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Abstract: An effective new method for solving inverse prob­
lems for 2-D systems is introduced using a modern combinatorial 
analysis. The combinatorial approach consists in the use of new 
computational tools constructed by authors of this paper during 
previous investigations in a field of combinatorics and the Fibonacci 
trigonometry. The formulation of numerical algorithms for solving 
direct and inverse problems of the 2-D systems is presented with 
special regard to identification problems. Also possible fields of ap­
plication in technology and industry are indicated. Advantages of 
presented method are indicated. These are simplicity of calculations 
based on recurrence equations defining monic polynomials, high ac­
curacy of calculations, and ease to implement it in the MATLAB 
language. 

Keywords: inverse problems, distributed parameter systems, 
combinatorial method, field sources identification 

1. Introduction 

Recently, the studies on problems described by the 2-D and 3-D models have 
been intensively developed at many world scientific centers in order to ex­
plain different phenomena encountered not only in mathematics but also in 
electrical engineering, mechanics, economics, biology, medicine, and even in so­
cial sciences, Kaczorek (1985), Groetsch (1993), Anger (1990), Kurpisz (1995), 
Tikhonov (1995), Engl (1996), Neittaanmaki (1996). Numerical models of phys­
ical phenomena are usually formulated as a set of differential or integra.! equa­
tions. Also, boundary and initial conditions to the problem should be specified. 
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For such formulated problems, two classes can be distinguished: direct problems 
and inverse problems. When the coefficients of the governing equations, the ge­
ometry of a system, boundary and initial conditions are known, such problems 
are referred as direct problems. Analysis of direct problems ha.s progressed for 
almost two centuries. Results of detailed studies on direct problems are widely 
described in literature. The main objective of direct problems is to find results 
from the known boundary and initial conditions. Another class of problems 
arises when the objective is to determine some coefficients and conditions men­
tioned above. These are the inverse problems. They arise in the course of 
determining the internal structure of a. physical system from system's measured 
behaviour, or of determining the unknown input that gives rise to a. measured 
output signal. On the contrary, the interest in direct problems is in the system's 
behaviour given the input and internal structure. The earliest studies on inverse 
problems date back to the works of Fourier and Kelvin. They considered the 
problems of the Earth history but these problems were not termed inverse yet. 
The earliest papers on inverse problems were published at the beginning of the 
Sixties. 

Recently, it can be observed that the inverse problems are of increasing in­
terest both in scientific centers and industry. The studies on inverse problems 
are carried out in two directions. One is a. development of the theory and nu­
merical methods and the second is an improvement of measurement technology. 
Inverse problems exist in many branches of the natural sciences and engineer­
ing such as mathematics (theory and methods), statistics, geophysics, seismol­
ogy, astrometry, astrophysics, optics, and image restoration, plasma. diagnostics, 
electrodynamics, scattering in elementary particles physics, medicine (medical 
ima.ging, impedance tomography, electrocardiogram interpretation). The prob­
lem of modelling the physical reality with suitable differential equations systems 
is relatively uncomplicated in the finite dimensional setting but becomes very 
difficult for various partial differential equations such as wave, heat, electromag­
netic ones. When it is impossible, or difficult, to obtain an exact solution of 
the partial differential equations governing a continuous system, the system is 
reduced to discrete form, John (1978), Anger (1990), Tikhonov (1995). 

Inverse problems are ill-posed problems according to Hadamard's definition 
of correctly posed problems, Ha.damard (1952). A solution of the correctly posed 
problem must be unique and stable. The ill-posed nature of inverse problems 
causes that various methods for direct problems are inapplicable to a wide range 
of inverse problems. Therefore special numerical procedures must be employed 
to stabilize the results of calculations, Tikhonov (1995). 

