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Abstract: We derive conditions for Hélder calmness of minimal
poiuts of a given set, as a function of a parameter appearing in the
description of the set. Different eriteria are proved depending on
whether the ordering cone has a nonempty interior or not.
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1. Introduction.

We investigate Holder-like properties of minimal points of a set depending upon
a parameter. The goal is to provide a general framework for stability anal-
ysis of parametric vector optimization problems. From the results obtained
one can easily derive the conditions for stability of minimal points in paramet-
ric vector optimization problems. These conditions, in turn, can be viewed as
vector counterparts of conditions for stability of the optimal value function in
scalar parametric optimization problems. Our results depend essentially on the
behaviour of the containment and the weak contaimment rate functions, intro-
duced in the present paper. These functions are specilic for stability analysis in
vector case, Their appearance is caused by the fact that in veclor oplimization
we work with partial orders ouly.

Lipschite-like properties of multifunctions were investigated by many au-
thors, e.g. by Robinson (1981, 1976), Aubin (1934, 1985), Clarke (1983). They
play an importaut role in stability of nonlinear programming problems, see e.g,
Henwrion and Outrata (2001), Klatte and Kumuner (2001). We deline Holder
counderparts of these notions with orders other than 1 (and not necessarily
smaller than 1). This allows us to investigaie the influence of the order of
change of a given nmltifunclion, and of the speed of growth of the containment
and Lhe weak containinent rate funetions, upon the order of change of minimal
point multifunction.

In Theorem 3.1 we give conditions for Holder calinness of minimal points, 1t is
worth noticing thal, as a conseqquence of assumptions, we obtain that int X # 9.
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separately and requires other techniques. We propose dual approach. We exploit
the quasi-interior of a cone awd the description of a cone by its dual. The main
result related to the case int K = @ is given in Theorem 5.1.
Let ¥ and U be normed spaces and let By denote the open unit ball in Y.

We say that a multivalued mapping T': U= Y, is
(H1) upper pseudo-Hilder ov Hilder calm at (uo.wo). wo € [ug). il. for a

neighbourhiood V oof gy and a neighbourhood Uy of wy, there are positive

L and g such that

Mu)nV C D{ug) + Lfju — ug||"By, ue Uy

(H2) lower pseudo-Hilder at (ug, yo). wo € Tlug). if, for a neighbourhood V of

yo and a neighbourhood Uy of up, there are positive L and ¢ such that

D{wg) 0V C D) + L]|uw — ual|*By., ue Uy
For g = 1, (H1) reduces to calmuess (see Henrion, Qutrata, 2001, Klatte, Kum-
mer, 2002). Criteria for caluness of diflerent multifunctions can be found eg.,
in Henrion and Outrata (2001). For instance, il S{y) = [—s(y). s(y)], where
syl =1+ v"m y € i, then § is not calm at (0, 1) (see Klatte and Kumumer,
2001), but it is Hélder calm at (0, 1) with order 1/2.
Let ACY be asubset of ¥ and let XX C Y be a closed convex pointed cone

inY, Kn(=K)={0}. Wesay that yo € A is
(M1) minimul point, yo € Minga, if AN (g = K) = {mw}.
(M2) local minimal point, if yo € Mingqy, where Vs a neighbourhood of yg.
When A C Y is a convex subset of ¥,

Minany C Ming. (1)

To see this, suppose that yg € Min,, ie., there exists 3y € A such that i =
wo € =K. By convexity, Ayo+ (1 =M C AN(y=K), 0 < A <1, and
Ao+ (l=XmeV,for0< A< A<1, Hence, yo & Minamv.

