Control and Cybernetics
vol.28 (1999) No. 3

A large displacement framework for buckling and
formation studies of elastic plates'

by
David L. Russell and Luther W. White

Department of Mathematics,
Virginia Polytechnic Institute and State University,
Blacksburg, Virginia 24061-0123

Department of Mathematics,
University of Oklahoma, Norman,
Norman, OK 73019

Abstract: We study the problem of changing the geometric con-
figuration of an elastic plate by means of attached and embedded
actuators. For this purpose we use the so-called “full” von Karman
plate equations, incorporating geometric nonlinearities, and we de-
velop a model for internal actuation based on the same principles
and assumptions. We show that the von Karman model predicts
azimuthal buckling for a thin, centrally supported disk-shaped plate
with uniform transverse boundary loading and we indicate that be-
havior of this type poses a significant problem in attempting re-
formation of the elastic plate into a rotationally symmetric, bowl-
shaped shell, a problem of some importance in projected applica-
tions. We study two different systems of actuator deployment and
indicate why one of them appears to deal with this problem more
effectively than the other.

Keywords: formation, elasticity, elastic plate, von Karman equa-
tions.

1. Introduction and geometric setting

The first goal of the present work is to provide an alternate - we feel more
elementary - derivation of the so-called “full” von Karman plate system (see,
e.g. Lagnese, 1989, Lagnese and Lions, 1988, Benabdallah and Lasiecka, 2000)
in the static configuration. The derivation, as presented here, relies on a rigorous
order assumption relating the magnitudes of admitted in-plane displacements
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to the squares of the magnitudes of the admitted transverse displacements,
replacing the somewhat arcane assumptions of finite elasticity and allowing us
to provide better explanations for the terms occurring in these equations than
are ordinarily available. In many engineering studies the model analysed here
is referred to as the large deflection model; for brevity we will refer to it as the
LD (plate) model.

We do not specialize to the system usually identified as “the” von Kar-
man plate because that provides no special advantage in what we do here and
because we do wish to admit the possibility of clamped boundary conditions.
Additionally, we at all times retain the potential energy, or variational form, of
the system, whose minimization yields the equilibrium state, rather than pro-
ceeding to the partial differential equations constituting necessary conditions
for a minimum. This has the advantage of allowing us to work with lower order
derivatives than those occurring in the partial differential equations. Restriction
to the variational framework also allows us to dispense with a listing. or intricate
parametrization of all of the possibilities for natural boundary conditions. Since
the commonly used finite element approximation techniques almost always take
the energy form as their point of departure, we feel the gains in this approach
outweigh the losses.

Our objective is to study a number of developments relative to the LD model.
One of these is finite amplitude buckling, a necessarily nonlinear phenomenon.
This is done in the context of a plate of annular, or disk-shaped, cross section;
we consider azimuthally sinusoidal, or near sinusoidal, buckling resulting from
constant transverse forces applied to the outer boundary.

Many buckling phenomena associated with the LD model can be explained
by the fact that, as the thickness of the plate tends to zero, the equations in-
creasingly model an elastic membrane, resistant to in-plane stresses but with
vanishing resistance to bending. In fact it is the presence of the membrane en-
ergy terms in the potential energy expression which distinguishes the LD model
from the classical Kirchhoff plate model (Lagnese, 1989). It is mathematically
natural, therefore, and very pertinent in the light of the developing advanced
materials technology, to consider variations of the LD model explicitly allowing
for the possible presence of a finite number of thin membranes, structures re-
sistant to selected in-plane stresses only, distinct from the substrate plate but
embedded in it or forming one or both of its transverse boundary surfaces. In
general such an augmented LD model is not isotropic but it includes a subclass
of isotropic models with embedded membranes resistant to in-plane dilatation
and shear.

Some of the membranes described in the preceding paragraph incorporate, in
the formation studies presented later in the paper, actuators by means of which
formative stresses can be introduced into the plate. Our specific objective is to
study the re-formation of an annular, or disk-shaped, plate into a bowl-shaped
shell, a process important in the development of many “smart” structures, in-
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We will see that the study of this formation question in the LD plate context,
which we feel to be the minimally adequate context short of a full-blown elastic
shell study, which we do not attempt here, inevitably indicates the buckling
studies indicated in the preceding paragraph.

To develop the geometric setting of the model, we consider an elastic plate
of uniform thickness occupying a region R = {(z,y,2) € Q} x [~h,h], where
Q is a bounded domain in R? with smooth boundary T'. In equilibrium, the
neutral plane of the plate coincides with the set Rg = € x {0} in the plane
z = 0. In a general admitted deformation the set Ry undergoes in-plane as well
as transverse displacements; these are described in terms of the vector function
Fo : R? — R3 given for (z,y) € Q by

z+§(x,y)
Fo(z,y) = |y +n(z,y) | . (1)
C(a,y)

In the present article we assume that &, n and ¢ have whatever smoothness is
required to admit the partial derivatives introduced. Existence and regularity
results for the von Karman system, which require more rigorous specification of
the state space of admitted displacements, may be found in, e.g.. Ciarlet and
Rabier (1982).

Throughout our discussion we use the subseript notation, e.g., F,, and the
equivalent partial derivative symbol, e.g., % interchangeably; the first saves
space while the second is clearer in certain situations, particularly when applied
to variables which are already subscripted. Thus we have

1+6;
3]
a—Fg = T . (2)
£
Cx
and
a &B‘
—F, = . 3
dy 0 1 + 1y (3)
Cy

With the Kirchhoff assumption, to the effect that lines perpendicular to the
neutral surface z = 0 in unforced equilibrium remain lines perpendicular to the
displaced neutral surface under the admitted displacements, there is no shearing
deformation between displaced two dimensional layers of the plate parallel to
the neutral surface. This is one of the features distinguishing the LD model
under present consideration from the Mindlin - Timoshenko, Mindlin (1951),
for example.