In this paper an effective method for computational solutions of direct a.nd 
inverse problems described by the 2-D models is presented in relation to dis­
tributed parameter system,s using discrete spatial coordinates. This new ap­
proach named combinatorial method consists in the use of new computational 
tools developed by authors of this paper during previous investigations in a 
field of combinatorics and the Fibonacci trigonometry, Rydygier (1997), Trza-
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ska (1993A, 1993B), Trzaska (1996), Trzaska (1997) . Especially, to solve the 
inverse problems the monic polynomials generated by modified numerical trian­
gles and hyperbolic Fibonacci functions are introduced. 

2. Modified numerical triangles and monic polynomials 

Presently, a growing interest is observed in development of methods using a 
combinatorial analysis based on conceptions and objects from modern combi­
natorics. 

The combinatorial analysis is applied in the theory of crystalograghy, cryp­
tology (information encoding) or selected optimization problems of decision 
making, scheduling and graph theory, Akgul (1992). In this paper, it will be 
shown that in a field of engineering problems, various structures of the so-called 
numerical triangles and hyperbolic Fibonacci functions can be used for mod­
elling and numerical analysis of distributed parameter systems. Mathematical 
bases for solutions of various problems appearing in studies of these systems 
are taken from the theory of recurrence equations, of the Fibonacci sequence 
and their generalizations, Bergum (1994), as well as power polynomials, Ross 
(1996). Monic non-zero polynomials which generate the first modified numerical 
triangle, MNTl, are defined by the following recurrence, Trzaska (1996) 

Tn+z(x) = (2 + x)Tn+l(x)- Tn(x), n = 0, 1, 2, .. . (1) 

with To ( x) = 1 and T1 ( x) = 1 + x as initial elements . From the above recurrence, 
the following polynomials can be calculated 

To(x) 

T1(x) 
Tz(x) 

T3(x) 

T4(x) 

T5(x) 

1 

l+x 

1 + 3x + x 2 

1 + 6x + 5x2 + x3 

1 +!Ox+ 15x2 + 7x3 + x4 

1 + 15x + 35x2 + 28x3 + 9x4 + x5 

Thus, the polynomial Tn(x) can be written in the form 

n 

Tn(x) = L an,kXk , n = 0, 1, 2, ... 
k=O 

where the coefficients an,k, n = 0, 1, 2, ... , 0 :S: k :=:; n, fulfill the relation 

with ao,o = 1 and a 1,0 = 1 as initial values. 
Based on (3) the MNTl can be constructed. It is presented in Table 1. 

(2) 

(3) 
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n/k 0 1 2 3 4 5 6 ... Sum of coefficient 
values in the same 
row 

0 1 1 
1 1 1 2 
2 1 3 1 5 
3 1 6 5 1 13 
4 1 10 15 7 1 34 
5 1 15 35 28 9 1 89 
6 1 21 70 84 45 11 1 233 
... . . . . . . . . . . . . . . . . . . . . . . . . . .. 

Table 1. First modified numerical triangle, MNTl. 

To establish the second numerical triangle MNTl, the monic non-zero power 
polynomials are defined by the recurrence 

Pn+2(x) = (2 + x)Pn+l(x)- Pn(x), n = 0, 1, 2, ... (4) 

with P0 (x) = 0 and P(x) = 1 as initial elements. 
From (4) the following polynomials can be obtained 

Po(x) 0 

P1(x) 1 

P2(x) 2+x 

P3(x) 3+4x+x2 

P4(x) 4 + 10x + 6x2 + x3 

P5(x) 5 + 20x + 21x2 + 8x3 + x4 

From the above expressions the polynomial Pn(x) can be written in the form 

n 

Pn(x) = L bn,rXr' n = 0, 1, 2, . . . 
r=O 

(5) 

where the coefficients bn,n n = 0, 1, 2, ... , 0 ::; r ::; n are defined by the recur­
rence 

bn,r = 2bn-l,r + bn-l,r-1 - bn-2,r (6) 

with bo,o = 0 and b1,0 = 1 as initial values. 
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n/k 0 1 2 3 4 5 ... Sum of coefficient 
values in the same 
row 

0 0 0 
1 1 ] 

2 2 1 3 
3 3 4 ] 8 
4 4 10 6 1 21 
5 5 20 21 8 1 55 
6 6 35 56 36 10 ] 144 
. . . . . . ... . . . . . . . . . . . . . . . . .. 

