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Abstract: We study the problem of changing the geometric con­
figuration of an elastic plate by means of attached and embedded 
actuators. For this purpose we use the so-called "full" von Karman 
plate equations, incorporating geometric nonlinearities, and we de­
velop a model for internal actuation based on the same principles 
and assumptions. We show that the von Karman model predicts 
azimuthal buckling for a. thin, centrally supported disk-shaped plate 
with uniform transverse boundary load ing and we indicate that be­
havior of t his type poses a significant problem in attempting re­
formation of the elastic plate into a rotationally symmetric, bowl­
shaped shell, a problem of some importance in projected applica­
tions. We study two different systems of actuator deployment and 
indicate why one of them appears to deal with this problem more 
effectively than the other. 

Keywords: formation, elasticity, elastic plate, von Karman equa­
tions. 

1. Introduction and geometric setting 

The first goal of the present work is to provide an alternate - we feel more 
elementary - derivation of the so-called "full" von Karman plate system (see, 
e.g. Lagnese, 1989, Lagnese and Lions, 1988, Benabdallah and Lasiecka, 2000) 
in the static configuration. The derivation, as presented here, relies on a rigorous 
order assumption relating the magnitudes of admitted in-plane di splacements 
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to the squares of the magnitudes of the admitted transverse displ acements, 
replacing the somewhat arcane assumptions of fini te elasticity and a llowing us 
to provide better explanations for the terms occurring in these equations than 
are ordinarily available. In many engineering studies t he model ana.l ysed here 
is referred to as the large deflection model; for brevity we will refer to it as the 
LD (plate) model. 

V/e do not specialize to the system usually identified as "the" von Kar­
man plate because that provides no special advantage in what we do here and 
because we do wish to admit the possibili ty of clamped boundary condit ions. 
Additionally, we at all t imes retain the potential energy, or va ri at ional form, of 
the system, whose minimization yields the equilibriu m state, rather t han pro­
ceeding to the partial different ial equat ions const itut ing necessary condi tions 
for a minimum. This has the advantage of all owing us to work wit h lower order 
derivatives than those occurring in the parti al different ial equati ons. Res tri ction 
to the variational framework also allows us to dispense with a li stiJJ g. or iutr ic:a.te 
parametrization of all of the possibilities for natural boundary condi t ions. Sin ce 
the commonly used finite element approximat ion techniques almost always take 
the energy form as their point of departure, we feel the gains in this approach 
outweigh the losses. 

Our objective is to study a number of developments relative to t he LD model. 
One of these is finit e ampl-itude buckling, a necessarily nonlinear phenomenon. 
This is done in the con text of a plate of annular, or disk-shaped, cross sect ion; 
we consider azimuthally sinusoi dal, or near sinusoidal, buckling resul ting fron1 
constant transverse forces applied to the outer boundary. 

Many buckling phenomena. associated with the LD model ca.n be explained 
by the fact t hat , as the thickness of t he plate tends to zero, the equations in­
creasingly model an elastic membrane, resistant to in-plane stresses but with 
vanishing resistance to bending. Tn fact it is the presence of the membrane en­
ergy terms in the potential energy expression which dist inguishes t he LD model 
from the classical Kirchhoff plate model (Lagnese, 1 989) . Tt is mat lJ ema.ti c:ally 
natural, therefore, an d very pertinent in the light of the developing aclvauced 
materials technology, to consider variations of the LD model explicit ly allowing 
for the possible presence of a fi ni te number of thin membranes, strnctures re­
sistant to selected in-plane stresses only, distinct from the substrat e pl ate bu t 
embedded in it or forming one or both of its transverse bou nda ry surfaces. Tn 
general such an augmented LD model is not isotropic but it includes a. subclass 
of isotropic models with embedded membranes resistant to in-pl ane dil atati on 
and shear. 

Some of the membranes described in the preceding paragraph incorporate, i11 
the formation studies presented later in the paper , actuators by means of whi ch 
form ative st resses can be introduced into the pl ate. Our specific objective is to 
study the re-formation of an annular, or disk-shap ed , plate into a bowl-shaped 
shell, a process important in the development of mauy "smart" structures, in -
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We will see that the study of thi s form ation question in t he LD pl ate context , 
which we feel to be the minimally adequate contex t short of a fnll-bl own elastic 
shell study, which we do not attempt here, inevitably indicates the buckling 
studies indicated in the preceding paragraph. 

To develop the geometri c setting of the model, we consider an elastic p late 
of uniform thickness occupying a region R =:: {(x,y,z) E n} x [-h,h], where 
n is a bounded domain in R 2 with smooth boundary r. In equilibrium, the 
neutral plane of the plate coincides with t he set R 0 =:: n x {0} in t he plane 
z = 0. In a. general admitted deform ation the set Ro undergoes in-plane as well 
as transverse displacements; these are described in terms of the vector function 
Fo : R 2 ---. R 3 given for (x, y) E S1 by 

[ x+~(x , y) l 
Fo(x, y) =:: y + Tl(x, y) . 

((x,y) 
(1) 

Tn the present arti cle we assume that ~, 17 and ( have whatever smoothness is 
required to a.dmit the parti al deri vat ives in troduced. Existence and regularity 
results for the von Karman system, which requi re more rigorous specifi cation of 
the state space of admitted displacements, may be found in , e .g., Ciarl et and 
R.a.bier (1982). 

Throughout our discussion we use the subscript notation, e.g., F x, and the 

equivalent partia l derivative symbol, e.g., ~~ in terchangeably; t he fi rst saves 
space while the second is clearer in certain situations, particul arl y when applied 
to variables which are already subscripted. T hus we have 

8 - [1 +<, l - Fo - T/x . 
ax 

(x 

(2) 

and 

8 [ ,, l -Fo = ] + T/y . 
ay 

(y 

(3) 

With the Kirchhoff assumption, to t he eTT'ect that lines perpendi cu lar to the 
neutral surface z = 0 in unforced equilibrium remain lines perpendicul ar to the 
displaced neutral surface under t he admitted di splacements, t here is no shearing 
deformation between displ aced two dimens ional layers of the plate parall el to 
the neutral surface. Th is is one of t he features distinguishing t he LD model 
under present considerat ion from the Mind lin - Timoshenko, Mi ndlin (1951 ), 
for exam pie. 