2. Containment property and its characterizing functions

Let X € ¥ be a closed convex pointed cone in Y. For any subset O € ¥ the
point to set distance d(x,C) is given as d{z,C) = f{]|lz - ¢f| | ¢ € C}, and
the £ neighbourhood of the set C is given as B(C.e) = {y e ¥ | d(y.C) < £}.
Denote Cle) = {c € C | d{c, Ming) = €}

We say that the confarnment properiy (CP) (Bednarczuk, 2002) holds for a
subset O C V if for any £ > 0 there exists § > 0 such that

Cle) + 6By € Ming + K.
We define the cone containment function, cont : K — Y as follows
cont{k) = sup{r 20| k++rBy C X}.
If itk = 0, then cont = 0. Since K is closed, the supremmm is always

attained, ie., k + cont(k)By € K. The cone coutainment funclion is posi-
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(ii) Mingry s K= lower bounded and weakly closed and K has o weakly
compact base,
then y = ny + ky, with n, € Mincav, and ky + penv(y)By C K.

Proaf. Let y € Mingqy + K. For each n > 0, there exists a representation
Y =1 + ku, 1 € Mingay Ny = K), ky + cont(k,)By C K, and

1
cont(kn) € perv(y) and cm!{kn}}.ﬂcrnv{y]—;-

We claim that under either (i) or (ii) the sequences {n,} and {k,} converge to
o, and kg, respectively, and

y =m0+ ko. (2)

If () holds, the sequence {1, } contains a weakly convergent subsequence. With-
out loss of generality we can assume that {,} weakly converges to an g €
Mincny Ny — K). By this, the sequence {k,} weakly converges to kg € K and
we get (2).

If (i) holds, and & € K is a weakly compact base of X, then k, = A8,
Aw = 0, and {#,} C O coutains a weakly convergent subsequence. Again, we
can assume that {#,} weakly converges to 8 € ©. If there were A, — +o0,
then

l i
— 1y = —_ =}
e (n v) ]

and —f#y € R,(C) N (-X), contradictory to K-lower boundedness of C. Hence,
An = M < +oo. Consequently, {k,} weakly converges to kg € K, and {n,}
weakly converges to ng = y=kp. Since Mingny is weakly closed, 1 € Mingay,
and (2} follows.

To complete the proof we need to show that ks + penvi(y)By C K. On
the contrary, il we have kg + poav(y)io € K, by € By, then, by separation
arguments, there exists a linear continuous functional [ such that

Stk + o (y)bo) < 0 < f(k) for k € K.

Cousequently, there would be

Sk + conl{fy)lg)
= f(ko + pcov(¥lbo) + f(ka — ko) + flcont(ka) — penv(y)]bo) < 0,
contradictory to the fact that k, + coni(k,) By C K. |

Based on Proposition 2.1 we prove continuity of the rate of containment pie.

Tueorem 2.1 Let (Y, ]| - 1) be a novmed spuce, Let X C Y be a closed conver
poinded cone in Y and let CCY be a subsel of ¥, Lel yp € int{ Ming + K).
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(i) Ming 1s weakly compact,
(i} Ming is K—lower bounded and weakly closed and K has o weakly compact
buse,

the funclion po s conlinuous al .

Proof. Let vy € int{ Mine + K). We start by proving the lower semicontinuity
of pe at yg. By Proposition 2.1,
yo = 1o + ko, mo € Ming, ko + pc{in)By C K. (3)
Take any € > 0 and v € § By, where § = min{e, pe(y0)/2}. By (3),
wtv=m+ka+v, meE Mne, ko+vek
Moreover, since v + (pe(m) = vl By € pelyo) By, we get

ue(yo +v) = pcly) = llvll > pelw) — e

which proves the lower semicontinuity of uc at yo.

To show the upper semicontinuity of pe at yp suppose, on the contrary, that
for a certain ¥ > 0 and each & > 0 there would be vs € min{é. uc(yo)} By such
that pel(yo + vs) = pelyo) + 5. This would mean that for each vy there would
be a representation

yotus=k+7 Fek, e Ming, (4)
where yg =k + 7, k + pelya) By € K, such that
cont(k) > pc(yo) + &, ie. k+ [nc(wo)+E|By C K.

