a points to start with. 
The question is, can the learning process take 2: f,. *a,. to zero. Intuitively it 
will not , because then y/ will be infinitely large (positive or negative) resulting 
in an infinite error , but gradient descent attempts to reduce the error. However, 
one can argue that due to bad choice of step-length (learning co-efficient) it 
could happen theoretically at some stage of training, t hen the remc..J~· is to alter 
the value of a,. of one of the fired rules by some amount E. Note that, it does 
not matter whether E is positive or negative or large or small. The idea is to get 
out of the degenerate case. In practice, the probability of getting exact zero for 
the denominator is practically zero, but if it becomes very small , as explained 
earlier due to bad choice of step-length, the successive steps of gradient descent 
will modify the value of a in a direction so that L f,. *a,. moves away from zero 
in order to reduce t he error. 

The algorithm for tuning a,. proceeds as follows: For each pair of (x ;, y;), 
update a,. using (7) and (9). Repeat the process until 11 a(t)- a( t + 1) 11 / k < E, 

where E is a small positive quantity and a(t) is the vector of weights after t 
epochs. A complete pass through the data is called an epoch. Tuning of v.,. can 
be done in a similar manner using (8) and (10) . We next provide a schematic 
description of the tuning algorithm. 
Algorithm for tuning of rule importance 

AlgoTithm. Im.po·rtance- Tune (X, Y, o, 7]0" Tn1.a:ro:, E) 
Input: X , Y,CY ,7]o:,T·rn.a.xo:,E 
Here X = (x1 , . . . , XN) is the set of input vectors and Y = (y1 , ... , YN) is 
the set of corresponding output vectors. T he constant E and Tn1.a..To: are used 
for termination of the algorithm , 77a: is the learning co-efficient for all a,., o = 
(a1, a2, .. . , a.,)r . 
Begin Algorithm 

1. 77'!:. = 77o:, u( O) = u. 
2. For t = 1 to Tnw .. To: do 

(a) Repeat for each x ; EX 

i. Compute f ,. for all r = 1, ... , k 

11. Compute 7J;I using equation (5) 

iii. Do for each rule r which is fired 

A. modify u,. using Eqns. (7) and (9). 

B . Recompute y;, using equation (5) 

iv. End Do 

(b) End Repeat 

(c) Calculate Et = 11 o(t)- o•(t + 1) 11 /k 

(cl) If Et < E then stop 

(e) Adjust 7];, 
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3. Eud For 
End Algorithn1. 
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The algorithm for tnning of 11.,. can be writtcu iu the same mmmcr. Note that 
such an algorithm imposes no restriction on the sigu of o,. and hence (Y,. could 
be negative also. This may appear to he counter-intuitive as importance factor 
should preferably he 110!1-uegative. Later we shall see, that it is inclcecl a powerfnl 
feature <mcl eau help us to cope with iw:ousistcut rnles. However, we shall also 
show, how we eau impose the nmJ-ucgative constraiut ou tlw importaucc factor. 

5. Implementation and results 

To illustrate the effectiveness of the proposed extended model , we use the in­
verted pcndulmn problem &'i an cxalllpk, becanse its physical model is well 
known and fairly simple. The iuvcrtcd pcndnlmn is a system, in which a rod 
of mass m is hinged on a cart (Fig. 1). AI though the pendulum ca,u fall in auy 
direction, we restrict ourselves to the 2-dimcnsional vcrsiou where the pcndn­
lum (rod) eau move ouly in a vertical plane (i.e. , iu the plauc of the pa,ge). 'Ne 
assmne that the mass of the pcudulmll is conceutratcd at the cud of the rod 
al!Cl the rod is masslcss. The control force n is applied to the cmt to keep the 
pcndnhm1 iu au equilibrium positiou. Let e be the angle of the rod from the 
vertical line. The slanted pendnlmn can be bronght back to the vertica,l position 
when a snitable control force is applied to the cart. If the cart is at rest , the 
stick is in the vertical position and the force n is z;ero tlwn the system is in 
equilibrium. This equilibrinm positiou is tmsta,ble in the sense~ that with auy 
pcrturtmtiou from this position, 110 matter how small, tl1e stick will fall clown. 
For this system we have two types of fm~z;y coutrol rnles; one for c:o11trolling the 
rod al!Cl the other for the cmt. In onr investigation, for tlw sa,kc of simplicity, 
we have cow.;idcred ouly the pole lmla11cillg part. 