T he underlying analytical assumption operative in onr rnocl el deri vat ion is 
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Order Assumption: The in-plane {horizontal) displacements~ and 17 and 
their partial derivatives are of the same order of magnit'U de as the squares of 
the transverse displacement ( and its partial derivatives. 
Remark: In the case of totally free boundary conditions the order assump­
tion requires modification to a statement about displacements modulo uniform 
translations and rotations. 

Proceeding now to general points in R , not necessarily on the neutral surface, 
the displacement of the point (x, y, 0) E R 0 indicated by (1) results in the point 
X = (x, y , z) E R being transferred to the displaced point whose coordinates, 
within the degree of accuracy mandated by the Order Assumption, are given by 

( 

x +~(x ,y ) - z(x (x , y) ) 
F(x, y, z) =X+ 3(x , y , z ) = y + ?(x, y ) -; z (~(x , y)

2 
. 

z+ ( (x ,y)- 2((c + (y ) 
(4) 

For the partial derivatives of F with respect to x and y we then have 

0 ( 1 + ~x - z ( xx ) 0 ( ~Y - Z ( xy ) 
BF = 'f/x - Z (y x ; BF = 1 + 'l?y - Z ( yy . 

X (x - ttx ( ( x 2 + (y 2 ) Y (y - ~ t y ( (x 
2 + (y 

2
) 

(5) 

The Order Assumption is motivated, of course, by the realizat ion that the 
change, due to an admitted displacement, in t he length of a short materi al line 
segment parallel to the neutral surface, is afl'ected in a first order manner by 
the partial derivatives ~x, ~y, TJx and T/y whereas the effect ari sing from the 
transverse displacement ((x , y) is proportional to 1 - cosv , where v is the angle 
of inclination of the surface z = ((x,y ), and thus to the square of the norm of 
the gradient of(, provided that gradient remains small . To explore the details of 
this length change, and for later use in formulae related to inclusion of layers of 
mono tropic actuators , we consider two material points with coordinates (x, y , z) 
and (x + b.x , y + b.y, z ) in the nomin al equilibrium configuration. We assume 
b.x and b.y are small relative to distances over which partial deri va ti ves of the 
displacement components change appreciably. Under a general displ acement, as 
described previously, these two points are carried , to fi rst order in b.:r , b.y and 
II 'V (II, into the image points 

( 
8( 8 ( ) 

x + ~(x , y) - z ox (.T, y ), y + ry( x, y) -- z fJ y (.T , y) , z + ( (:r , y ) 

and 

( 
8~ 8~ 8 ( 

x + ~(x, y) + -;:;-(x, y) b.x + -;:;- (x, y ) b.y - z -;:;- (x + b.x , y + b.y) , 
uX u y u x 

an ' I 1\ • . \ 
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EJ( EJ( ) 
z+((x,y)+ EJx(x,y)D.x+ ay(x,y)D.y . 

We let D.£ = J D.x2 + D.y2 denote the original distance between the two points 
in question. Suppressing (x, y) as an argument for notational brevity, the dis­
tance between the displaced points is, again to first order in D. x, D.y and z, the 
norm of the vector 

(

A !ZS..A !ZS..A ~A. RA ) Ll. X + ax Ll.X + ay LJ.U- axz Ll. X Z - axay LJ.Y z, 
!!!1. , !!!J. _if!,_'~ D.y + ax D. x + ay D.y - axay D.x z - ayz D.y z' 

~ D.x + ~ D.·y ax ay 

(6) 

A complicated, but straightforward computation shows that if we discard prod­
ucts of derivatives of~ with derivatives of "r/ and products of derivatives of either 
of these with derivatives of(, as prescribed by the Order Assumption, an d if we 
use the standard approximation v'f+(i" ;:::: ] + ~ valid for small a, we obtain 
for the norm of (6) the approximate expression 

where M is the matrix 

~Y - Cxu Z + ~ (x(y ) . 

T/y - (yy Z + ~ (y2 
(7) 

If we amend the Order Assumption by fu rther supposing that ( and its 
partial derivatives should be of the same order as the thickness, 2h, of the pl ate, 
then, since - h :::;; z :::;; h, we see that all terms in the entries of the matrix 
M are of t he same order. This provides an addit ional rationale for the Order 
Assumption and an indication of the magnitude of displ acements for which the 
LD model, based on the this assumption , is likely to be satisfactory. 

2. The energy expression for the matrix plate 

As we have indicated in Section 1, we envision the membrane components of 
the composite as being embedded in a matrix, or substrate, plate structure. 
The first step in model development is to obtain a potential energy expression 
arising from displacements of this basic structure. 

Our starting point is to note that the potential energy for two dimensional 
elasticity, involving only displacements ~(x, y), 77(1:, y) in the (:r, y) plane, may 
be expressed in terms of the integral 

(8) 

where A and v are the Lame constants. The first term invol ves the SCJl lare of the 
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measures of shear corresponding to the two independent modes of shear defor­
mation arising in the two dimensional context . Referring to the area increment 
as dA and to the two shear angles as a: and ,8 , within the accuracy mandated 
by the Order Assumption (8) may be repl aced by the equivalent expression 

(9) 

Fixing attention on the displaced surface 

Sz = { F(x,y , z) I (x,y ) E n} 

with z fixed, which is the image of 

Rz = { (x,y,z) I (x,y ) E n }, 

we approximate the potent ial energy of a thin lamina of thickness dz centered 
on this surface by (see (9)) 

d2z j~ ( (>. + v) dA2 + v 0:2 + v a:2 ) d:r dy, 

but we now measure dA , a: and f3 with reference to the surface Sz and the 
deformation function F(x, y, z ). 

We begin with the energy term corresponding to t he area increment. Sup­
pose that an elemental rectangular region Ro E Oz of area A(R0 ) = dx rly is 
transformed via F into a two-dimensional surface element R in S=. The area of 
this surface element may be approximated to first order (O'Neil , 1995) by 

A(R) ~ IIFx X Fvll dx dy. 

Using (5) we readily compu te 

i ( ( 7/x - Z (yx) ( (y - Z ( x ( xy - (y (yy ) -

( 1 + 7/y - Z (yy )( ( x - Z ( x (xx - Z (y (yx) ) 

- j ( (1 + ~x - Z ( xx ) ( (y - Z ( x ( xy - ( y ( yy)­

( ~y - Z ( xy) ( (x - Z ( x (xx - Z (y ( yx )) 

. \ 
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Applying the Order Assumption we may discard terms to obtain the simplified 
approximation 

F x X F y ;:::; - i (x - j (y + k ( 1 + ~x - Z ( xx + TJy - Z (yy). 

