PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Horocyclic Radon transform on Damek-Ricci space

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We study the horocyclic Radon transform, defined in [5], of Damek-Ricci space. This transform R is obtained by integration over an orbitals family of NA space. We establish a Plancherel's formula for this transform. In particular, we characterize the range of horocyclic Radon transform of certain subspace of [L^2] ( NA, dx). The operators R and R*, where R* is the dual Radon transform of R, are inverted by a differential operator with constant coefficients (if dim NA is odd), or an integro-differential operator (if dim NA is even). The inversion formulas obtained are similar to the inversion formulas in symmetric space of noncompact type (see [7], [18], [19]). Also, we prove a radial Paley-Wiener-Schwartz's theorem for Damek-Ricci space.
Rocznik
Strony
107--140
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
  • Departement of Mathematics And Informatic, Faculty of Science, University of Hassan Ii, Ain-Chock, Route D'eljadida, Bp 5366, Maarif, Casablanca, Morocco
  • Departement of Mathematics And Informatic, Faculty of Science, University of Hassan Ii, Ain-Chock, Route D'eljadida, Bp 5366, Maarif, Casablanca, Morocco
Bibliografia
  • [1] F. Astengo, A class of Lp convolutors on harmonic extensions of H-type groups, J. Lie Theory, 5 (1995) 147-164.
  • [2] F. Astengo, The maximal ideal space of a heat algebra on solvable extensions of H-type groups, Boll. Un. Mat. Ital. A (7), 9 (1995) 157-165.
  • [3] F. Astengo, B. Di Blasio, A Paley-Wiener theorem on harmonic spaces, Safi-Colloque, Maroc 1998.
  • [4] F. Astengo, R. Camporesi, B. Di Blasio, The Helgason-Fourier transform on a class of nonsymmetric harmonic spaces, Bull. Austral. Math. Soc., 55 (1997) 405-424.
  • [5] F. Astengo, M. Cowling, B. Di Blasio, M. Sundari, Hardy's uncertainty principle on certain Lie groups, Safi-Colloque, Maroc 1998.
  • [6] F. Bayen, C. Margaria, Distributions, Analyse de Fourier et Transformation de Laplace, Ellipses., 3 (1988).
  • [7] R. Beerends, On the Abel transform and its inversion, Ph.D. Thesis, Leiden University 1987.
  • [8] M. Cowling, A. H. Dooley, A. Korányi, F. Ricci, An approch to symmetric space of rank one via groups of Heisenberg-type, J. Geom. Anal., to be published.
  • [9] E. Damek, A Poisson kernel on Heisenberg type nilpotent groups, Colloq. Math. L., III (1987) 239-247.
  • [10] E. Damek, The geometry of a semi-direct extension of a Heisenberg type nilpotent group, Coll. Math., 53 (2) (1987) 255-268.
  • [11] E. Damek, F. Ricci, Harmonic analysis on solvable extension of H-type groups, J. Geom. Anal. 2, 3 (1992) 213-248.
  • [12] E. Damek, F. Ricci, A class of nonsymmetric harmonic Riemannian spaces, Bull. Amer. Math. Soc., 27 (1) (1992) 139-142.
  • [13] B. Di Blasio, Paley-Wiener type theorem on harmonic extension of H-type groups, Monatsh. Math., 123 (1987) 21-42.
  • [14] M. Flensted-Jensen, Spherical function on rank one symmetric spaces and generalizations, Proc. Sympos. Pure Math., Amer. Math. Soc., Providence, R.I., 10 (1973).
  • [15] S. G. Gindikin, and F.L Karpelevič, Plancherel measure of Riemannian symmetric spaces of nonpositive curvature, Soy. Math., 3 (1962) 962-965.
  • [16] I. S. Gradshtein, I. M. Ryzhik, Table of Integrals, Series and Products, Academic Press, New York 1963.
  • [17] Harish-Chandra, Spherical functions on a semisimple Lie group I, Amer. J. Math., 80 (1958) 241-310.
  • [18] S. Helgason, A duality for symmetric spaces with applications to group representations, Adv. Math., 5 (1970) 1-154.
  • [19] S. Helgason, Geometric analysis on symmetric spaces, Math. Surveys Monogr., 39 (1994).
  • [20] L. Hörmander, Linear partial differential operators, Springer-Verlag, Berlin 1964.
  • [21] A. Kaplan, Fundamental solution for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc., 258 (1980) 147-153.
  • [22] T. Koornwinder, A new proof of a Paley-Wiener type theorem for the Jacobi transform, Ark. Mat., 13 (1975) 145-159.
  • [23] D. Ludwig, The Radon transform on Euclidean space, Comm. Pure Appl. Math., 19 (1966) 49-81.
  • [24] A. Nikiforov, V. Ouvarov, Eléments de la théorie des fonctions spéciales, Mir 1976.
  • [25] F. Ricci, The spherical transformation on harmonic extension of H -type groups, Rend. Sem. Math. Univ. Politec. Torino, 504 (1992) 381-392.
  • [26] E. Stein, Harmonic analysis, Real variable methodes orthogonality and oscil¬latory integrals, Princeton University Press 1993.
  • [27] G. Warner, Harmonic analysis on semi-simple groups. Part I, Springer-Verlag, Berlin Heidelberg New York 1972.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0001-0617
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.