The underlying analytical assumption operative in our model derivation is
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Order Assumption: The in-plane (horizontal) displacements & and n and
their partial derivatives are of the same order of magnilude as the squares of
the transverse displacement ( and its partial derivatives.

Remark: In the case of totally free boundary conditions the order assump-
tion requires modification to a statement about displacements modulo uniform
translations and rotations.

Proceeding now to general points in R, not necessarily on the neutral surface,
the displacement of the point (z,y,0) € Ry indicated by (1) results in the point
X = (z,9,z) € R being transferred to the displaced point whose coordinates,
within the degree of accuracy mandated by the Order Assumption, are given by

z+E&(z,y) — 26(2,9)
F(z,y,2) =X +E(z,9,2) = | y+nle,y) —2Gy) |. (4)
z2+¢(@y) - 5(¢° +6°)

For the partial derivatives of F' with respect to z and y we then have

b 1+§z Z(z F:) £y = 3(:9—
—F = ZC:: i F = 141, ‘ZCJJ s 3° (5)

b C:c—im('a’x +G°)

The Order Assumption is motivated, of course, by the realization that the
change, due to an admitted displacement, in the length of a short material line
segment parallel to the neutral surface, is affected in a first order manner by
the partial derivatives &;, £,, 7, and 7, whereas the effect arising from the
transverse displacement ((z, y) is proportional to 1 —cosv, where v is the angle
of inclination of the surface z = ((z,y), and thus to the square of the norm of
the gradient of ¢, provided that gradient remains small. To explore the details of
this length change, and for later use in formulae related to inclusion of layers of
monotropic actuators, we consider two material points with coordinates (2., z)
and (z + Az,y + Ay, z) in the nominal equilibrium configuration. We assume
Az and Ay are small relative to distances over which partial derivatives of the
displacement components change appreciably. Under a general displacement, as
described previously, these two points are carried, to first order in Az, Ay and
[[V¢]l, into the image points

(x +&(z,y) — = %(:Ln y), y+n(a,y) -z %(-‘v-y), z+ C(a:..y))

and
19, 9] d
(I+£(ﬂ:,y) + é(:ﬂ,y)&:{;—f— ég(sr,y) Ay - za_i(“:J“ Az,y + Ay) ,
0n: M, at, . o
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+ %(x, y) Az + g—;(ar,y) Ay) .

z+((z,y) 7

We let Al = \/Az? + Ay? denote the original distance between the two points
in question. Suppressing (z,y) as an argument for notational brevity, the dis-
tance between the displaced points is, again to first order in Az, Ay and z, the
norm of the vector

A:-';+—§A$+ > Dy — —%Aa.,. i“—Ayz.

ax&y
Ay+g’lA3:+-aﬂ&J~m5;Az~ Ty‘»‘&yz, (6)

az 25 N -8 o Ay

A complicated, but straightforward computation shows that if we discard prod-
ucts of derivatives of £ with derivatives of n and products of derivatives of either
of these with derivatives of (, as prescribed by the Order Assumption, and if we
use the standard approximation v1 +a = 1+ § valid for small a, we obtain
for the norm of (6) the approximate expression

Al +ALP"M P
where M is the matrix
fx—Cm!H‘%Cf Ey_‘g:zyz"i'%c.rgy
M = : (7)
e = Cay 2+ %Cz’:y My = Gy 2 + %Cyz

If we amend the Order Assumption by further supposing that ¢ and its
partial derivatives should be of the same order as the thickness, 2/, of the plate,
then, since —h < z < h, we see that all terms in the entries of the matrix
M are of the same order. This provides an additional rationale for the Order
Assumption and an indication of the magnitude of displacements for which the
L.D model, based on the this assumption, is likely to be satisfactory.

2. The energy expression for the matrix plate

As we have indicated in Section 1, we envision the membrane components of
the composite as being embedded in a matrix, or substrate, plate structure.
The first step in model development is to obtain a potential energy expression
arising from displacements of this basic structure.

Our starting point is to note that the potential energy for two dimensional
elasticity, involving only displacements &(x,y), n(x,y) in the (x,y) plane, may
be expressed in terms of the integral

1

3 /n ((z\ +v) (& + r}y)g +v (& + ?;,,)2 +v (& - :r;y)z) dady, (8)

where A and v are the Lamé constants. The first term involves the square of the
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measures of shear corresponding to the two independent modes of shear defor-
mation arising in the two dimensional context. Referring to the area increment
as dA and to the two shear angles as a and 3, within the accuracy mandated
by the Order Assumption (8) may be replaced by the equivalent expression

%f ((HV) dA3+ua-"‘+u32) dz dy. 9)
)

Fixing attention on the displaced surface
S: ={F(z,v,2) | (z,9) € Q}

with z fixed, which is the image of
R:={(z,9,2) | (,9) € Q},

we approximate the potential energy of a thin lamina of thickness dz centered
on this surface by (see (9))

dz

((/\ +v)dA* +va® +v a2) da dy,
2 Ja

but we now measure dA, o and @ with reference to the surface S. and the
deformation function F(z,y, z).