Then we have 

and then 

Thus we have 

Integrating this expression over n X [- h., h] and recognizing t hat odd powers 
of z integrated over [-h, h] yield zero, we obtain the co.rnpouent of potential 
energy due to local change of area in the form 

(>.+v) llh (( 1 ( " 2))2 ?( )2) 11A = --
2
- ~x + T)y + 2 ( x- + (y + z~ (xx + (yy rlz d:r dy 

n -h 

(10) 

Next we consider potential energy arising from the first shea r mock shown in 
(8). Measured relative to the deformed surface Sz = F(D=) t he angle of shear, 
a, is such that 

. Fx · Fy 
Sll10' = IJFxii iiFyjj' 

The numerator here is 

N(x, y , z ) = (1 +~X - z (xx) (~y- z (xy ) + (TJx - z (yx) (1 + ''lv- z (yy) 

+ ( (x - Z (x(:z:x) ( (y - Z ( x(xY - Z (y(yy), 

from which, following our rules, we retain only the approximation 

The denominator is 

/ , , ') 
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again, following our rules, we retain only 

~ ( 1 + ~x - Z (xx + ~ (x 
2

) X (1 + T)y - Z ( 1111 + ~ (y 
2

) 

~ 1 + ~x - Z ( (xx + (yy) + ~ ( (x 
2 + (y 

2
), 

and from this we have the approximation 

1 ( ) 1 ( 2 2) 
D( ) 

~ 1 - Ex + Z ( xx + (yy - -
2 

(x + (y · 
x, y,z 

When we multiply this reciprocal by our approximat ion for N (x, y, z), we see 
that all terms except the "1" in the expression for D(x, y, z ) are included in 
non-retained terms of the product, and so we have, assu ming the angle a to be 
small, 

a~ sina ~ N(x,y,z) ~ ~y+T)x-2z (xy+ (x (y· 

Again recognizing that odd powers of z integrate to zero over [- h, h], the po­
tential energy due to this shear mode can be approximately expressed as 

1 ( ( )2 4vh3 
2) 

= !1 vh Ev + TJx+(x(y +-
3
-(xy dxdy . (11) 

The angle {3 corresponds to shearing relative to the direct ions making angles 
of ~ with the x and y axes; otherwise the two shear modes are ident ical. (It can 
be shown that shearing relat ive to any two orthogonal axes can be expressed as 
a linear combination of these two.) Thus, in order to obtain the corresponding 
potential energy term V,a it is only necessary to rotate the x, y plane by this 
angle in the expression (11 ). T his results in 

1 ( ( 1 ( 2 2))2 vh
3 

( )2) V,a = 
11 

vh Ex - TJy + '2 ( x - ( 11 + T ( x:c- ( 1111 dxdy. (12) 

Adding the three potential energy components together, we define 
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r ( ( 1 2 2 )2 h
3 

( )2) = (.X + v) Jn h ~x +1Jy+2((x + (y) + 3 (xx+(yy d.xdy 

r ( 2 4vh
3 2) + Jn vh (~y + 1Jx + (x (y) + -

3
- (xy dx dy 

+ l (vh ( (,-"' + ~((,2 - (,') )' + "~3 

((., - (,)
2

) d'dy (13) 

This potential energy form may be viewed as defining the unforced , unstressed 
von Karman system in the static configuration; what we call the LD model here. 
We add stress terms in later sections of this paper. This model is developed 
in the dynamic, time varying context in Lagnese (1989) along with the partial 
differential equations of motion obtained by application of Hamilton's (or La­
grange's, or Green's) principle. We do not develop the static coun terpart of 
these equations here for reasons cited in Section 1. 

3. Cylindrical coordinates and buckling problems 

In this section we will convert the energy expression (13) into the form cor­
responding to the use of polar coordinates r, B in place of the independent 
variables x, y , and cylindrical coordinates(, p, ·1/J in place of the dependent vari­
ables(, ~' ry. This wi ll enable us to demonstrate the rotational symmetry of the 
model and will give us energy expressions facili tating the study of rotation all y 
symmetri c deflection states and angularly dependent bifurcations about those 
states. 

Introducing the polar coordinates 

r = Jx2 + y2 , B = tan-l ]!_ ' 
X 

we find that the Cartesian and cylindrical planar displacement components are 
related by 

~(r cos B, r sin B) = cos B p(r, B)- sin B'ljJ(r, B), 

ry(r cos B, r sin B) = sin B p(r, e)+ cosB cos B·!jJ(r, e). 

From this we obtain the planar divergence expression 

and we also compute that 
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resulting in an overall dilatation term 

(14) 

The combined shear energy terms 

( 8~ OTJ a( 8() 2 

ay +ax + axay 

are best treated together; their combined polar/cylindrical form is 

( ap 1 ( a·t/J ) 1 ( ( 8()
2 

1 ( 8()2))
2 

or - -:;: p + ()(} + 2 or - r 2 ()(} 

+ ( 8'1/J - ~ ('t/; - 8 p) + ~ 8( 8( ) 
2 

or r ()(} r or ()(} (1 5) 

The square of the Laplacian of ( in polar coordinates is 

and we also verify that 

Combining all of these we now obtain the potent ial energy in the form 

V = (>. + v) h - + .:__ p + - +- -1 ( (ap 1 ( a't/J ) 1 ((8()2 

!l or r ()() 2 OT 

r r . f a't/J 1 f , a P \ 1 a( a( \ 2 
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+-- - ----- r dr dfJ + vh --- p + -4vh
3 (1 EP( 1 8()2

) ;· ( (op 1 ( EJ'ljJ) 
3 r orofJ r 2 EJ() n EJr r ()() 

THEOREM 3.1 Let (o(r), po(r) ('1/J(r) = 0) be twice conti.nv.ously diffeTeni'lable 
and continuously differentiable functions , respectively, on the interval ro :S T :S 
r1 , ro 2 0 with 

o(o 
(o(ro) = 8r(O) = 0; p(ro) = 0 

minimizing, relative to other states independent of fJ, the Ham·iltonia.n 

Vj = V - fo 2

rr f((rJ , fJ)rdr, 

arising through augmentation of the poten.fial ener:r;y (16) with the iruhca.ted 
term, reflecting a constant transverse negative fo rce - f acf'in.g or1 the outeT 

bo11.ndary r = ro of the plate. Assuming ~ + ~Po + ~ ( 1~C,o ) 
2 

< 0 and Po (r) < 
0, ro < r :S r1, this state cannot be a stable equilibrium for the nonlineaT plate 
system if the positive thickness pnm.meter h ·is sufficiently small. 