Table 2. Second modified numerical triangle, MNT2. 

Then, based on (6) the MNT2 can be constructed. It is shown in Table 2. 
Formally, both the MNTl a.nd the MNT2 are apparently similar to the 

classical Pascal triangle, Ross (1996) , but their elements cannot be evaluated 
directly by applying the rule corresponding to the classical Pascal tr iangle, Trza.­
ska (1995). They must be computed in accordance with recurrence (3) and (6), 
respectively. The sum of all elements values in a. row of MNTl or MNT2 equals 
to hn , n = 0, 1, 2, . .. , or hn-J , n = 0, 1, 2, ... , respectively, i.e. they are equal 
to successive elements of the Fibonacci sequence with even or odd indices, re­
spectively, Bergum (1994) 

fn+z =fn+I+fn, n=0, 1,2, .. . 

with fo = 1 and h = 1 as initial values. 
Some of the most useful properties of monic power polynomials are 

xPn+l(x) = Tn(x)- Tn-l(x), n = 0, l, 2, ... 

Pn(x)Tn- l(x)- Pn- lTn(x) = 1, n = 0, 1, 2, ... 

(7) 

(8) 

(9) 

Properties of monic polynomials were detailly described in Trzaska (1996), Trza­
ska (1997). 

3. Hyperbolic Fibonacci functions and monic polynomials 

Hyperbolic Fibonacci functions sFh(x) and cFh(x) are defined as follows 

ifJ2x _ ifJ-2x ifJ(2x+l) _ ifJ - (2x+l) 
sFh(x) = y'5 , cFh(x) = j5 (10) 

where ifJ = 1 + p "'=' 2.6] 8033, and p denotes the golden ratio, Trza.ska. (1993A). 
It is easy to demonstrate that when a discrete variable k E I is used then 



242 E. RYDYGIER, Z. TRZASKA 

the functions sFh(k) and cFh(k) m terms of corresponding elements of the 
Fibonacci sequence 

f(p + 1) = f(p) + f(p- 1), p = ... '-3, -2, -1, 0, 1, 2, 3, . . . (ll) 

with f(O) = 0 and f(l) = 1 can be written in the formula. 

sFh(k) = f(2k), cFh(k) = f(2k + 1) (12) 

The generalized Fibona.cci hyperbolic functions cF hq ( k) and sF hq ( k) can be re­
garded as generating functions for polynomials Tk(Q) and Pk(Q), k = 0, 1, 2, ... , 
respectively 

(13) 

where Q means complex matrix or scalar parameter. 
For Q = 1 there are usual Fibonacci hyperbolic functions 

cFhq(k)IQ=l = cFh(k), sFhq(k)IQ=l = sFh(k) (14) 

Moreover, it is evident that Fibonacci hyperbolic functions and modified 
numerical triangles above presented can be very useful for practica.J problem 
studies. 

4 . Combinatorial approach to solve inverse problems for 
2-D systems 

On the basis of the stationary 2-D space-continuous system described by the 
Poisson equations with specified boundary conditions, the computational algo­
rithms are elaborated for solving direct and inverse problems with special regard 
to identification problems. This system is described by the second order partial 
differential equation 

82u(x,y) 82u(x,y)- f( ) 
Jx2 + Jy2 - x , y (15) 

where u( x, y) is the potential function and f ( x, y) is the function of field sources 
distribution. 