We begin with the energy term corresponding to the area increment. Sup-
pose that an elemental rectangular region Ry € Q, of area A(Ry) = dudy is
transformed via F into a two-dimensional surface element R in S.. The area of
this surface element may be approximated to first order (O'Neil, 1995) by

A(R) = |[F; x Fy| dady.
Using (5) we readily compute

F, x F, =

{1~ 2 G} (G = 2o Coy — G )~

(1 + 1y = 2 G (G = 2Ce Cax = 26, G))
(1 + & = 2 Gaa) (G = 2o Gy = G ) -

(6 = 2€as) (G = 2Ge Gox = 26y )

i P i |
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Applying the Order Assumption we may discard terms to obtain the simplified
approximation

F, x Fy = "iCz '_jCy‘l'k(] + & w'"'zCﬂ"-rJ: + 7y "3‘:!;!;)'
Then we have
IFz x Fyll? & G2+ G2 +1+26 +2my — 22 (Cox + ).

and then

1 -
IFe x Fy|| =1 ~ & +ny + E(sz + Cyg) -z (sz + @y.u)'

Thus we have

s )

(AR — AR)) =~ (6t m+5(62+67) = 2 (Gor + )

Integrating this expression over Q x [—h,h] and recognizing that odd powers
of z integrated over [—h, h] yield zero, we obtain the component of potential
energy due to local change of area in the form

h .
VA — (/\ —; V) / / ((’s: T My s %(Cn.? g Cyg))z + ‘?2((:13'? + (;H!f)?) dz d:rdy
QJ-h

3

- (/\ + V) ]n (h. ({x + 1y + %(le + C_.;2))2 + % (Cn: + ny)‘z) da dy. (10)

Next we consider potential energy arising from the first shear mode shown in
(8). Measured relative to the deformed surface S, = F(€.) the angle of shear,
a, is such that

F,-F,
1]l IFy ]l

The numerator here is
N(z,v,2) = (1 +& — 2Cea) (& — 2Cay) + (e — 2Ga) (1 + 1y — 2Gy)

+(C:z -z Cz(zx) (Cy — 260y — 2 Cy‘:yy)-

sinq =

from which, following our rules, we retain only the approximation

N(a"sy! Z) & ‘5:.‘ +T-"1 - 2zCILI' + Cm (b"

The denominator is

Fd a4 " AN w
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1
2N\ 2

x ((Ey = z‘:xy)z + (I +ny — szy)z + (gy = 2GGay —2 Cyny) ) ;

again, following our rules, we retain only

D(z,y,2) = (1-}—2{_.,:-—2;,'(“—!-@52)% X (]-.‘-2?}1,—22(1_,1,-1-{1,2)%

~ (1+£x—2Cu+%Cx2) X (1-1-7}3;—2(;;13'}‘”;":?2)

1 i
M 1+ =2 (G +Gw) + 5 (G467,
and from this we have the approximation

1 1
POV . ST (O _ prnZE 2 12 .

D(:.':,y, z) Extz (Cxx + ‘:yy) ) (C:r + ¢y )
When we multiply this reciprocal by our approximation for N(z,y, z), we see
that all terms except the “1” in the expression for D(a,y, z) are included in
non-retained terms of the product, and so we have, assuming the angle o to be
small,

a ~ sina & N(z,y,2) = & + 0 — 22y + (2 Gy

Again recognizing that odd powers of z integrate to zero over [—h.h|, the po-
tential energy due to this shear mode can be approximately expressed as

h
V, = & // ((gy + 0, + (e (y)z + 422 .;’Jyg) dz ddy
2 JaJ-n

dwh® o\
=/n(uh (& +nx+c,gy)2+‘ngW2)amy. (11)

The angle 8 corresponds to shearing relative to the directions making angles
of 1 with the x and y axes; otherwise the two shear modes are identical. (It can
be shown that shearing relative to any two orthogonal axes can be expressed as
a linear combination of these two.) Thus, in order to obtain the corresponding
potential energy term Vj it is only necessary to rotate the =,y plane by this
angle in the expression (11). This results in

1 2 h3 '
Ve = /ﬂ (Vh (E::: =My + E(ng - Cyz)) + V_; (e crmf) dzdy. (12)

Adding the three potential energy components together, we define
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1 2 pd 2

4uh?
+/ (Vh (& + 1+ o Cy)z 4 yT _CI.,,z) dz dy
Q .

1 L h3 2 .
+ /ﬂ (uh(ez—nﬁi(cﬁ—c;‘)) () )d-rrfy. (13)

This potential energy form may be viewed as defining the unforced, unstressed
von Karman system in the static configuration; what we call the LD model here.
We add stress terms in later sections of this paper. This model is developed
in the dynamic, time varying context in Lagnese (1989) along with the partial
differential equations of motion obtained by application of Hamilton’s (or La-
grange’s, or Green’s) principle. We do not develop the static counterpart of
these equations here for reasons cited in Section 1.

3. Cylindrical coordinates and buckling problems

In this section we will convert the energy expression (13) into the form cor-
responding to the use of polar coordinates r, 8 in place of the independent
variables z, y, and cylindrical coordinates (, p. ¢ in place of the dependent vari-
ables ¢, £, n. This will enable us to demonstrate the rotational symmetry of the
model and will give us energy expressions facilitating the study of rotationally
symmetric deflection states and angularly dependent bifurcations about those
states.
Introducing the polar coordinates

i’
r=+z2+12, 0=tan"! ;}

3

we find that the Cartesian and cylindrical planar displacement components are
related by

&(r cos,r sinf) = cosf p(r,0) — sinG(r.0),
n(r cos@,r sin@) = sind p(r,0) + cos cosOY(r,0).