Remark This result corresponds to th8 experimentall y famili ar fac t that a 
very thin disc-shaped plate supported at the center and subject to a uniform 
transverse force at the outer perimeter will buckle in the azimuthal , or "angu­
lar" direction rather th an undergo deforrn ation into a rotationall y sy mmetric 
roughly paraboloid configuration as would be predicted by the correspond ing 
linear (Kirchhoff) plate model. 
Proof 'vVe consider perturbations 

((r, fJ) = (o(r) + ( 1 (r) cos nfJ , p(r·, fJ) = Po(r·) + pJ(r·) cos nfJ, 

where n is a positive integer. We main tain ·tf;(r , fJ) = 0. Because t lt e plate 
bending terms in (16), (3 .1 ) are all multiplied by h3 whi le the "membrane" term s 
are mult iplied by h, it is only necessary to demonstrate that we can des ign the 
indicated perturbation in such a way t hat the por t ion of the potcnt inl energy 
corresponding to the membrane eilects is decreased from the value it assum es 
with the state (o(r), po(r) . 

F irst of all , the perturbed membrane dil atat ion term is 

127r JTI (ap ap 1 

(.A+v)h ~+~ cosn.fJ+ -(po + PJ cos n.fJ) + 
o ~ ~ ~ r 
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Because any odd power of cos ne or sin ne will integrate to 0 over the interval 
[0, 21r] we will ignore any such terms. Also, we regard (J and Pl as being very 
small and do not retain powers of these beyond the second (note that since t hese 
perturbation terms are entirely independent of (o and Po this does not violate 
the original ansatz upon which our model was based ; if we had prefaced ( 1 and 
Pl with "~:" parameters it would simply correspond to neglecting terms of order 
greater than or equal to 3 in ~:). With these conventions (17) reduces to 

( ' )h 12
11' jr1 

(opo 1 l (o(o) 2
)

2 

2(op1 P1) o(o 0(1 2 e 
1\ + v - + - po + - - + - + - -- cos n 

0 ro or r 2 Or or r OT or 

(
opo 1 1 (o(o) 2

) ((0(1) 2 
2 n2 2 . ? ) + Br +-;,Po+ 2 Br f); cos nB +-:;. (1 sm- nB rdrdB. (1 8) 

Next we consider the membrane shear terms. With the same conventions as 
indicated above the first of these, as shown in (1 6) , reduces to 

1
2

11' jr1 
( 1 o( o( ) 

2 

vh _::_p1 sinnB+-(~+~cosne)(-n(1 sinne) rdrdB. 
o ~ r r ~ ~ 

1
2

11' jr1 
( n o( n o(1 . ) 

2 

= vh --(PI+~ (1) sinnB- ---;:;- (I cosne smne rdrdB.(J9) 
o ro r ur r uT 

We now stipulate that 

o(o 
Pt(r) =- a;(r) (J(r) , ro < r < rJ. 

Then (19) becomes 

1211' jr1 n2 o( 2 
vh - (~c1 ) cos2 nBsin2 nBrdrdB. 

0 ro r ur 

Since this term is of fourth order in ( 1 it is not retained. 
Finally, the second shear term is 

(20) 

1
2
11'jr

1
(op0 1 1(o(o)2)

2 
(OP1 Pl)o(oo(l 2 (>. + v )h - - -Po + - - + 2 - - - -- cos nB 

0 ro or r 2 or or r OT OT 

(
opo 1 1 (o(0 )

2
) ((o(1 )

2 
2 n2 2 . 2 ) + Br- -;,Po+ 2 f); f); cos nB-; ( 1 sm nB rdrdB. (21) 

The terms with subscript 0 correspond to the unperturbed membrane en­
ergy. Omitting these, we combine terms in (18) and (21) and carry out some 
straightforward algebraic manipulation to obtain a sum of two terms, which we 
will list separately. The first of these is 

(
2

11' r 1 (opo 1 1 ro(o\ 2\ 2 nfOPl Pl\ o(oo(l ___ L fl 
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(
opo 1 1 (o(o)

2
) ((o(t)

2 
2 n2 2 2 ) + 8; +;Po+ 2 8r 8r cos nB +-;: (1 sin ne r dr d(). 

The second term is 

vh 1
2

~ 1~
1 

( e;o + ~ ( ~~) 2 

+ ~Po) ( ( ~~ ) 2 
cos

2 
ne + ~ 2 

(f sin2 
nB) 

(
opo 1 (o(o)

2 
1 ) ((o(1 )

2 
2 n2 2 . 2 ) + - + - - - -Po - cos nO - - ( sm nO 

or 2 or r or r l 

= vh 12~ irl (4 opi o(o o(I cos2 ne + 2 ( opo + ~ ( o(o) 2) 
0 ro or or or or 2 or 

(oG)2 2 n2 ) 8r cos2 ne +;Po-;: (? sin2 nB r dr dB 

vh12~1rl (-4~(o(o(J) o(o o(l cos2n8+2(opo +~(o(o)2) 
0 ro or or or or or 2 or 

(~~) 
2 

cos
2 nB + ~ p0 ~

2 

(? sin
2 nB) r dr dB. (22) 

The squared trigonometric terms integrate, of course, to 1r. Since we have 

assumed that both ~+~Po+~ ( ~) 
2 

and p0 are negative, the terms involving 

n 2 in (3.) and (22) are negative for a perturbation (I(T) > 0, r 0 < r :::; r 1 . 