By (4), wo = % + k1, where ky = k — vs. Since vs + [uc(yo) + 1/28|By C
[ne{uo) + E]By for & < 1/28, we would get

ky + [ue(wo) + 1/28) By € k + [uc(w) + E]By C K,
contradictory to the definition of pe(yg). |

ProrosiTion 2.2 Let ¥ = (Y, || - ||) be e normed space. Let X C Y be a closed
conver potnted cone in Y and let C C Y be a subset of Y. Let V C Y be an open
subset of Y. Suppose that (CP) holds for COV. If, for uny y € Mingav + K,
either of the conditions holds:

(i} Mingnyv 15 weakly compact,

(ii) Mingay is K—=lower bounded and weakly closed and KX has a weakly com-

pact base,

then, for anye >0

(CNV)(e) + bcavie)By C Mincry + K.
Proof. Let € > 0. By (CP), (CnV)(e) C Mingcay + K. By Proposition 2.1, for

auy y € (CNV)(g) we have y = n,+k,, where iy € Mingav, by +pcev (8] By C
K. Conseauentlv, 4 4+ b (21 By © Minqmr + K, [ ]
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3. Holderian calmness of minimal points for cones with
nonempty interior

Let T': U = Y bLe a set-valued mapping. The set-valued mapping M : ' =2 Y,

defined as
M{ﬂ.j - ‘Hl-ﬂrtn}

is called the minimal point multifunction. Here we formulate conditions for
Hélder calmness of M,

THEOREM 3.1 Let ¥ = (Y, |) and U = (U,|| - |I) be novmed spaces. Let
K CY bea closed conver pointed cone in Y. LeiI': U =2 Y be a sel-valued
mapping with Mug) conver.  Let, for o neighbourhood V' of yo € M{ug), T
be upper pseudo-Holder a! (g, yo) with order gy ond constant Ly, and lower
pseudo-Hilder at (ug,yo) with order g2 and constand La. Suppose thel one of
the following conditions folds:

(i) Minp(u ymv s weakly compact,
(it) Minpgu oy is K=lower bounded and weakly closed and K has a weakly
compact buse,
If

(Al) drpu,nvie) 2 c e, e> 0, fore < ep, 0> 0,
then M is upper pseudo-Hdlder af vy, i.e.,

1
M{u) NV C M(ug)+ (LL + (L1 = LE)J )Hu - 1=n||mi“lm'wygdi'ﬁr
i

for all v an some neighbourhood of wg.

Proof. By assunplions, there is a positive & such that
Mug) OV C Tlwe) + Lallu = upl|™ By, amd
Flu) NV C Tlug) + Lyflu = wgl|™ - By

c [M:'up:"q,m— + Ly - |l — up||* - By

Lt LaXs o
+( Ly : z) S TR o e B},l
1
- o L + LE F min gy g
u[(] (va)\ (Mm”"”mr i ( I ¢ ) Jlu ~ o =<5 B'*‘))

+Ly - ”u - un”"” . Hr] . {"EIJE]
whenever |Ju = ug)| < ». We claim that

M(u)nVn [(T{HGH (M-iur:mm'

.f’L"l"Lz\'Iill... bt

”1.'1‘\1 I N | [P | L T ﬂ,...| - M (&
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for ||u = ug|| < k. or equivalently
Muz)nVn [(l‘{-u.ujl nvy (Miﬂrf.m}nv
b 4+ Is\? sl o)
""(%) [l = uall . Bv)) + Lyf|lu = ugl|™ - Br] = .

Let us take any y € U{u) NV, such that ¢ = v + by, where

&
¥ = ]"{'ﬁlul n V I|I|| (J‘l"iur[uol‘nv + (Ll ":; LE) F |I-“_ - JIU!IN.M?-Q- } : -H",)1

and by € Ly||n — ug||* - By. By Proposition 2.2,

Y=tk 0y € Mi‘"l;‘fuu].m'u
. Ly 4L minley 0 ;
It'-,, + ﬁI.{lin]nF (( 3 = 2) |l‘li = u|;|. I-'__L-ﬁl) ¥ Hr C K.

