Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We study the horocyclic Radon transform, defined in [5], of Damek-Ricci space. This transform R is obtained by integration over an orbitals family of NA space. We establish a Plancherel's formula for this transform. In particular, we characterize the range of horocyclic Radon transform of certain subspace of [L^2] ( NA, dx). The operators R and R*, where R* is the dual Radon transform of R, are inverted by a differential operator with constant coefficients (if dim NA is odd), or an integro-differential operator (if dim NA is even). The inversion formulas obtained are similar to the inversion formulas in symmetric space of noncompact type (see [7], [18], [19]). Also, we prove a radial Paley-Wiener-Schwartz's theorem for Damek-Ricci space.
Wydawca
Rocznik
Tom
Strony
107--140
Opis fizyczny
Bibliogr. 27 poz.,
Twórcy
autor
autor
Bibliografia
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0001-0617