Keeping (I and PI, related to (I by our earlier assumption, both fixed, it follows 
that the integrals (3.) and (22) are both negative if n is sufficiently large. If 
we then go back to (16) and replace (I and p1 by E ( 1 and E p1 we see that the 
the sum of (3.) and (22) correspond to the second derivative of the membrane 
potential energy with respect to E based on the state (o, Po; the first derivative 
involves only with cos ne and sin ne to the first power. These integrate to zero, 
showing that the first derivative of the membrane potential energy with respect 
to E is zero. Then, reducing h until the change in the membrane potential energy 
dominates any change in the terms multiplied by h3 in (16) we conclude that 
the potential energy is decreased in the direction of a perturbation such as we 
have described, relative to its value at E = 0, i.e., relative to the state (0 , p0 , 

for small positive values of E. Since the applied transverse force f is constant, 
the second term appearing in the Lagrangian (3.1) does not vary with c; thus 
the decrease in the Lagrangian is the same as that in the potential energy and 
the proof of the theorem is complete. • 

It seems likely that we cannot escape the requirement that n should be 
sufficiently large because no decrease in the potential energy /Lagrangian is to 
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of n simply amounts to tilting the plate, with some increase in lJending near the 
origin r = 0. It is interesting, however , to ask if we always obta in the energy 
decrease we have just established in the case n = 2 for suffici ently sma ll h. 

We consider, for the purpose of providing a computational example, the 
deformation of a nonlinear annular plate with inner boundary at To = 0.1 and 
outer boundary at r1 = 1.1 . A constant in-plane force g is Hpplied around the 
outer boundary. Clamped boundary condi tions are enforced around t.he inner 
boundary while the outer boundary is free. The potential energy functiona l 
given in (16) is used with ·tj; = 0, p = p(r-, e), and ( = ((r-, e) . For ease the 
Lame constants are taken to be 1\ = nn = 10 and t he plate is assumed to 
be of uniform thickness h = 0.2. Designat ing the form obtained from (16) by 
V = V(p , () , we seek to minimize the Lagrangian 

L(p, () = V(p, () - (!, p) 

over the class of deformations of the form 

p(1·, e) = po(r) + PI(r)cosB 

and 

((r,e) = (o(r) + (1 (r)cose 

with the clamped boundary condition enforced by means of penalization. The 
interval (0.1, 1.1) is subdivided in to four subintervals of equal length. Cubi c 
b-splines spanned by seven basis functions bi ( 1·) for i = 1 , ... 7 are used as radial 
basis functions. Basis functions for the two dimensional annul ar domain are 
then obtained as a tensor product of the cubic b-spline radial basis functions 
and the theta-dependent fu nctions defined on (0, 2n) consisti ng of d1 (e) = 1 and 
d2(8) =cos( e). By representing p(r, 8) and ((T, e) in the form of arbitrary linear 
combinations of these two dimensional basis functions and appropriately substi­
tuting these forms into the Lagrangian L(p, (),one obtains an objective function 
for a finite dimensional minimization problem, i.e., to find the coeffi cients as­
sociated with p(r, e) and ((T, e) for which the potential energy is minimized. 
In our work we used a Levenburg - Marquardt minimization method to set a 
minimizing direction for each iteration step. The result of the com putation is 
depicted in Fig. 1 for the case in which g = -0.25. Jt should be noted that we 
have plotted the independent variables r and B on a rectangular grid here. 

4. Inclusion of membrane structures 

For the purposes of this paper a membrane is a two dimensional elasti c structure, 
subject to the standard linear stress-strain relations of two dimensional linear 
elasticity, but embedded in three dimensional space. Jn using t he term two 
dimensional we mean, of course, that the physical structure being modelled is 
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is negligible. The membranes under discussion are coextensive with the plate 
domain 0 introduced in Section 1, forming a layer of the plate located, when 
the plate is in its unforced equilibrium configuration, parallel to the x, y plane 
at z = z or some other specified constant value of z. The embedding is assumed 
"perfect" in that there is no "slipping" between the membrane and the plate 
substrate. In mathematical terms this means that membrane deformations are 
described using the same displacement functions ~(x, y), ry(x, y), ((x, y) as we 
have hitherto used for the plate itself, via (4) with z = z. 

For the first instance we consider an isot ropic membrane with Lame con­
stants 5. and v. To avoid the minor complication of having to include first 
powers of z in the potential energy expression we will consider only situations 
symmetric with respect to the elastic axis here. Thus we assume we have a 
single membrane layer of double strength (i .e., with A and 11 replaced by 2 A 
and 2 11, respectively, located at z = z = 0 or "twinned" layers consisting of 
identical single strength membranes located at z = ±z i- 0). We wi ll maintain 
this convention in all subsequent cases considered in this paper as well. Using 
the fixed value z = z and omitting the integration with respect to z, the same 
steps as led to (13) as a sum of (10), (11) and (12) lead us to assign to the 
"twinned" membranes under discussion the potential energy 

V = (). + V) l ( ( ~x + 'T/y + ~ ( (~ + (;)) 
2 

+ i 2 
( (xx + (yy) 

2
) dx dy 

+v l u~y + 'T/x + (x(y)
2 

+ 4 z2 (~y) dx dy 

+v l ((~x - 'T/y + ~((~ - (;)) 2 +z2 ((xx- (yy)
2

) dxdy. (23) 

For a plate with membranes of this type, embedded as indicated earlier, the net 
potential energy form is then V + V, with Vas in (13) and Vas here in (23). 
Multiple embedded membranes will result in energy forms V + ~. + V2 + · · ·, 
etc. 

Next we envision a membrane consisting of a film with negligible elastic 
properties in which are embedded a large number of elast ic filam ents, or strips. 
In general we will suppose t he location coordinates and orientation angles to be 
random variables with particular distributions. For our fi rst case study we will 
suppose that the filaments have uniform spat ial density but the orientation angle 
()is a random variable in the interval [0, 1r) with probabili ty density d(()) defined 
on that interval (the angle() is equivalent to()+ 1r for this purpose because the 
latter orientation just involves end for end reversal of the filam ent). We wi ll 
suppose the filaments in question have equilibrium length 6.£ which is short 
with respect to distances over which the partial derivatives of the displacement 
components vary appreciably and that they have modulus of elasticity E and 
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displacement functions ~(x, y), ry(x, y), ((x, y) the potential energy may be seen 
to be 

(24) 

where 

M= (~ ~) , 4?= (~~~;) (25) 

are the matrix in (7) and the unit orientation vector for the filament, respec­
tively. Clearly, then, we have 

4?* M 4? = m cos2 e + (p + q) sine cos e + n sin2 e. 