From this we obtain the planar divergence expression

o on dp 1 o
8x+3y_8r+r(p+89)

and we also compute that

(OC\? | (0¢\? [(a¢\® | 1 [ac\?
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resulting in an overall dilatation term

(1248 @))

The combined shear energy terms

€ o 0C
(By o T aan)

(-5 -G))

are best treated together; their combined polar/cylindrical form is

(2-1(p+2)+3((%)-2(%)))

oy 1 ap\ 18¢ac\’
+(ar r(‘*”‘—) 'a_%)

The square of the Laplacian of ¢ in polar coordinates is

82¢ 19¢ 1 09%\?
(w*mﬂ-—zw)

and we also verify that

¢ _ 2\, (2
dr?  9y? dzdy

:(82g 10¢ a?<) +4(] 0% | ac)“

or2 v or 71?062 r ordd  r? 00

Combining all of these we now obtain the potential energy in the form

B o 1 o\ 1 {[ac\*
_(A+v)f(h (5T+ (,‘J-i‘"a—a')‘i"?—(("aT)
1o\ (e rac 1y L
+‘r2 20 +3 or? & ror  r? 002 S

(L (0 1, 8\  18Ca\?

(14)
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dvh® (1 8%¢ 1 a¢\? ' ap 1 L
T3 (?amo‘ﬁae) )"d’d“/g s (af?(”%)

a¢ 1 [oc\? S 92¢ 10¢ 1 9%
=S s, [ e Ea O e s rdrdf. (]
<<9r> e (89) * 3 (07‘~ ror 7l 092> P . 118)
THEOREM 3.1 Let (o(r), po(r) (¥(r) =0) be twice continuously differentiable
and continuously differentiable functions, respectively, on the interval ro <1 <
ry, 1o > 0 with
0
Golro) = 2(0) = 0; plro) =0

minimizing, relative to other states independent of 6, the Hamiltonian

2
Vi=V - f¢(r1,6)rdr,
0

arising through augmentation of the potential energy (16) with the indicated
term, reflecting a constant transverse neg J(Li,i’ue force —f acting on the outer
2

boundary r =1y of the plate. -1ssum17lg 2+ : /)( += (t;)“;f’y < 0 and po(r) <
0, ro <r <1y, this state cannot be a bt(L[)l(i eqmlzbrmm for the nonlinear plate

system if the positive thickness parameter h is sufficiently small.

Remark  This result corresponds to the experimentally familiar fact that a
very thin disc-shaped plate supported at the center and subject to a uniform
transverse force at the outer perimeter will buckle in the azimuthal, or “angu-
lar” direction rather than undergo deformation into a rotationally symmetric
roughly paraboloid configuration as would be predicted by the corresponding
linear (Kirchhoff) plate model.

Proof  We consider perturbations

C(r,0) = Co(r) + ¢ (r) cosnb, p(r,0) = po(r) + p1(r) cosnb,

where n is a positive integer. We maintain ¢(r,f) = 0. DBecause the plate
bending terms in (16), (3.1) are all multiplied by h* while the “membrane” terms
are multiplied by h, it is only necessary to demonstrate that we can design the
indicated perturbation in such a way that the portion of the potential energy
corresponding to the membrane effects is decreased from the value it assumes
with the state (o(r), po(r).

First of all, the perturbed membrane dilatation term is

27 apo I
A+v)h / / (—— +———; cosnl + = (po + p1 cosnb)+
r

]/5(0 | aé—] n\z ' ] & ~ . /\\2\2 1 ”n IRE
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Because any odd power of cosné or sinnf will integrate to 0 over the interval
[0, 27r] we will ignore any such terms. Also, we regard ¢; and p; as being very
small and do not retain powers of these beyond the second (note that since these
perturbation terms are entirely independent of {y and pg this does not violate
the original ansatz upon which our model was based; if we had prefaced ¢, and
p1 with “e” parameters it would simply correspond to neglecting terms of order
greater than or equal to 3 in €). With these conventions (17) reduces to

& 9po 1 179G I 0G0 9C1
ead / ./ (—u—i_— +§(h§r_)) +2(6r+ )81‘ or cas’ nf

g . 2
+ (%T + lp P (%io) ) ((%%) ccsjnﬁ-#; & sin?na)rdrdﬁ. (18)

Next we consider the membrane shear terms. With the same conventions as
indicated above the first of these, as shown in (16), reduces to

o n 186 | 3G . .
vh/o jr.o (—;pl smn9+;(g+a—rcosn€)(—ng smnﬂ)) rdrdf.

27 4
_Uh/ / (__ Pl+_<“Cl) nf — ;—C—Q cosnf smnfa‘) rdr df.(19)

We now stipulate that

d
pir) = - S2NG0), ro<r <.
Then (19) becomes
27 T 9
vh / f = iclc. cos® né sin® ndr dr do. (20)

Since this term is of fourth order in ¢; it is not retained.
Finally, the second shear term is

o dpo 1 1700\2\* . /0p G 0G
A+uh[ /O (—-—— +~2—(E‘~)) +Z(E_ )37' o cos® nf

O _1 . 100GV ((9GY? 2.0 722 oo :
+(8r rpO+2(8r))((3r)cos n# rCl sin“nf | rdrdf. (21)

The terms with subscript 0 correspond to the unperturbed membrane en-
ergy. Omitting these, we combine terms in (18) and (21) and carry out some
straightforward algebraic manipulation to obtain a sum of two terms, which we
will list separately. The first of these is

12 (™ 8oy 1 17,0\2\% . ./8pr . ;1\ 060 5
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90 1 1006\*\ ((0G\2 2 o, D% 0
+(8 + ~Po 2(81”) ) ((3—?) cos n9+; ¢y sin“nfl | rdrdf.