At first a. direct problem will be solved. This problem consists in finding a 
solution of equation (15) which is the potential function u for known function f 
and for given boundary conditions. To solve this problem a. discretization using 
the finite difference method, Dahlquist (1974), and an expanding the function f 
with a. use of the Fourier series , Potter (1973) , for parameter n = 1, 2, ... , N -1 
are done. The boundary conditions for function f are in the form 

fm,O = fm ,N = 0. (16) 
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The discrete values of a field sources function can be calculated from follow­
ing formula 

M-1 k 
fm,n=hLFm(k)sin ~n' m=1,2, ... ,M-l. 

k=l 

(17) 

In the same way a solution for the potential function u can be represented 
as follows 

M-1 k 
Um,n = .J2 L Um(k) sin ~n, (18) 

k = l 

After modification with use some trigonometric identities, the second order 
difference equation can be established 

where m= 1, 2, ... , M- 1, values M and N define the limits of the space. 
To complete equation (19), the boundary conditions are formulated as follows 

Uo(k) = 0 and UM(k) = Ck (20) 

where constants ck are calculated from UM,n = 0, n = 1' .. . 'N. 
For the new parameter qk = 4 · sin 2 ;~ and on the basis of equation ( 4) 

generating Pn(q) polynomials , the solution of equation (1 9) is obtained in the 
form 

m-1 

Um(k) = Pm(qk)U1(k) + L Pm-l(qk) h2 r/(k), m= 2, 3, ... , M- 1.(21) 
l=l 

From (21) the values Um(k) can be found in all nodes of cliscretization. The 
values U1(k) in the equation (21) are calculated from the boundary conditions 

uo,n = 0 and UM,n = 0, n = 0, 1, ... , N. (22) 

When N =M and n = 1, the second equation shown above is appeared as 
follows 

M-1 

0 = UM,1 = .J2 L UM(k) sin':. (23) 
k=1 

Doing similarly for n = 2, . .. , lvf- 1, the system of M- l equations can be 
obtained to calculate a set of coefficients U M ( k), k = 1, 2, ... , M - 1. 

Then after a substitution of these coefficients to the equation (21) for m= 
M, a set of coefficients UI(k), k = 1, 2, ... , M- l can be found. Next, on the 
basis of equation (18), (21) the solution of equation (15) can be calculated a.s a. 
set of potential function values at nodes of cliscretization. 
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The above algorithm of calculation was implemented in the form of a. com­
puter program to analyse the system described by Poisson equation (15). The 
results of calculations are presented a.s graphs of potential function for different 
steps of discretiza.tion. Also the analytical solution if exists can be given on the 
input. It is used to calculate an error's distribution served for the comparison 
between the calculated and exact solution. 

After some modifications of the above algorithm, another algorithm was 
constructed to solve inverse problem of the system described by equation (!5) . 
The task consists in the calculation of unknown field sources function J for 
known the potential function u and given boundary conditions described by 
equations (16), (22). The solution is calculated using elaborated algorithm 
in two stages. Within the first stage, the task consists in calculation of the 
matrix of Fourier series coefficients for discrete values of potentia.! function V.m,n 

in accordance with equation (18). For example, when m = 1 the connection 
between coefficients U1 (k) in demand and values u 1,n can be presented in the 
matrix equation 

- 1 -1-
u1 = V2s T1, (24) 

where 01 is a vector which consists of coefficients U1 ( k) for k: = l, 2, .. . , N - 1, 
the vector T1 consists of values of potential function u1,n for n = 1, 2, ... , N -1, 
and the matrix S is defined by suitable values of the sine function. 

During the second stage of calculations, the matrix F of Fourier series co­
efficients is determined for the field sources function development. Values of 
elements in rows 1 to M - 2 can be calculated from following form ula 

F (k:) = Uz+l- Pi+1(q(k))U1(k)- 2:;=~ Pt+l - i(q(k))h2 }i (k) 
t Pl(q(k))h2 

(25) 

Whereas the calculations M - 1 row of matrix F are done on the basis of 
boundary conditions (22). 