If we assume the filaments are strips whose thickness in the transverse direction 
of the membrane is fixed, then the energy (24) can be rewritten as 

E; fJa (m2 cos4 e + (p + q) 2 sin2 ecos2 e + n2 sin4 e 

+2m(p + q) cos3 e sine+ 2n(p + q) cos e sin3 e + 2mn cos2 e sin2 e) ' 

where fJa = .5a 6.£ is the two-dimensional surface area of the strip filament 
0: 

within the membrane and a is an appropriate constant of proportionality. The 
expected value of this energy for a given angular density d(e) is then 

w fJa r (m2 cos4 e+(p+q)2 sin2 ecos2 e+n2 sin4 e 
2 lo 
+2m(p + q) cos3 esine + 2n(p + q) cos e sin3 e + 2mncos2 esin2 e) d(e) de. (26) 

If we suppose that the mean fractional membrane area occupied by strip ele­
ments is /3, then as fJa ---+ 0 and the number of strip fil aments tends to infinity 
in inverse proportion, the potential energy of the membrane composed of all of 
these strip filaments tends to 

w/3 r(···)dxdy 
2 ln (27) 

where (- · ·) is an abbreviation for the integral in (26). This integral cannot, in 
general, be further simplified without more information about d(e) but some 
special cases merit more detailed treatment. In the case of the constant angular 
density d( e) = ~ the terms involving cos3 e sin e and cos e sin3 e are readily seen 
to be odd functions with respect to () = ~ and those terms integrate to zero. 
Then, (27) becomes 

Ea/3 { {" f ... 2 ___ 4 1l , r . '~ · ~" ?,-, ? • d n 
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+2mncos2 Bsin2 B) d(B) dfJdx dy (28) 

Defining i/ = ~ and invoking our "twinning conventi on" the membrane po­
tential energy becomes 

V = ~ l2v (m + n) 2 + f/ (m- ni + f/ (p + q) 2 clx ely. (29) 

Noting the forms of m, n, p and q, a short computation shows tha t the same 
process as led to (10) , (1 1) and (1 2) again yields 1/ in the form corresponding Lo 
(23) but with 5, and v both replaced by f/. Th e membrane is isotropic and is of 
the type consistent with what is call ed the mriconstant theory, i. e. , the original 
N avier theory, in the literature on the history of th e strength of materials, 
Timoshenko (1983). 

Filament distributions other th an the uniform one d(B) = ~ lead, in general, 
but not always, to anisotropic membranes. A very special case is d = 6o0 , the 
Dirac distribution with point support 80 . Replacing d( B) by 6o0 in (28) we 
obtain t he membrane energy form 

Voo = w(J l (m2 cos4 Bo + (p + q) 2 siu 2 Bo cos2 Bo + n 2 sin 4 fJ0 + 

+ 2mn cos2 Bo sin2 80 + 2m(p + q) cos3 fJ0 sin 80 + 2n(p + q) sin3 80 cos fJ0 ) dx dy 

= w (J l (m cos2 Bo + n sin2 Bo + (p + q) cos Bo sin Bo)
2 

dx dy. (30) 

Application of the twinning convention requires in addit ion tha t in this formula 
the integrand be repl aced by the average of its values for z = ±zo, where [zo[ is 
the distance between the membrane and the neutral surface of the pl a te. We do 
not carry out this process in detail here but we will do so in two special cases 
to be discussed in the next sec tion. 

Different specifications of (constant) 80 lead, of course, to different formulae 
(30) and its averaged counterpart, as described in the preceding paragraph. For 
example, with Bo = 0 we have cos 0 = I , sin 0 = 0 and we obtain 

w(J r ( ( ] 2) ( l 2)) Vo = -2- J n ( x - zo ( xx + 2 ( (x) + (x + Z () (xx + 2 ( (x ) ci:I: dy 

_ r f 1 . 
('J 1 \ 
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In general, the orientation angle eo and p = r:njj can be a llowed to vary with 
x, y: 

eo= Bo(x, y), f.l· = p.(;r, y). 

We will refer to a membrane of t hi s type, wit h potentia l energy (:30), as a 
monotropic membrane, uniform if e0 and I '· are both constant, nonu11iform oth­
erwise. As di scussed more fully in Russell ( 1995) and Russell ( I 997) <J rn ernbrane 
of thi s type can be fu lly specifi ed by giviug z0 a nd the " filarm~ nt , fiel d'' 

F: ( ) - ( ' ) ( cos eo ( :r ' y) ) 
0 X, Y - IL X, Y . () ( ) . 

Sill 0 X, Y 

'vVe can also consider "screen type" membra nes corresponding t.o the superposi­
tion of two or more fil ament fi elds corresponding to .G elds F(J,l (:r, y), F(1,2(.r, y), 
Fo ,3(x, y) , ... , etc. If the num ber of fie lds is two, f.ll (:r, y) = f1.2 (x, y) and 
B2(x , y) = 81 (x , y) ±~'we have what we might call an "orthotropi c" membrane 
(it is not isoLropic) . l n t he case of three or more filament fields with equ al 
fLk( X, y) and orientat ion angles eO,k Ulliforrnly Spaced in tlH:~ periodi c interval 
obtained from [0, n] by iden tifyi ng 1r wit h 0 it can be shown Lha t the resul t ing 
membrane is isotropic and has a potent ia l energy expression equ ivalent. t.o 1f 

discussed following (29). 

5. A formation problem for an annular/disk plate 

Let us think of the fi la ments introduced in Section 4 as rni croacLUators of 
monotropic type, generaLing stresses in par t icular direct ions in response to ex­
ternal control signals. For a given fi eld of such actuato rs wit h dens ity factor 
1• = Jt(x , y) and orientation angle Bo = (:Jo(x , y), as introduced in Sect ion 4, we 
wi ll suppose that the ex ternal control ·u. = u(x, y) has a linea r effpct on the 
equili brium lengt h of the actuator fi lament.. T hen, if n is appropriaLely normal­
ized, the effect of 'U is to change th e equi librium length Of t J1 e fiJarn e11t from 
6.£ to (1 + 1t)6.€. Assuming the elastic properti es of t he actuator and substra te 
mat erials are not changed by applicat ion of t he conlrol, t he potenli a l energy of 
a double strength actuator field may be seen to be (with a qualifi cat iou to be 
described in the paragraph to fo llow) 

r ? 
Vu = Jn fL (mcos2 Bo +nsiu2 eo +(p+ q) cos 80 sine0 -vt d:rrly , (32) 

where m , n , p, q are as in (25) wiLh M as in (7) aud it is understood that. p. a nd 
eo may depend on x, y as indi cated prev iously. 