The second term is

2w
dpo 1 3(0 2 1 G\ o n? 5 .9
”"‘/ / ( 3(3) +7m) (Fr) costno+ T ¢t sin®ns
9po 9G\2 1 N s B2
+(8 +2(3r) ?‘po)((ar) cosnf r {1 sin”nf
2 Bpy 9o 96 $2 9po 9
—I/hA /1,0 (4"‘558? 9+2(6 il (81'))

(E) cos” nf + ~po— ¢y sin“nf | rdrdf

= 8(0 9Go BCI = aﬂu (2
Uh/ / ( CI)E or 9+2(3? ((’)T))
(ﬁ) cos® nf + Z Po g ¢} sin’nd | rdrdo (22)
or R ’

The squared trigonometric terms integrate, of course, to 7. Since we have

s 82
assumed that both %% +1po+ % (%93) and pg are negative, the terms involving

n? in (3.) and (22) are negative for a perturbation (;(r) > 0, 70 < r < 7.

Keeping ¢; and p;, related to ¢; by our earlier assumption, both fixed, it follows
that the integrals (3.) and (22) are both negative if n is sufficiently large. If
we then go back to (16) and replace (; and p; by e¢; and € p; we see that the
the sum of (3.) and (22) correspond to the second derivative of the membrane
potential energy with respect to € based on the state (y, po; the first derivative
involves only with cosnfl and sinnf to the first power. These integrate to zero,
showing that the first derivative of the membrane potential energy with respect
to € is zero. Then, reducing h until the change in the membrane potential energy
dominates any change in the terms multiplied by k% in (16) we conclude that
the potential energy is decreased in the direction of a perturbation such as we
have described, relative to its value at ¢ = 0, i.e., relative to the state (g, po,
for small positive values of e. Since the applied transverse force f is constant,
the second term appearing in the Lagrangian (3.1) does not vary with €; thus
the decrease in the Lagrangian is the same as that in the potential energy and
the proof of the theorem is complete. it

It seems likely that we cannot escape the requirement that n should be
sufficiently large because no decrease in the potential energy/Lagrangian is to
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of n simply amounts to tilting the plate, with some increase in bending near the
origin r = 0. It is interesting, however, to ask if we always obtain the energy
decrease we have just established in the case n = 2 for sufficiently small h.

We consider, for the purpose of providing a computational example, the
deformation of a nonlinear annular plate with inner boundary at 19 = 0.1 and
outer boundary at 7y = 1.1. A constant in-plane force g is applied around the
outer boundary. Clamped boundary conditions are enforced around the inner
boundary while the outer boundary is free. The potential energy functional
given in (16) is used with ¢ = 0, p = p(r,0), and ¢ = ((r,0). For ease the
Lamé constants are taken to be A = nu = 10 and the plate is assumed to
be of uniform thickness h = 0.2. Designating the form obtained from (16) by
V = V(p,(), we seek to minimize the Lagrangian

L(,O,C) = V(P:C} - (fp)

over the class of deformations of the form

p(r,0)

po(r) + pi(r)cost

and

((r,0) = Co(r) + Ci(r)cost

with the clamped boundary condition enforced by means of penalization. The
interval (0.1,1.1) is subdivided into four subintervals of equal length. Cubic
b-splines spanned by seven basis functions b;(r) for i = 1,...7 are used as radial
basis functions. Basis functions for the two dimensional annular domain are
then obtained as a tensor product of the cubic b-spline radial basis functions
and the theta-dependent functions defined on (0, 27) consisting of d; (#) = 1 and
da(0) = cos(0). By representing p(r,#) and ¢(r,#) in the form of arbitrary linear
combinations of these two dimensional basis functions and appropriately substi-
tuting these forms into the Lagrangian L(p, (), one obtains an objective function
for a finite dimensional minimization problem, i.e., to find the coefficients as-
sociated with p(r,0) and ((r,@) for which the potential energy is minimized.
In our work we used a Levenburg — Marquardt minimization method to set a
minimizing direction for each iteration step. The result of the computation is
depicted in Fig. 1 for the case in which g = —0.25. It should be noted that we
have plotted the independent variables r and @ on a rectangular grid here.

4, Inclusion of membrane structures

For the purposes of this paper a membrane is a two dimensional elastic structure,
subject to the standard linear stress-strain relations of two dimensional linear
elasticity, but embedded in three dimensional space. In using the term two
dimensional we mean, of course, that the physical structure being modelled is



A large displacement framework for buckling and formation studies of elastic plates 597

Two dimensional buckling of an annular plate

Figure 1: Displacement of annular nonlinear plate

theta

Figure 1. Buckling of an annular plate with in-plane force.
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is negligible. The membranes under discussion are coextensive with the plate
domain §2 introduced in Section 1, forming a layer of the plate located, when
the plate is in its unforced equilibrium configuration, parallel to the z, y plane
at z = Z or some other specified constant value of z. The embedding is assumed
“perfect” in that there is no “slipping” between the membrane and the plate
substrate. In mathematical terms this means that membrane deformations are
described using the same displacement functions &(z,v), n(z,y), ((z,y) as we
have hitherto used for the plate itself, via (4) with z = z.

For the first instance we consider an isotropic membrane with Lamé con-
stants A and 2. To avoid the minor complication of having to include first
powers of z in the potential energy expression we will consider only situations
symmetric with respect to the elastic axis here. Thus we assume we have a
single membrane layer of double strength (i.e., with A and v replaced by 2 A
and 2v, respectively, located at z = z = 0 or “twinned” layers consisting of
identical single strength membranes located at z = +z # 0). We will maintain
this convention in all subsequent cases considered in this paper as well. Using
the fixed value z = z and omitting the integration with respect to z, the same
steps as led to (13) as a sum of (10), (11) and (12) lead us to assign to the
“twinned” membranes under discussion the potential energy

17 /Q ((&y + 7 + Cny)z +4 Ezcgy) da dy

1
5 [ ((E-m+ 3@ =@+ 2= o)) e -

For a plate with membranes of this type, embedded as indicated earlier, the net
potential energy form is then V + V, with V' as in (13) and V' as here in (23).
Multiple embedded membranes will result in energy forms V + V) + Vo + -+,
etc.