The range of each inpnt linguist ic varia,hlc ( e a,ud iJ) arc divided into 7 
overlapped intervals . 'vVc decided to dwosc the iuitial rule set iu such a mamwr 
that for every possible input at leac;t two rnles arc fired. If only ouc mlc fires , 
then the fnz;z;incss iu the outpnt will be lost and flexib ili ty of the system will be 
red m:cd. The antcccdeut da,nses of the rnlc set used arc showu iu the Table I 
with cross marks. Tlw liuguistic value::; for each li11guistic variables ( e and iJ) 
are: NB = Nega,tivc Big, NJVI = Negative J\!Icdinm, NS = Negative Small, Z = 
Zero, PS = Positive Small, PM = Positive Medium, PB = Positive Big. The 
conscqncut of the rule::; are not showu iu Table 1. \Ve start with some arbitrary 
value of force for each rule. A good choice of the rule set and couscqttent values 
gives rise to faster c:ouvergencc~ and better pcrfonnam:e. The only reasou for the 
selection of this particnlar rnlc set is the nniformity of rnles over the e11tirc~ rule 
space, except uear the eqnilibrium positim1 where we have more deusc rules. 
There could be other choices too. In addition to this set of 29 rules , we also 
lc)Xp0~riHH~!lt.cd with 49 rules. 

We use the followiug computational protocol::; : half roe! length 0.0 m; pole 
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'tU. 

'11,-----+ M 

Figure 1. The inverted pendnlnrn 

(} 
NB NNI NS I z I PS PNI PB (} 

NB X X X X 

NM X X X 

NS X X X X X 

z X X X X X 

PS X X X X X 

PM X X X 

PB X X X X 

Table 1. Ilnlc set for tlw inverted peuclulurn 
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11 

() 
NB NlVI NS z PS PM 

() 

NB -10.13 1.75 3.70 8.80 
Nivi -23.44 5.48 -1.38 
NS 25.28 13.G7 5.22 7.21 1.27 
z -1. 2G 10.DG 5.73 7.G7 3.35 

PS 4.03 12.2G 8.00 4.G4 1.32 
PlVI 30.00 -0.38 G.lO 
PJ3 70.48 G. D 2.G5 .00 

Table 2. Values of o: for differeut rules after 3,000 epochs, corresponding to 
F igs. 2(b) & 3(b). 

mass 0. 1 kg; cart m&'is 2 kg. T he initial value of each o:,. is taken as 1. However 
we also experimented with iuitial a,. chosen randomly iu [0, 1]. \i'lith raudorn 
initialization, tuning is usually more cumbersome aud o:,. = 1 is fo und to be a 
better choice for initialization . For all resul ts reported , we started with (Yr = 1 
't:/r, i.e., each rule is given equal importance at the beginning. T he firing strength 
has been computed using product as the coujunction operator. T he learuing rate 
TJa. for o:,. was changed dynamically. Vve started with a high value of TJa.· TJa 
is kept the same, as long as the total square error E reduces with iteratiou. 
W henever E is fouud to iucrease after a pass through the training data, TJa is 
reduced by 10%. 

Vve hav0~ done many simulation cxpcrimeuts and rnport here only a fc>v 
typical of them. For om first sinmlation, we use a bad rule set with arbitrarily 
clwseu values of force and parameters of the membership functions. The rule set 
was uot able to bring the system t.o the eqnilibrium position . The ETS cout.roller 
has been tuned usiug Importa.ncc-Tuue algorithm for 3000 epochs. The values 
of t he importance factors (o:,.) after t.uniug arc shown iu Table 2. Iu some cases 
the values of weights arc positive and for a few cases they are negative. Fig. 2 
depicts the system response in terms of() before allCl after weight-tuning. After 
tnniug of importallC:c factors, the perfonuanc<! of the coutroller, in terms of 
0, is shown in Fig. 3. After t uning , we can sec a. significa.ut improvement in 
the performance of the coutroller. It is clear frolll Figs. 2 allCl 3 that ouly m1 
appropriate choice of impor tance factors of rules can make an uucontrollable 
system coutrolla.ble. 

In order to establish the cffcctivcucss of the proposed model we report l'C·!sul ts 
from another bad rule set (We used different values of force aml parameters of 
membership functious thau those used iu Table 2). Iuitia.lly the system was not 
controllable, but after tuning of o: only for GOOO epochs, it. becomes controllable. 
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Figure :3. System response in terms of iJ: (a) Before tuning of o , (b) After 
tuning of u for 3000 epochs 
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Figure 4. Controller's performance iu terms of e: (a) Before tuning of Cl', (IJ) 
After tuning; of a for GOOO epodts 

Figures 4( a) and 4(b) show the performance of the controller iu terms of e before 
and after tuning of a,. respectively. The system performance in terms of iJ is 
shown in Fig. 5. Table 3 shows the values of a,. after tuning. 