By the lower pseudo-Hélder property of I', 5, = 5 + ba, 11 € I'(u), bz €
Lallie — wpf|™ - By, ln view of thie assum |-tit-1u1 by chosing & small enough, we

obitain Sy, my (2l ”‘ ]v |te = wq| - )2 (I + La)l|u — wl|™imv2d qaul
consequently

¥-n=vt+bh -y +br=uy+k+b -9y + b
C ky + (L1 + La)||lu - u.,||"'i"‘*r'~'ﬂ=I - By

L + L-'r i gy 5
ek +~‘-‘r:..u;m-(( C ) e ~ u@u—’—L) B oK

c
By this, y € M{u)n V', and (*) follows. Hence, by (1)

M{u) NV € Mypgay + Ly - lu— uo||™ - By

4
Ly 4+ La\r wrin { gy 9 b
+ (..'r_"*) it By

= A-'f{ﬂ.u_] + (LI T (Lt ':' Lz) )"“" o |||It"|.{q-| _|_'l.i:|

for ||u = ug|] < x. which completes the proof. |

By Remark 2.1, the asswnption 6(g) > o= implies that int X #£ @, The
convexity of ['(ug) allows us Lo make use of (1) and can be replaced by any
other condition ensuring (1); in the case V = ¥ the convexity of I'ug) is not

(UL ppryT———— S SPI—- [ e, [ SR b S p— Py g LT 1]
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4. Weak containment property and its characterizing
function

As we have noted the assumption (A1) of Theorem 3.1 might hold true only when
int K # 0. However, in some important spaces, standard cones of nonnegative
elements have empty interiors. We propose to treat such cases via dual cones.

Let Y be a Hausdorfl topological vector space with topological dual Y*. Let
K C Y be a closed convex cone in Y. The cone K* CY",

K'={feY" | f(k)z0 forall kek}
is the dual to K. The gquasi-interior of K* (see Jahn, 1986) is given as
K"={feY"|fly)>0forallyek\{0}}

Clearly, & is based if and only if £** 2 . Necessary and sufficient conditions en-
suring KC** # 0 are given in Gallagher (1995), Lemma 2.1 and Dauer, Gallagher
(1990), Proposition 2.1.

If int X is nonempty and e € int K, then @ = {J € K* | f(e) = 1} is a base
of X£*. On the other hand, K* is always based, and for any yy € K\ {0}, the
set ©% = {f e K*| f(yo) =1} is a base of K*'.

The bidual cone A2**,

K" ={yeY|fly)z0for fEX"},

is convex and weakly closed and in locally convex spaces X = K*" if and ouly
if K is convex and weakly closed (see Theorem 12.C of Holmes, 1975). The
quasi-interior of K (see Peressini, 1967, Schaefer, 1971, Krasnoselskii, Lifsclite,
Sobolev, 1985, Bakhtin, 1985) is given as

K'={keK|f(k)>0for f &K \{0}}

In locally convex space, if int £ # 0, then it K = K'. X' is nonempty if and
only if K is based (sce Lemma 2.1 of Gallagher, 1995). We refer to any base
" of K* of the form

@ ={fek'|flw)=1}), wmeK (5)

as a standard base.

ExampLe 4.1 (see Gallagher, 1995, Krasnoselskii, Lifschitz, Sobolev, 1985,
Peressini, 1967, Schaefer, 1971)

[ LetY = R™, K C Y be a closed conver pointed cone. For any conves

subsel A, cor(A) coincides with the topological interior of A. Hence, ey.,

for the cone K = {(y1,32) | 1 2 0p = w2} we ged K* = {(f1. o) | ]2 2
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2, For any p € [1,+0¢) consider the sequence space {7, of sequences s = {5;}
wilh real terms,

ol
e ={s={s:}| X lsil < +o0},
=
with the nalural (.I:I'TIEHEJ:I'Ig come
Co={s={u}ell|s20}
The ordering cone £, has empty topological interior and empty algebraic
inlerior, t:{.rrfﬂ) ={. Bul
() ={s={s:i} € |5 >0}
3. For any p € [1,4+x), consider the space of all p-th Lebesque integrable
Junclions f: 0 — R wath the natural ordering cone
LY = {f € L¥| f(z) = 0 almost everywhere on Q}. _
The topological interior int{L ) and cor(LP) are both emply but K* # 0.
To see this recall thal
Wy ={rer| f fadu>0 for all g € L3\ {0}},
it
=1, and
(L) = {f € L”| f(x) > 0 almost everywhere on ).