Next we envision a membrane consisting of a film with negligible elastic
properties in which are embedded a large number of elastic filaments, or strips.
In general we will suppose the location coordinates and orientation angles to be
random variables with particular distributions. For our first case study we will
suppose that the filaments have uniform spatial density but the orientation angle
@ is a random variable in the interval [0, 7) with probability density d(#) defined
on that interval (the angle 6 is equivalent to 6 + 7 for this purpose because the
latter orientation just involves end for end reversal of the filament). We will
suppose the filaments in question have equilibrium length A which is short
with respect to distances over which the partial derivatives of the displacement
components vary appreciably and that they have modulus of elasticity e and
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displacement functions &(z,y), n(z,y), ((x,y) the potential energy may be seen
to be

eba 662 e, ,
7 a =7 MY &
where
_(m p [ cos@
M'_(q n)' Q_(sin(i) 28}

are the matrix in (7) and the unit orientation vector for the filament, respec-
tively. Clearly, then, we have

®*M® =m cos? 0 + (p+ q) sinfcosf + nsin® 6.

If we assume the filaments are strips whose thickness in the transverse direction
of the membrane is fixed, then the energy (24) can be rewritten as

%60 (m? cos® @ + (p + q)* sin® @ cos® 0 + n? sin® @
+2m(p + q) cos® @sin @ + 2n(p + q) cosfsin® @ + 2mn cos® §sin® 9)

where do = '%’”- Al is the two-dimensional surface area of the strip filament
within the membrane and « is an appropriate constant of proportionality. The
expected value of this energy for a given angular density d(€) is then

eQ

T
5 0o / (m? cos* 8 + (p+ g)? sin® f cos? 6 + n? sin* 0
0

+2m(p + q) cos® Bsin @ + 2n(p + q) cossin® 6 + 2mn cos® Osin® §) d(6) db. (26)

If we suppose that the mean fractional membrane area occupied by strip ele-
ments is 3, then as §o — 0 and the number of strip filaments tends to infinity
in inverse proportion, the potential energy of the membrane composed of all of
these strip filaments tends to

eaﬁ f -)dzdy (27)

where (- ) is an abbreviation for the integral in (26). This integral cannot, in
general, be further simplified without more information about d(f) but some
special cases merit more detailed treatment. In the case of the constant angular
density d(6) = % the terms involving cos® 8 sin 6 and cos #sin®  are readily seen

to be odd functions with respect to # = 5 and those terms integrate to zero.
Then, (27) becomes

faﬁffﬂrz dn  fr A2 « A b P o s vl
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+2mn cos® Osin? 8) d(0) df dx dy (28)

3 1
= tafi / (-— (m* +n?) + =((p+q)*+ 21:??1)) dady
2 Jo\8 8

D

== l / @ (m+ n)? - E}-é (m — 31)2 4 E_c:—,i (p+ (1)2 dz dy.
2 Jo 4 3

Defining o = %ﬁ and invoking our “twinning convention” the membrane po-

tential energy becomes
~ 1
V= 3 / 20 (m+n)t 40 (m—n)?+0(p+q)?dady. (29)
Q

Noting the forms of m, n, p and ¢, a short computation shows that the same
process as led to (10), (11) and (12) again yields V in the form corresponding to
(23) but with A and # both replaced by . The membrane is isotropic and is of
the type consistent with what is called the rariconstant theory, i.e., the original
Navier theory, in the literature on the history of the strength of materials,
Timoshenko (1983).

Filament distributions other than the uniform one d(6) = -1'; lead, in general,
but not always, to anisotropic membranes. A very special case is d = dy,, the
Dirac distribution with point support 6. Replacing d(f) by dg, in (28) we
obtain the membrane energy form

Vo, = a8 ] (m? cos" 6o + (p + q)? sin® G cos® By + n? sin Oy +
Q
+ 2mn cos? O sin? 6, + 2m(p+q) cos® Oy sin g + 2n(p + q) sin® 8 cos 3(,) dx dy
= eafi / (m cos® 6o + n sin® 0y + (p+ q) cosfysin 80)2 dax dy. (30)
Q

Application of the twinning convention requires in addition that in this formula
the integrand be replaced by the average of its values for z = +2z, where |zg| is
the distance between the membrane and the neutral surface of the plate. We do
not carry out this process in detail here but we will do so in two special cascs
to be discussed in the next section.

Different specifications of (constant) #g lead, of course, to different formulae
(30) and its averaged counterpart, as described in the preceding paragraph. For
example, with g = 0 we have cos0 =1, sin0 = 0 and we obtain

; 1 L
Vo= f%’g ]{1 ((C:: — 20 Cz:r F 'é‘((n:)z) 5 (C: + 20 (zz + 5(@1)2)) "h'dy

A 1, <g\% Il \2\ i 4 P e
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In general, the orientation angle g and ;1 = eaJ can be allowed to vary with
<H TR

o = Oo(z,y), p= p(z,y).

We will refer to a membrane of this type. with potential energy (30), as a
monotropic membrane, uniform if #y and y are both constant. nonuniform oth-
erwise. As discussed more fully in Russell (1995) and Russell (1997) a membrane
of this type can be fully specified by giving zy and the “filament field”

) cos fy(x, 1
Fo(z,y) = p(z,y) (sin 9::&!' !j))) '

We can also consider “screen type” membranes corresponding to the superposi-
tion of two or more filament fields corresponding to fields Fy 1 (x,y), Fo2(x.y),
Fos(z,y),..., ete. If the number of fields is two, py(x,y) = po(e.y) and
02(x,y) = by (z,y) £ F, we have what we might call an “orthotropic™ membrane
(it is not isotropic). In the case of three or more filament fields with equal
pi(2,y) and orientation angles €y ;. uniformly spaced in the periodic interval
obtained from [0, 7] by identifying = with 0 it can be shown that the resulting
membrane is isotropic and has a potential energy expression equivalent to V
discussed following (29).