To illustrate further that au im.pmpe,- or inconsistent choice of consequent 
valne can be accounted for by modifying er,., we c:onsiclcr the rule set corre­
sponding to Table 3. The conseqncut value corresponding to the rule (PM,Z) is 
122.07. We now change the cmtscqueut value of the rule to -1.0 . In other words, 
the rule 

If e is PM and iJ is z then 11. = 122.07 with C\' = 1.79 
is changed to 
If e is PM and iJ is Z then 11. = -1.0 with n = 1.79 
Note that, not only we reduced dra..'-itically the magnitude of the force , but 

also dtang(~<l iLs sign. Fig. 6(a) (refers to the cmve labeled (a) in F ig. G) shows 
the system behavior (in terms of e) after the rule damag;e. The variation of iJ 
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After t uning of n for GOOO epochs 

NB NTvi NS z PS Pivi PB 

NB .78 1.0 UJG er: . iJ 

NJVI - .22 - .03 . 7!) 
NS .97 1. 11 1.44 1.48 1. 01 
z .47 1.11 1.41 .34 1.11 

PS .!)3 Gr: . iJ .78 .22 .00 

Pivi 1.54 1.7!) .01 
PB .04 .51 - .07 .72 

Table 3. Values of n for diffcrcut mlcs after G,O OO epochs , corrcspoll(lillg to 
Figs. 4(b) & 5(b). 
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Figme G. Performance of the controller in tenm; of 8: (a) After damaging the 
consequent of the rule If(} is PM a.nd iJ is Z then u = 122.07 with impo'!'ta.nce 
1. 79 to -1 .0 (b) After tuning of ouly u for 2000 epochs (corresponds to Table 4) 

under the same situation is given by Fig. 7( a). These two curves dearly show 
that with the damaged mle, the system is not coutrollable. The controller is 
now tuned for only 2000 epochs and Figs. G(b) and 7(b) show the controller 
performance after t1ming; while the corresponding weights are included in Table 
4. Here also the uncontrollable system becomes controllable with only adjust­
ment of relative importance factor. It is interesting to note t hat to account for 
the damaged rule the relative importance of one of the neigh boring rules (with 
(} = PS ancl iJ = PS) has changed from a positive value (0.22) to a negative one 
(-.13). Observe that not only the weight of the neighboring rules, but also the 
importance of several other rules have dmnged. 

5.L The utility of negative Or 

Inspection of the Tables 2, 3 and 4 reveals that most of the weights arc positive, 
while a few arc negative. As mentioued earlier at first sight , it might appear 
counter-intuitive because n's arc iuterpreted a._o.; "importauc:e" of rules. No; it is 
not counter-intuitive; on the contrary, it is a very powerful flexibility which can 
accoqnt for inconsistent or wroug mles that ruay be provided by the designer or 
user of the system. Let us explaiu it with an example. Let (} is PD and iJ is also 
PB. Under this situation, the fo rce should also be positive (preferably, PD). 
Suppose, the designer provides a mlc with a negative high consequent value, 
when (} is PB and iJ is PB. This is a bad rule, and under the original TS model, 
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Figure 7. System response in terms of it for 40 rnlcs (corresponds to Strategy 
1) (a) After damaging the consequent of the mlc If B is PM a.nd it is Z then 
11. = 122.07 with irnpo·rta.nce 1. 79 l:o -1.0 (b) After tuning of only r.v for 2000 
epochs (corresponds to Table 4) 

() 
NB NNI NS z PS P:tvi I P B I () 

NB .Hl 1.00 2.40 .10 
Nivi - .00 -.12 .01 
NS 1.31 1. 14 .47 1.72 l.G7 
z .2G 1.20 .GO .04 1.17 

PS 1.2 .38 1.7G -.13 -.003 
PM l.GD .32 1. 10 
PB .OG .37 -.83 .02 

Table 4. Values of c.v for different rules after 2,000 epochs, corresponding to 
Figs. G(b) & 7(b) 
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Figure 8. Figure explaining the role played by negative weights (in terms of B) 
(a) After changing a positive consequent value (corresponding to Table 3) to a 
negative one, (b) After tuning of a for lGOOO epochs 

the system may not be controllable. J3ut ETS may convert this inconsistent rule 
to a consistent one by adjusting the sign and magnitude of importance factor of 
the concenwcl rule and some of its neighboring rules, so that the contribution 
of this rule to the defuzzification scheme becomes negative. Changing the sign 
and / or nmgnitude of only the corresponding rule rmw not always be enough 
because the changed o influences both nmnerator aml denominator of Eqn. (G). 
As an example, consider the following rule from Table 3, 

if{) is PM and iJ is Z, the jo,-ce is 122. 07 with im,po·rtance 1. 79. 