1l
!-'+|?

We have the following Proposition.

ProrosiTioN 4.1 Lel ¥ be a locelly convez topological vector space and lef
KcY beaclosed conver cone with K*' # 0. Then
(i) k¥ C K\ {0},
(i) w—=—ellC* C K*.
(iil) K= {y €Y | fly) 20 forall f € K},
(iv) w—el{yeY | f(y) >0 foral feX*\{0}} C K.

FProof. (i) follows from the fact that in a locally convex space K = {y € ¥ |
fly)z0forall fekK*}

(i1} Since K*' ¢ K* and K* is weakly — + — closed, we get w—+—ellC*' C K.

(i) If & € K\ {0}, then f(k) > O for any f € K*', which proves that
Kc{yeV| fly) > Oforall f € K*}. The inclusion {y € ¥ | f(y) >
0 for all f € K*} C K is proved in Dauer, Gallagher (1990), Lemma 5.5.

(iv) Since K is weakly closed, w — elK* C K. [

Let € C Y be a subset of a normed space (Y, |- ||) and let X* has a base ©°.

DerFviTiON 4.1 The weak containment property (WCP) holds for C with re-
spect o ©* if for every € > 0 there exists § > 0 such that for each y € Cle) one
can find 1, € Minc satisfying

A L i r E A% = /M8 Fany
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Note that if y — #, satisfies (6), then y — 5, € K*. It has been shown Ly
Peressini (1967, sec. 4.4) that in the spaces (>, #, L*(Q), p > 1, the quasi-
interior K of the positive cone K4 coincides with the set of weak order units
(see Peressini, 1967, p. 184), i.e., for any yp € K, and any y € K, y # 0, there
exists z € Ky, 2 £ 0, such that z < gy and z < y. For the general result in
order complete vector lattices see Schaefer (1971), Th. 7.7.

In general, (WCP) depends upon base. In the sequel we give a characteri-
wation of bases for which (WCP) holds.

Now we define functions characterizing weak containment property. The
duwl cone contatnment funclion deonba. - K — Ry is deflined as

tleonig- (k) = inf{#*(k) | 8" € @ }.
Let C C Y be a subset of ¥, The function ve : Ming + K — Ry given as
ve(y) = sup{deonte-(y — n,) | 1y € Mine N (y - K)}

is the rute of weak contwmment of an element y € Y with respect lo C and K.
The function de : Ry — R = RU {£oc}. given as

del(e) = inf{vel(y) |y € Cle)}

is the rafe of weak containment of a set € with respect to K and 67,
Let yo € K°. Consider the standard base

0 = {8" € K" | 0" (o) = 1}.
For any k € K,
deontgs (k) = inf{8" (k) | 6" (wo) = 1, 8" € K"}, (7

is an infinite-dimensional lnear programming problem. By duality theory (sec
e.g. Barbu, Precupanu 1986, Ch. 3, par. 3, p. 233), it is the dual to the problem

supl{r |k —r-ya € K}, {8)

where r 15 a real number, r € R {compare also Barbu, Precupanu, 1986, Ch. 3,
Th. 3.4., p. 235). Since rg = 0 is feasible for (8), by Proposition 2.1, Ch. 3,
p. 197 of Barbu, Precupanu (1936), we have

0<sup{r |k—r- -y € K} <inf{#° (k)] 0" (yo) =1, 8" € K*}. (9
Suppose now that for a given k € X
inf{8°(k) | 8°(wo) = 1, 6" €K'} =F > 0.

