PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hoelder continuity property of composite Julia sets

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we consider the composite Julia associated with a finite family of the proper polynomial mappings in [C^n]. We show its pluricomplex Green function is Hoelder continous. This yields in particular that the set preserves Markov's inequality.
Rocznik
Strony
391--399
Opis fizyczny
Bibliogr. 21 poz.,
Twórcy
autor
  • Institute of Mathematics, Jagiellonian University, Reymonta 4, 30-059 Kraków
Bibliografia
  • [1] W. Pleśniak, Recent progres in multavariate Markov inequality, in: Approximation Theory, Special Volume in Меmorу of Pтofessor Varma, eds.: N. K. Govil, J. Szabados, Marcel Dekker Inc., New York 1997.
  • [2] J. Siciak, Extremal plurisubharmonic functions in Сn, Ann. Polon. Math., 39 (1981) 175-211.
  • [3] J. Siciak, On metrics associated with extremal plurisubharmonic functions, Bul. Po1. Ac.: Math., 45(2) (1997) 151-161.
  • [4] L. Garleson, T. W. Gamelin, Complex Dynamics, Springer, New York 1993.
  • [5] L. Baribeаu, T. J. Ransford, Meromorphic imultifunctions in complex dуnаmics, Ergodic Theory Dynamical Systems, 12 (1992) 39-52.
  • [6] Ј. E. Fornaess, N. Sibonу, Complex dynamics in higher dimension I, Astérisque, 222 (1994) 201-231.
  • [7] М. Klimek, Metrics associated with extremal plurisubharmonic func,ions, Proc. Amer. Math. Soc., 123(9) (1995) 2763-2770.
  • [8] М. Klimek, Inverse iteration systems in Сn, Acta Universitatis Upsaliensis, to be published.
  • [9] М. Kosek; Hölder Continuity Property of filled-in Julia sets in Сn, Proc. Amer. Math. Soc., 125(7) (1997) 2029-2032.
  • [10] Ј. E. Fornaess, N. Sibony, Complex Hénon mappings in Cn and Fatou-Bieberliach domains, Duke Math. Journal, 65 (1992) 345-380.
  • [11] S. Friedland; J. Milner, Dynаmical properties of plane polynomial automorphisms, Ergodic Theory Dynamical Systems, 9 (1989) 67-99.
  • [12] М. Klimek, Pluripocential Тhеоrу, Oxford University Press, Oxford-New York-Tokyo 1991.
  • [13] C. Kuratowski, Topologie Vol. II, PWN, Warszawa 1961.
  • [14] D. H. Armitage, U. Kuran, The convexity of a domain and the subharmonicity of the signed distance function, Proc. Amer. Math. Soc., 93 (1985) 598-600.
  • [15] J. Siciak, Wiener's type sufficient conditions in CN, Univ. Iagl. Acta Math., 35 (1997) 47-74.
  • [16] A. A. Мarkov, On а problem posed by D. I. Mendeleev (in Russian), Izv. Akad. Nauk. St-Petersbourg, 62 (1889) 1-24.
  • [17] J. Siciak, Deqree of convergence of some sequences in the conformal mnapping theory, Colloq. Math., 16 (1967) 49-59.
  • [18] J. Lithneг, Comparing two versions of Markov's inequality on compact sets, J. Approx. Theory, 77 (1994) 202-211.
  • [19] L. Вiałas-Cież, Equivalence of Markov's propеrty and Hölder continuity of the. Green function for Cantor-type sets, East Journal on Approximations, 1(2) (1995) 249-253.
  • [20] L. Вiałas-Cież, Markov sets in C are not pluripolar, Bull. Pоl. Ac.: Math., 46(1) (1998) 83-89.
  • [21] A. Płoski, On the growth of proper polynomial mappings, Annn. Polon. Math., 45 (1985) 297-309.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0001-0612
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.