The last operation is determination of the matrix JP which corresponds with 
the matrix J in the algorithm for a direct problem. For calculated elements of 
matrix F, the elements of matrix JP can be constructed on the basis of following 
equation 

M-1 

Jp(m, n) = V2 L Fm(k) sin k~n, 
k= l 

(26) 

where m, n means succeeding row and column respectively. 
The elaborated algorithms were established in the MATLAB language for PC 

computer. In order to test an accuracy of calculations, the computer simulations 
were carried out with special functions called the benchmark functions in the 
form 

fr(x,y) = 100(y2 -y+x2 -x), 
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60 

Figure 1. Benchmark source function h. 

h(x, y) = 300xy(x2 + y 2
- 2), 

h ( x, y) = -2 cos x sin y, 

for different steps of discretization. 
Some examples of benchmark functions are shown in Fig. 1 and Fig. 2. 
The corresponding potential functions illustrated exact solutions of the Pais­

son equation (15) are presented in Fig. 3 and Fig. 4. 
Calculated potential functions were obtained for different steps of discretiza.­

tion. For example, results of computer simulations for benchmark h are shown 
in Fig. 5 (M = 10) and in Fig. 6 (M = 20) to illustrate an effect of increase 
knots number of a. discretization grid. 

The analytical solutions agree quite well with ones obtained by using the 
elaborated algorithms of numerical calculations. This proves the efficiency of 
the established method in the practical use. 

5. Identification of field sources 

The elaborated algorithms for solving inverse problems were tested using the ex­
perimental data. to verify numerical calculations. These experimental data. were 
obtained from measurements of potential distribution on the thin conductive 
plate or thin conductive layer placed on a. plate of perfect insulator, Trza.ska., 
Rydygier (1998) . 

In investigated systems, the point current constraints are sources of potential 
field. For example several sets of experimental data. are shown in Fig. 7 (for 
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Figure 3. Analytical solution of Poisson equation for h. 
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Figure 4. Analytical solution of Poisson equation for h. 
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Figure 5. Calculated potential function for M = 10. 
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Calculated lrJd unction br benchmark ft and M=20 

25 

Figure 6. Calculated potential function for M = 20. 
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Figure 7. Experimental data. for one source. 
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E xperim ert a data br a I h n rJ ate 

Figure 8. Experimental data for two sources. 

one source), in Fig. 8 (for two sources), in Fig. 9 (for another distribution of 
two sources), and Fig. 10 (for three sources). 

Except the data presented in Fig 9 which refer to results of potentia.! mea­
surements on a. thin conductive layer, others refer to results of measurements on 
a. thin conductive plate. The data. were prepared in a. form of two-dimensional 
tables. These tables were introduced to the computer program as tbe input 
data.. The input data. were treated by the program like given values of potentia.! 
function at nodes of discretiza.tion within the investigated domain. The values 
of boundary conditions were placed inside the program. 

Result of calculations made using the combinatorial method was a. set of 
values determining discrete spatial distribution of field sources function. A 
location of field sources was defined on the basis of points placed inside the 
domain which correspond to the maxima of field sources function. Next, the 
maximum values of calculated functions were used to estimate intensities of 
sources. 

During experimentaJ verification, some detailed problems have been solved. 
These problems are connected with a data treatment like a two-dimensional 
interpolation and a. smoothing of scattered data a.s well as an approximation 
of function circumscribed the field sources distribution. These approximation 
procedures were used in order to stabilize the results as a. form of regularization 
method, Engl (1996). Together with the estimation limits of a step of discretiza­
tion, the different approximation procedures were used special methods leading 
to the self-regularization, Kurpisz (1995) . The correct results were obtained for 
approximation procedure elaborated on the basis of an inverse distance method 
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Expaimerta data bra tlin laya 

0 0 

Figure 9. Experimental data for two sources in a thin layer. 

Expaimertoj data bra thin plate 
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Figure 10. Experimental data. for three sources. 
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Figure 12. Identification of two sources. 
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Figure 13. Identification of two sources for thin layer. 
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named also the Shepard 's method, Allasia (1992), Gordon (1978). Exemplary 
results of self-regularization method are the graphs of approximated field sources 
function which are presented in Figs. 11-14. These graphs correspond to the 
sets of experimental data. presented above. After the experimental verification, 
it should be noted that for solving inverse problems the algorithm using the 
combinatorial method allows to determine both localization and intensities of 
field sources with good accuracy. 