Actuators designed Lo induce exclusively in-pl a ne stresses will JJ ornmll y be 
located at the neutral surface z = 0; in thi s case tll e formul a (3:2) requires no 
modification. Actuators designed to induce ben ding stresses. or ot lw r stresses 
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to occur as twinned, or paired, membranes, as described in Section 4, off the 
neutral surface at z = ±zo, zo E (0, h]. Often, in such paired sit uations , we 
also assume that the values of the control u, for given coordinates (x , y) , take 
different signs; i.e., we suppose u(x, y) is associated with zo and --ub(x, y) is 
associated wit h -zo . In t hese circumstances t he integrand of (32) is replaced by 
the average of its values for z = z0 and z = -z0 . Using the forms of m, n, p, q 
from (25) and (7) we can see that the modified form of (32) is then 

Vu= 

l f.L [ ( (~x + ~((x) 2 ) cos
2 eo+ (7Jy + ~((y) 2 ) sin

2 eo 

+ (~y + 1Jx + (x(y) sin eo cos eo)
2 

(zo ( (xx cos2 eo+ (yy sin2 eo+ 2(xy cos eo sin eo) + u) 
2

] dx dy. (33) 

Our specific interest for this article lies with a generally annular plate cor­
responding to the domain 

n = { (x,y) 1 ro :s r :s r1 } 

with 0 ::; ro < r1 ; if ro = 0 we have a disk, of course. Our goal is to describe 
actuator arrays, or "screens", suitable to the purpose of reforming the plate into 
a bowl-shaped, rotationally symmetric, shell . Objectives of th is type may be 
expected to have some importance in connectio with special purpose, "non­
articulated" valves, especially in medical applications such as artificial hearts 
where articulated structures run the risk of causing damage to certain blood 
components. We will describe two types of actuator arrays that appear to be 
suitable for formation objectives of this sort . 

For the first actuator array to be considered we suppose that we have ra­
dially oriented bending actuators located at z = ±h together with azimut hally 
(or "circumferentially") oriented, actuators located at z = 0. We will suppose 
that the density parameter f.L t akes on equal constant values for the two actua­
tor families; thus the actuators a re uniformly and equally distributed over the 
domain n. The corresponding control variables will be designated by u and v, 
respectively. In the first instance we have eo (x, y) = eo (r, e) = e while in the 
second case we have e0 (x,y) = e0 (r ,e) = e + i· Since cos(e + i) =- sine and 
sin(e + i) = cose, the two actuator potential energy expressions become 
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and 

Vv = f-l In ( (~x + ~((x) 2 ) sin2 e + (T/y + ~((y) 2 ) cos2 e 

-(~y + T/x + (x(y) cosesine- v) 2 
dxdy. (35) 

In order to model the plate with actuation of the type we have been dis­
cussing, it is necessary to add the energy forms (34) and (35) to the energy 
form (16) developed earlier. However, our initial interest lies in the strictly 
radial situation, wherein 'ljJ = 0 and (, p, u and v depend only on the radial 
coordinate r. If we make the changes so indicated in (16), (34) and (35), omit 
the factor 2n resulting from integration with respect to e and drop the n2 and 
v2 terms (since these are assumed constant and have no effect on the location 
or value of the minimum potential energy) we obtain the fo llowing potential 
energy expression for the plate under actuation via u and v: 

+v jrl (h (op - ~ + ~ (o()2)2 + h3 (o2(- ~ o()2) rdr 
ro or r 2 or 3 or2 r or 

(36) 

(37) 

(38) 

Here the two lines ending with the label (36) constitute the elastic potential 
energy for the substrate plate, the line labeled (37) is the elastic potential energy 
for the actuator membrane structure, and the line labeled (38) is what we refer 
to as the control potential. The presence of (37) corresponds to what we have 
elsewhere (Russell, 1995, 1997) referred to as the actuator stiffening effect. 

Why are two actuator families required? In principle the radial, bending 
actuators may be shown to be sufficient to produced the desired re-formation of 
the plate into the desired shell configuration. However, if this type of actuator is 
used alone, the arguments of Section 3 can be repeated to show , in comparable 
circumstances, that the plate will eventually buckle in the azimuthal direction as 
described in that section. (Under these circumstances, of course, the radial form 
(36) - (38) would not be adequate to describe all that is going on; for this we 
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One would need to introduce active control strategies, with c:onr.rols of the forrn 
u(r, B, t), to st abilize the system against such an eventuality. This w01 dd greatly 
complicate the control process and, in a ll li kelihood, clec:n' ase re li abi li ty. 

The azimuthal control v is sufficient to bold the plate in the desired shell 
configuration but inadequate to ini t iate t he re-form at ion process . fn fact, such 
controls cannot determiue whether the re-form ed pl a. Le/ shcll will lw concave 
upward or concave downward; the bending control 11. is needed at thP outset in 
order to determine the development in this respect. 

Now we consider a different actuator configuratiOJJ. We suppos<' that only 
actuators oriented in the azimuthal direction are used bu L they arc deployed 
in two layers at z = zo = h and z = -zo = - h. T he control values for the 
two layers are different but not of opposite sign, iu general; we will denote the 
control used at z = h by v + w and the control used ot z = - h by u- w. Jn 
both cases we have B0 (x, y) = B0 ('r, ()) = () + -!}. The relevant actuator potential 
energy expression then becomes ~ 

~lIn [ ( ( ~x + ~((x) 2 ) si n
2 B + ( 1]y + ~((y) 2 ) cos

2 
() 

+ (~y + 1Jx + (x(y) sin B cos()- v)
2 

(h(Cxx sin2 B + (yy cos2 B + 2(xy cos BsinB) + w) 2
] d:rrly. 