Changing the value of the force for this rule to a negative big value, say 
-200.07 (by keeping the importance fctctor same as before) gives rise to a system 
which is not controllable. After fnrthcr tuning of the entire rule set for a with 
the help of Importance-Tune algorithm, the system again becomes controlla,blc. 
Figs. 8 and 9 depict the system characteristics before and after modification of 
the consequent value of the ctbovc particular rule, ami after tuning of a. After 
tuning, the values of weights arc presentee! in Table G. Compctrison of Tctblc 
3 and TalJ!e G revea,ls tlmt the change of the consequent value from 122.07 to 
-200.07 ]ea,cls to a, change of weight from 1. 70 to a, negative value of -0.20 for 
that particular rule we modified the consequent value of. We a,]so observe that 
the value of the importance factor of a, neighboring rule ({) is PS and iJ is Z) is 
also changed from 0. 78 to 1.4. As expected, ar for other rules have not changed 
much. 
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() 
NB NlVI NS PB 

() 
z PS P1vi 

NB .73 1.00 2.01 .G2 
NM -.21 -.04 .84 
NS 1.17 LlG 1.21 1.5!) 1.51 
z .22 1.34 1.20 .G1 1.12 

PS 1.01 .7!) 1.4 .40 -.004 
PM 1.5G -.20 .007 
PB .OG .GO -.12 .71 

Table G. Values of ex after tnuing; of 1GOOO epochs, when Table 3 is used as the 
initial ex and the conseqnent of one rnle is changed from 122.07 to -200.07. 
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6. Non-negative importance factors 

The proposed extended model discussed in Section il does not restrict the impor­
tance factor to be non-negative. This equips 11s with the capability of dealing 
with inconsistent rules. I3ut as explaill(xl earlier, if the training data do not 
adequately represent the system to he ideutificd , it may lead to the degcucrate 
case with zero dcuominator. l\!Iorcovcr we caunot use a,. for rule climinatiou. 
However, if we could restrict the importance factor to he non-negative, then it 
would cuable us to solve the dif-ficult problem of rule selection easily, and we 
would be a ble to avoid the possibility of the degeucratc case. :tvloreovcr, inter­
pretation of a,. as rule importance would tl!cu be very natmal. To achieve this, 
we modify the extended model with rules of the form: 
R(r) If (~r 1 is X,.1 ) and ... (:r,. is X,.,.) theu v. = u,. = F,.(:1: 1 , ... , :1:,.) with 

importance a,. 
where n,. 2': 0 (non-uegative). Altho11gll we can start with a set of 110n-negative 
o,., we need to ensure that the lcamiug process maiutains the same. As such 
gradient descent 011 2.::: (Yi - y/) 2 does uot g11arautee that 0'7- will rmnaiu non­
negative after the training. To impose this c:onstraiut we model u,. by (-J,. 2 , i.e. , 
we assume u,. = (-3,. 2

, where (-J,. is tmrcstrictcd iu sign all() we learn it 11siug 
gradient descent . 

The dcfuzzification scheme is theu accordingly modified as 

~k 0 
1 0r= 1 f,. * 71·r * ({-J,.)-

Yi = L:::=lf,.*(/1,.)2 
(11) 

The lea rning rules for updating of f-J,. can he easily computed as 

( 7'}
1 

- 7'}·) * (v - 7'J
1

) 
{1,. ( t + 1) = f-J,. ( t) - 7) {3 ( t) * . i ~' 7. • .,. 2. i 

I:.i=l fi * f-Ji 
(12) 

wlJCre T}f3 is the learning co-efficieut for the importam:e factors of tlw rules. 
Note that the learnt value of [1,. co11ld be negative, but the actual mlc im­

portauce factor 0',. ( = {1,. 2 ) wo11ld always he uou-uegativc. To select a necessary 
subset of rules, we propose to start vvith a large llllmber of rnlcs, each haviug 
the same importance factor of nnity, 1. Then after tnuiug (lcarniug) of the im­
portance factor (/1?.) we can delete all mles witl1 f-J?. < E- a prcassmned positive 
constant. 

Vve uow illustrate the use of !lOll-negative r11le importauce factors for r11le 
selection. 