Hence, for any #*(y) = 1, #* € K*, we have 8°(k) > 7, which entails that
k =Ty € K and
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and consequently,

S T-n)>af2,
for some n, € Miny N (y — K), i.e., (WCP) holds. |
ProrosiTion 4.3 Let (Y, || -|[) be a normed space and let C C Y be a subset of

Y. Let K C Y be e closed conver pointed cone in Y and let X* CY* be its dual
cone with a base @°.

For any y € Ming + K, if Ming Ny — K} 15 weakly compact, then there
exists 1y € Ming such that

ve(y) = deonte-(y — ).

Progf. Let y € Ming + K. By definition, deonta-(y = n) < ve(y), for each
1 € Ming N (y = K), and for any p > 0, there exists n, € Ming N (y = K) such
that for any * € ©°

#* (v = 1,) 2 deonte-(y = n,) > vely) — p.

Since Ming N (y — K) is weakly compact, the net {r,} contains a weakly con-
vergent subnet and without loss of generality we can assume that the net {7}
converges weakly to i, € Ming Ny — K). Since X is weakly closed, the net
{k, =y —1,} tends to some k, € X, and y = 0, + k,. Thus,

. iy —m ) > .
pAnL 0%(y —ny) 2 vely)

which completes the proof. ]

PrROPOSITION 4.4 Lel K C Y be a closed conver pointed cone in a lopologicel

vector space Y with K # 0. If ©F and ©3 are any two standard bases, with

Y1, 42 € K' such that y; € (ry; + K), 7 > 0, then there exists a positive real
number G with

deonte: (k) 2 8 - deonte; (k).
Proof. Let 91, 85 be any two standard bases, ie., for y,ye € K we have

8] = {8 e K" |6i(n) =1}
03 = {8 € K* | 3(y2) = 1}.

For any & € I, and #] € 97, there exists f_?z € 65 such that
B (k) = 0; ()8 (k),
where 83 (ya) > 0. Hence,

B3(k) > B (w2) inf B5(k) > @7 (y2) inl 63(k),
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and
i k) > i N i M 2
oieh; 110 2 el 4iva) Jof, O, <
Since y2 € -y + K, by (10), 8 = infy; co; 87 (y2) > 0, and by (12),
d-::mu',a; >3- f.!c'.t.rnf,a;. [ |

5. Holder calmness of minimal points for cones with pos-
sibly empty interiors

lu the present section we use the weak containment rate function to derive

conditions for Holder calmness of M.

A subset Fof Y™ 15 equicontinuous (Holmes, 1975, 12.D) if for any £ > 0 there
exists a O—neighbourhood W such that |f(W)] < e for any f € F. Equivalently,
there exists a balanced O=neighbourhood W such that f(W) < 1 foreach f € F,
i.e., F C (W)?. By Banach-Alaoglu theorem, W is weakly—+—compact. When
Y is a normed linear space, F' C ¥* iz equicontinuous il and only if it is bounded
i the norm topology of ¥*.

ProprosiTioN 5.1 Let X C Y be a closed conver pointed cone tn a novmed space
Y, int K $# 0. Then, for any subset A C Y, (CP) holds for A if and only of
(WCP) holds for A.

Proof. It follows from Lemma 2.2 of Gallagher (1995) that X* has a w -
s—compact, and hence an equicontinuous base ©*. By Proposition 4.4, if
(WCP) holds, then it holds for any equicontinuous base. Thus, (WO P) holds
for ©*. Take any ¢ > 0. By (WCP), there exists § > 0 such that for any
y € Ale) there exists n, € Min, satisfying

*(y—mn,) =6 forf" e,

Since 8 is equicontinuous, there exists a 0—neighbourhood O such that |87 (q)]|
<82 forge O, 0" € 8. Hence,

8 (y —my) 2 8 > 0"(q),
and finally
8 (y —my) +0%(q) = 6/2.