Then, going over to the rota tionally symmetri c case aga in wit h polar coordinates 
and omitting the v2 , and w2 terms for the same reasons as cited earli er in 
connection with u and v, we find that we have 

(·JO) 

l TJ (h 8( P ) +2{l - -w - -v rdr. 
ro r fJT 7' 

The second term in ( 40) is the elastic potential energy for the actuator stntctm e 
in this configuration and (41) is the control potenti c1l. One of the advantages 
associated with this actuator configuration is that there is less actuat.or stiff­
ening effect in the radial direction than there is wit h t he earli er configuration 
involving the bending actuators. This ind icates t he li kelihood that this second 
configuration may be superior to the first for formation objectives of t he type 
we have described. 

6. Computational experience 

\Ve have carried out extensive numerical computations connected with the for-
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section we wi ll present some of the resul ts of tlt ese computat ions in graphi c 
form . 

All of our computations have been carril~d out within th e varia t iona l fr ame­
work described in this paper. Except as otl1erwi se indi cated we lmve studied 
stri ct ly rad ial situation s and, within t hat context , we lmve used qundrat.ic spline 
finite element representations of t he laten1l def-l ection ( and 1 in car splin e finite 
element representations of t he in-pl ane displacement p. Our proced m e has been 
to solve the linear (Kirchhoff) system first and then use a Newton-t.ype proce­
dure to correct for t he nonlinear terms present in the LD (i.e., the full von 
Karman) system . The graphics presented here a rc based on t he use of ten finite 
elements in ten equal subintervals along the radial ax is from 1·0 = 0 to r 1 = J 
with three additional points added in the in ter ior of each of th ese~ subinterva ls 
for plotting purposes . These interi or p oints are also used for approx int ~t te evalu­
ation, vi a Simpson's rule, of some integrals involvin g produ cts of finit e elements 
or their derivatives in t.he computa ti ons le8 ding to lh esc plots. 

The most common ty pe of buckli ng 8ssociat.ed with a d isk- slwped LD pl ate 
is strictly radia l buckling resu lting from appli cat ion of an in-plam• fmce in an 
inward (i. e., negative) direction a long t.he outer boundary. [n Figs . 2 and 3 
we show the finite ampli t ude cha racter of t.hi s ty pe of buckling phenomenon 
as it nrises in connect.ion with the LD model. For the compu tat ions whi ch 
resul ted in Fig. 2 t he plate t hi ckness h is set at .I. .A very Slltnll negat ive 
value of J, corresponding to t he lateral force, is used to sta rt t lw h1tckling in 
the desired direction . Then, different values of the boundary fon:c . ,r;, are used , 
retaining the same value of f. Corresponding to y = - 0.03, - 0.06, - 0.09 we 
have (deflections labe11 ecl z l , z2, z3, respectively, with correspondi11 g in-plane 
di splacements p labelled rl , r2, r3 . Tn each case t he label li es clin:c~c:t l y above 
t he curve in question on the gr8 ph. 

In the next set of fi gures we di spl ay the results of some fo rma t ion studi es 
using controls w, vas in the Lagrangia.n/ f-la rniltoni an express ion (41) and de­
scribed prior to that in Section 5. In each case a small posit ive va Inc of w 
was used to ensm e that bending would take pl 8ce in the negat ive ( d irection. 
Then, success ively larger values of v were used to obtain t he ( deflect ion cm ves 
labelled z l, z2 , z3. The corresponding in-plane di splacement fun ctions p are 
la belled rl, r 2, r3; in each case the l ctbelli(~S direc tl y a bove t he cttrve t.o whi ch 
it a ppli es . It should be noted that the (curves are not plotted over t he in terval 
[ro , Tt] ( = [0, 1] in all these cases ), but rather over the in Lerva l [0, I + p(l ) ] (p(l) 
is negative in all these cases) resulting from the in-pl ane d isplacement primarily 
induced by the in-pl ane control v. Fig. 4 shows the results obtained in the 
limiting case where both v and w have support confined to the outer boundary 
T = r 1 = 1. Fig. 5 shows corresponding resul ts but with both v and w uniformly 
di stributed over the interval [0, 1]; the integrals in this case con es pond to t he 
point densities of the con esponding controls used to obtain the plots of Fig. LJ. 
Finall y, the plots of Fig. 6 were obtained with v and w dt nsit.i es of t.he form 
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Figure 3. Buckling for h = 0.05 
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Figure 5. ( deflections and p displacements for uniformlv distributed controls 
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Tn future work we hope to carry out optimi zation studi es, pos ing n des ired 
target deflection profile and computing optirnal controls relative to appropri ate 
"fit-to-data" criteria. 



A la rge di splacem ent fr a mework fo r bucklin g a nd fo rmat ion s t ud ies of elas t ic plates 609 

References 

BENABDALLAH, AssrA and LASIECKA , IRENA (2000 ) Exponenti a l decay rates 
for a full von Karman system of dynami c t hermoelasticity. To appear in 
J. Diff. Eqns .. 

CIARLET, PH. and R.ABIER, P. (1982) Les equations de von K arman. Springer­
Verlag, New York . 

LAGNESE , J . (1989 ) Boundary Stabili za tion of Thin Pla tes . SIAM St·ud. Appl. 
Math., 10 , SIAM Pubs., Philadelphia . 

LAGNESE , J . and J.-1. , LIONS (1988 ) Modelling, Analys·is and Contml of Th in 
Plates. Masson, Paris. 

MINDLIN , R..D. (1951) Influence of rotatory inert ia and shear on flex ural mo­
tions of isotropic elasti c plates . J. Appl. M ech., 18, 31-38. 

O 'NEIL, PETER V . (1995) Advanced Engineer·ing Mathematics. Llth Ed., PWS 
Publishing Co. , Boston. 

RussELL , D . L. ( 1995) A sta tic formation theory for act ive elast ic materi als. 
Proceedings of the IFIP Conference on Control of Distrib1Lted Param eter 
Systems, Laredo, Spain, 1994 ; Marcel Dekker , Juc., New York , 

RussELL, D .L. (1997) Approximate and exact form ability of two-d imensional 
elasti c structures; complete and incomplete actuator famili es. ln: Opt·i­
mization M ethods in Partial Diff erential Equations, S. Cox, T. Lasiecka., 
Eels., Vol. 209 of Contemporary Mathematics , A mer . .!\1a.tb . Soc. , Provi­
dence, R.I. 

TIMOSHENKO, S.P. (1983) History of the Strength of Materials. Dover Publi ­
cations, New York, 