7. Results 

\'f./e start witL a set of 40 ml es h<wing initial importaucc factor of et,. = 1 for all 
r11les. Table (j shows the val11es of o:,.'s after tnniug the rnle base with eqnatious 
(7) and (0); i.e., assnming unrestricted o:,. as the mlc importall(:e. Vlith Table 
(j t he ruvrs error fo r the given data set is 7.84. 
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() 
NB Nl\II NS z PS PM PB 

() 

NB 1.02 1.03 1.05 0.99 0.9 1.03 1.93 
NM 1.03 0.02 1.08 1. 00 1.22 1.30 0.01 
NS 0.94 O.G8 0.75 1.23 O.G2 1.07 0.00 
z 0.14 0.82 l.G2 1.55 0.52 -.78 0.00 

PS - .OG Gr: - . iJ O.G::l 1.19 0.90 0.5G 0.98 
P IVI 0.07 0. 8G 0.99 0.97 0.98 0.94 1.03 
PB 2.0 1.18 1.04 1.08 0.99 1.03 1.02 

Tal>le G. F inal values of ctr for different rnles after t uning for 5000 epochs with 
(7) and (9) 

The same initial rule set is again separately tuned using equat ion (1 2), i.e. , 
assuming a,. = fJr 2

, as the importance factor. Table 7 shows the values of {1,.'s 
(i. e. , the positive square roots of the importance factors) after 5000 epochs of 
training. Since fir 2 (2 0) is used a.<; importance, we dropped the sign of {1,., 
and all arc shown as positive values . The IUviS error with Table 7 is fou!l(l 
to be 4.94, which is much Slllallcr thau that with Table G. Observe that in 
Table 7 many entries are practically zero. The rules , whose importance factors 
arc nearly zero , do not cont ribute mm:h to the computation of the defnzzified 
values and hence they can l>e deleted. In this parti-cular ca::;e after delet ing all 
rules with Or < 0.01 , we get a rule ba.-;e with only 2G rules . The deleted rule::; 
arc marked with asterisk (*) in Table G. The RMS error with t his reduced rule 
set is 4.D4 which is exactly the ::;ame as that before delet ion. T hus we ::;ce that 
the extended model can l>e ea.c.;ily used for rule selection / elimination. 

8. Conclusion 

We have extended the conventional fnzzy controller model with the introduction 
of importance factor for each rule. Iu a rule based system , each rule may 
not have equal influence to accomplish the objective of t lw system. 1\ I, >rcover, 
rules obtained from experts may not always be relia l>le or consistent. , tiC rule 
importance factor can account for such uncertainty associated with rules . The 
extended system enables the FLC to model more complex control surfaces allCl 
thcrcl>y makes the system more flexible. We demonstrated the effectiveness 
of this extended model under the Takagi-Sugcno framework. We empirically 
cstal>lished (through extensive experiments) that an improper choice of rule­
base can be very efficiently handled by om extended model. We abo di::;cussed 
how one can impose the non-negativity coustraint on importa nce factors and 
use them to select a small snbset of m lcs to achieve the goal of the system. 
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() 
NB NM NS z PS PM PB 

() 

NB 1.11 1.18 2.08 ll.00 *().()() * () . 00 *0.00 
NM 1.18 *0.00 :3 .21 *CJ.OO Cl. 90 *().()() *().()() 

NS *0.00 *0.00 (). :34 0.4G 0.40 *0.00 *O. 00 
z *0.00 0.03 2.::>4 2.17 0.02 *0.00 *0.00 

PS *0.00 *().()() 0.07 0.7::> Cl.lG *0.00 *0.00 
PM *Cl.OO *0.00 *0.00 0.01 0.27 *0 .00 1.41 
PB *Cl.OO 1.14 0.17 2.98 O.G2 1.41 1.30 

Table 7. Final positive values of (J,. for different rules after tuning; for :JOOO 
epochs with (12) 

Experiments arc underway to establish the usefulness of the importance factor 
for fn,;,;y controllers having; fu,; ,;y consequent. 
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paper is briefly presented during the dosing sesHion . 

All papers must he submitted in paper form as well cts in electronic form 
(Wore! G.0/05) attadnnent to an email to the Chainrmn of the Jury, ProfeHHor 
Costa.-; P.Pappis at the following ctclclrcs::>: 

University of Piraeus, Dept.of Industrial l\!Immgewent 
80 Karaoli & Dimitriou Str., 18534 Piracus, Greece 
Tel. (+301) 42220GO , 4120751/exUlG, Fctx (+301) 41700G4 
cmail: pappis©unipi. gr 