5. A formation problem for an annular/disk plate

Let us think of the filaments introduced in Section 4 as microactuators of
monotropic type, generating stresses in particular directions in response to ex-
ternal control signals. Tor a given field of such actuators with density factor
i = p(z,y) and orientation angle 6y = y(2, y), as introduced in Section 4, we
will suppose that the external control v = wu(x,y) has a linear effect on the
equilibrium length of the actuator filament. Then, if w is appropriately normal-
ized, the effect of u is to change the equilibrium length of the filament from
Al to (1 +u)AL. Assuming the elastic properties of the actuator and substrate
materials are not changed by application of the control, the potential energy of
a double strength actuator field may be seen to be (with a qualification to be
described in the paragraph to follow)

2

Ve =/ p (m cos® O +n sin® 8y + (p+ q) cosfgsinfy — u)” dady. (32)
0

where m,n, p,q are as in (25) with M as in (7) and it is understood that g and
#y may depend on x, y as indicated previously.

Actuators designed to induce exclusively in-plane stresses will normally be
located at the neutral surface = = 0:; in this case the formula (32) requires no
modification, Actuators designed to induce bending stresses. or other stresses
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to occur as twinned, or paired, membranes, as described in Section 4, off the
neutral surface at z = 29, zo € (0,h]. Often, in such paired situations, we
also assume that the values of the control u, for given coordinates (z,y), take
different signs; i.e., we suppose u(z,y) is associated with zg and —uwy(z,y) is
associated with —zg. In these circumstances the integrand of (32) is replaced by
the average of its values for z = zg and z = —zy. Using the forms of m,n,p,q
from (25) and (7) we can see that the modified form of (32) is then

1 s
/ H [((ﬁz + %(C:)z) cos? g + (my + %(Cy)z) sin? 6
0

+ (& + 1z + (2Gy) sin Bg cos 90)2
(20 (Cez cos® B0 + Cyy 5in® Bo + 2(zy cos Bp sin fp) + 11)2] dx dy. (33)

Our specific interest for this article lies with a generally annular plate cor-
responding to the domain

Q={(:~",y)|ro$rﬁn}

with 0 < 79 < 7y; if 79 = 0 we have a disk, of course. Our goal is to describe
actuator arrays, or “screens”, suitable to the purpose of reforming the plate into
a bowl-shaped, rotationally symmetric, shell. Objectives of this type may be
expected to have some importance in connection with special purpose, “non-
articulated” valves, especially in medical applications such as artificial hearts
where articulated structures run the risk of causing damage to certain blood
components. We will describe two types of actuator arrays that appear to be
suitable for formation objectives of this sort.

For the first actuator array to be considered we suppose that we have ra-
dially oriented bending actuators located at z = +h together with azimuthally
(or “circumferentially”) oriented, actuators located at z = 0. We will suppose
that the density parameter p takes on equal constant values for the two actua-
tor families; thus the actuators are uniformly and equally distributed over the
domain €. The corresponding control variables will be designated by u and v,
respectively. In the first instance we have 8y(z,y) = 0y(r,0) = € while in the
second case we have 0y(x,y) = 0o(r,0) = 6 + 7. Since cos( + ) = —sin6 and
sin(f + %) = cos#, the two actuator potential energy expressions become

Vu=p fn K(Ez + %(CI)Z] cos® 8 + (n, + %(Cyf) sin? @
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(20(Caz cOs® 0 + Cyy sin® 6 + 2(,, cos fsin 6) + u)z} dz dy. (34)

and
Vop = 14 / <(§ + —] (¢ )2) sin’ 6 + (7; + —] (¢ )2) cos?
v - 9 T y 2 Yy

~ (& + e+ Cay) cosOsind —v)” dady. )

In order to model the plate with actuation of the type we have been dis-
cussing, it is necessary to add the energy forms (34) and (35) to the energy
form (16) developed earlier. However, our initial interest lies in the strictly
radial situation, wherein ¢» = 0 and ¢, p,u and v depend only on the radial
coordinate 7. If we make the changes so indicated in (16), (34) and (35), omit
the factor 27 resulting from integration with respect to # and drop the «? and
v? terms (since these are assumed constant and have no effect on the location
or value of the minimum potential energy) we obtain the following potential
energy expression for the plate under actuation via v and v:

2 2
B 71 p p 1/[0C . h® (0%¢C 10C
de’uyv—()\ﬁf-l/) /1:0 (h (5;4-;4-5(5;) ) +'3— Ej+7_5_ rdr
2 2

ry 8 p 1/[3¢C\? W (0% 18
+u/r0 <h<g‘;+§<}§;>> R 1N (36)

o 8p 1,022 0%¢C\2 | Py
+u/ ((5;%’5(5;) ) +h2(ﬁ) +(;) rdr (37)

T1 2
+2u / (h 8—2 U — d v> rdr. (38)
- or r

Here the two lines ending with the label (36) constitute the elastic potential
energy for the substrate plate, the line labeled (37) is the elastic potential energy
for the actuator membrane structure, and the line labeled (38) is what we refer
to as the control potential. The presence of (37) corresponds to what we have
elsewhere (Russell, 1995, 1997) referred to as the actuator stiffening effect.
Why are two actuator families required? In principle the radial, bending
actuators may be shown to be sufficient to produced the desired re-formation of
the plate into the desired shell configuration. However, if this type of actuator is
used alone, the arguments of Section 3 can be repeated to show, in comparable
circumstances, that the plate will eventually buckle in the azimuthal direction as
described in that section. (Under these circumstances, of course, the radial form
(36) - (38) would not be adequate to describe all that is going on; for this we
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One would need to introduce active control strategies, with controls of the form
u(r, 8,t), to stabilize the system against such an eventuality. This would greatly
complicate the control process and, in all likelihood, decrease reliability.