The elaborated combinatorial method can be applied to determine inverse 
heat sources which are solutions of different practical heat transfer problems, 
Malyshev (1989) , Matrin (1996) and to locate corrosion domains on iron and 
carbon steel surfaces, Inglese (1997), Isa.a.cs (1996). 

Results of presented research can be utilized to improve usable properties 
of metal plates in production process in the industry. Also the results of this 
work can be used to build integrated computer systems for identification of thin 
layers properties in particular the heterogeneous spots in their structure. 

6. Applications of combinatorial method 

After the experimental verification, the elaborated combinatorial method was 
tested for detailed problems. Especially, the heat transfer problem was examined 
for a resistance sintering of a. tungsten rod. It corresponds to a. tungsten rod 
manufacturing that is widely used in the practice. The investigated system is 
described by the Poisson equation 

82T(x, y) 82T(x, y) 
-~~+ =q 

8x2 8y2 
(27) 

where q = const, T(x, y) means temperature distribution on a. rectangular plane 
of cross-section of a. rod. 

The equation (27) is completed with zero-value boundary conditions. In the 
resistance sintering problem, heat is generated by an electrical current. 

The exemplary temperature data is shown in Fig. 15 for a. rod of O.Oll x 
O.Oll x 0.446 m sizes. This is a. distribution of temperature refer to a. plane of 
cross-section at z = 0.2355 m (the z axis is putted along the length of a. rod). 

The inverse problem for the system described by equation (27) consists in 
a. calculation a. field sources function q. Ca.lcula.tions were done using square 
net of 15 x 15 nodes for discretization. As a. result of ca.lcula.tions, the constant 
field sources function was obtained. The calculated function q is shown in Fig. 
16. The conclusion on the investigated above problem is that an estimation of 
field sources distribution can't be done only on the basis of experimental data 
of potential function. The reliable identification of field sources can be realized 
on the basis of field sources function obtained as a suitable inverse problem 
solution. 

Another detailed problem is a use of combinatorial method for 2-D systems 
that have a. complicated shape. The problem from elastosta.tics is considered for 
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Figure 15. Temperature data for a tungsten rod. 
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.BI.ixiliary l.mction bra balk torsirn 

0 0 

Figure 17. Input data for a. torsion of the I-bar. 

torsion of a metal I-bar. The 2-D system taken from the practice is described 
by the Poisson equation 

82~(x,y) 82~(x,y) 
8x2 + 8y2 = q (28) 

where ~(x, y) means an auxiliary function connected with a torsion angle on a 
cross-section plane of a bar, q is a constant function. 

The equation (28) is completed with zero-value boundary conditions. The 
input data on a cross-section plane of the I -bar of 1 6" x 6" sizes are shown in Fig. 
17. The calculated field sources function q is shown in Fig. 18. Calculations 
are done using a net of 19 x 19 nodes for discretization. 

The application of a combinatorial method to 2-D systems with complicated 
shapes consists on a substitution zero-values for the nodes placed beyond the 
limits of a cross-section domain. Then calculations were made like for square 
domain of discretiza.tion. 

It should be noted that the proposed approach of calculations for complicated 
shapes is simple and effective. In the events of disturbances, the additional 
calculations with a use of smoothing and approximation procedures must be 
done. 

7. Conclusions 

In this paper a new approach to solve inverse problems for 2-D systems is pre­
sented. This approach is named the combinatorial method. Numerical algo-
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Field scurces IJnct ion tr a balk torsion 

Figure 18. Field sources function for a torsion of the 1-ba.r. 

rithms were constructed using monic power polynomials generated by modified 
numerical triangles. After a comparison of the combinatorial method with an­
other numerical methods used to solve different inverse problems, Anger (1 990), 
Botkin (1995), Flis (1996), Huang (1992), Isaacs (1996), Ma.lyshev (1 989), Ry­
dygier (1998), it can be found that this new method is effective and easy to 
use. The advantages of combinatorial method are simplicity of calculations on 
account of a use of recurrence equations defining monic polynomials, a high 
accuracy of calculations, and ease to implement the numerical algorithms in the 
MATLAB package. 
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