Suppose now that (CP) holds A. There exists § > 0 such that for y € A(e) we
have

y—1y +EB C K for some 1y, € Min,.
By taking any y € XK' = int K, we get Syg €68, 8 > 0, and
¥ —ny — dyo C K,
which means that {WCP) holds. |
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THEOREM 5.1 Let Y = (Y, ||-||) and U = (U, ||-||) be normed spaces. Let X CY
be w closed conver pointed cone i Y, and let K be ils dual with an equiconting-
ous base B°, Let T U =Y, be u sel-valued mapping, with I'ug) convex, which
is upper psewdo-Holder of order 8y wilh constand Ly and lower psewdo-Holder
of order {y with constant Lo al (yg.wp) € graphil') for a neighbourhood V. of
vo- If

lt] Lfrfu”nv(t} Ze-ef wilhe>0, fore <eg, 89> 0,

(i) Minppnv s weakly compact,
then M is wpper pseudo-Hilder al ug, 1.2,

+ in{dy.f
M{u)n VCM{un]l+(L1+ (ELl +L‘3) ') H“ _ “u“mill{n.E{-,ui},Bvl

c
Jor all v in some neighbourhood of ug.
Proof. In this proof we follow the same reasoning as in the proof of Theorem

3.1. Using the same notation we only need to show that under our assumptions,
for lu—woll < &

Mu)nvn [([‘{unj n¥y (M‘iﬂr{uu]nv

Ly 4+ L\ 7 mindly . fa)
+(2 ' *) R -Hy))+f4||u—ua||“~ﬁy] =9, (x)

c

To this aim take any

yel(w)nvn [(l'{un} nvy (Mf“rtua}nv

L
+ (EM) P e g,,)) + Ll - uoll - Hv}

for |u — ug)l < k. We have y = v+ b, where v € I'ug) NV \ (Minpu,nv +
! min{fy iy} .
(2B ) — ugf TF T - By ), by € Laflu— ol - By.

Since B is equicontinuous we can assume that #*(b) < 1, for each §* € 8°,
and b € By. Hence, for each b € L;[|u — up||® - By we have

—Lillu —uoll* < 8°(b) < Liflu - uoll.
By Proposition 4.3, there exists 5, € Minpg,, o satislying
6°(v =) 2 v(y) = inf 8°(y =) 2 drinv(e) 2 c-€" for e <eo,

for each #* € ©". By the lower pseudo-Hélder continuity of I', = 11 + ba,
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FCly-n)=0"y=-1+(v—n,)+ (5, = 1)
2 = Lallu = ug|l™ = La|lu - ugll™

LN maniy ez}
Hrwov |\ 27— ) llu =l ™7

> —(Ly 4 Lg)llu — wpl| ™€) 4 3(L, 4 Ly)||ue — wol™™ 112} 5 0.

Consequently, f{y — ) = 0forany f € K*, and y = 1 € K, which proves (=)
and completes the proof. ]

As in Theorem 3.1, the inequality dp,, yav 2 c£F is assumed to hold only for
£ close to xero, and the convexity of I'(ug) is needed only to ensure the inclusion
Minp(u,nv € Minp(y,)-

EXAMPLE 5.1 Lel K € R" be a conver closed cone in B wilh emply inferior,
Then K* C R has no base since the sel KT = {y € K* | y-x = 0 for euch
x € K} s a nontrivial linear subspece contamed i K*. This shows thal the
above Theorem cannot be applied to findte-dimensional case.

Examrre 5.2 Lel Y = ¢p be the space of all real sequences thal converye lo zero
with the usual positive cone K = (cg)y. Then (co)y has no inlerior point, and
K* is the usual posilive cone in the space €1, * = (') 4. The set of sequences
[£a} C € such that 5" £, = 1 15 a base for K* that is bounded and closed m the
norm topology.

The above example shows thal in some spaces. for standard cones K of
nonnegative elements there is il X = 0, and K* has a bounded base. This,
hiowever, is not the case for the space LF((1) where the nounegative cone lias
emply interior and does nol possess a bounded base.
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