The azimuthal control v is sufficient to hold the plate in the desired shell
configuration but inadequate to initiate the re-formation process. In fact, such
controls cannot determine whether the re-formed plate/shell will be concave
upward or concave downward: the bending control u is needed at the outset in
order to determine the development in this respect.

Now we consider a different actuator configuration. We suppose that only
actuators oriented in the azimuthal direction are used but they are deployed

in two layers at z = zp = h and z = —zp = —h. The control values for the
two layers are different but not of opposite sign, in general; we will denote the
control used at z = h by v + w and the control used at z = —h by v —w. In

both cases we have 8g(z,y) = 0o(r,0) = 0 + . The relevant actuator potential
energy expression then becomes

10 L [((&z =+ é_(qm)z) sin 0 + (”y e %(gy)z) ol

+ (€, + M + GGy ) sin B cosf — v)*
(h(Cex sin? 0 + Gy c0s” 0 + 2., cosOsind) + a;:)2] dzdy. (39)

Then, going over to the rotationally symmetric case again with polar coordinates
and omitting the 2, and w? terms for the same reasons as cited carlier in
connection with « and v, we find that we have

Viadv,w = (36) + p .[T! (?—;(%)2 e (?)2) . (40)

ri 2
+2u fro (% % w— ?t.‘) rdr. (41)

The second term in (40) is the elastic potential energy for the actuator structure
in this configuration and (41) is the control potential. One of the advantages
associated with this actuator configuration is that there is less actuator stiff-
ening effect in the radial direction than there is with the earlier configuration
involving the bending actuators. This indicates the likelihood that this second
configuration may be superior to the first for formation objectives of the type
we have described.

6. Computational experience

We have carried out extensive numerical computations conmected with the for-
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section we will present some of the results of these computations in graphic
form.

All of our computations have been carried out within the variational frame-
work described in this paper. IExcept as otherwise indicated we have studied
strictly radial situations and, within that context, we have used quadratic spline
finite element representations of the lateral deflection ¢ and lincar spline finite
clement representations of the in-plane displacement p. Our procedure has been
to solve the linear (Kirchhoff) system first and then use a Newton-type proce-
dure to correct for the nonlinear terms present in the LD (i.e., the full von
Karman) system. The graphics presented here arc based on the use of ten finite
elements in ten equal subintervals along the radial axis from 1o = 0 to r; =1
with three additional points added in the interior of each of these subintervals
for plotting purposes. These interior points are also used for approximate evalu-
ation, via Simpson’s rule, of some integrals involving products of finite elements
or their derivatives in the computations leading to these plots.

The most common type of buckling associated with a disk-shaped LD plate
is strictly radial buckling resulting from application of an in-plane force in an
inward (i.e., negative) direction along the outer boundary. In Figs. 2 and 3
we show the finite amplitude character of this type of buckling phenomenon
as it arises in connection with the LD model. For the computations which
resulted in Fig. 2 the plate thickness h is set at .1. A very small negative
value of f, corresponding to the lateral force, is used to start the buckling in
the desired direction. Then, different values of the boundary force, g, are used,
retaining the same value of f. Corresponding to g = —0.03, —0.06, —0.09 we
have ¢ deflections labelled z1, 22, 23, respectively, with corresponding in-plane
displacements p labelled 71, 72, r3. In each case the label lies directly above
the curve in question on the graph.

In the next set of figures we display the results of some formation studies
using controls w, v as in the Lagrangian/Hamiltonian expression (41) and de-
scribed prior to that in Section 5. In cach case a small positive value of w
was used to ensure that bending would take place in the negative ¢ direction.
Then, successively larger values of v were used to obtain the ¢ deflection curves
labelled z1, 22, 23. The corresponding in-plane displacement functions p are
labelled 71, r2, 73; in each case the label lies directly above the curve to which
it applies. Tt should be noted that the ¢ curves are not plotted over the interval
[ro,m1](= [0, 1] in all these cases), but rather over the interval [0, 1+ p(1)] (p(1)
is negative in all these cases) resulting from the in-plane displacement primarily
induced by the in-plane control v. TFig. 4 shows the results obtained in the
limiting case where both v and w have support confined to the outer boundary
7 =7y = 1. Fig. 5 shows corresponding results but with both v and w uniformly
distributed over the interval [0, 1]; the integrals in this case correspond to the
point densities of the corresponding controls used to obtain the plots of Fig. 4.
Finally, the plots of Fig. 6 were obtained with v and w densities of the form
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Radial Plate: Finite Amplitude Buckling Behavior; h = .1
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Figure 2. Buckling for h = 0.1

Radial Plate: Finite Amplitude Buckling Behavior; h = .05
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Figure 3. Buckling for h = 0.05
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Radial Plate; Boundary Moment and in-Plane Force

I
o
(=]
3

Zeta Deflection, Rho Displacement
&
&

1
o
o
o

=-0.07F 1

1 ' L i 1 L 1 L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Radial Coordinate

Figure 4. ¢ deflections and p displacements for boundary controls,
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Figure 5. ¢ deflections and p displacements for uniformly distributed controls
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Radial Plate; Linearly Distributed Moment and in-Plane Force
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Figure 6. ¢ deflections and p displacements for linearly distributed controls.

In future work we hope to carry out optimization studies, posing a desired
target deflection profile and computing optimal controls relative to appropriate
“fit-to-data” criteria.
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