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Abstract: A question, which arises frequently in shape optimal 
design, is the convergence of domains. If the objective function is 
defined by using the solution of a PDE with boundary conditions, 
then also the convergence of the boundary is of importance. In 
this paper a criterion for a set of domains is defined, such that from 
On ---. n follows r n ---. r if one is restricting to this set of domains. 
Moreover it is proved that this criterion is sharp, meaning that if 
On ---. n ===} r n ---. r holds for any sequence of this set , then this 
criterion has to be fulfilled. A similar criterion for the convergence 
of the Lebesgue measure of the boundaries J.L(f n) ---. J.L(f) is given. 

K eywords: shape optimization, Hausdorff metric, Hausdorff 
convergence, hyperspace. 

1. Introduction 

In shape optimal design one usually has a set 0 of admissible domains, where 
one wants to find a domain r!* E 0 which for a cost functional J satisfies 

J(r!*) :S J(r!) for all r! E 0. 

If the cost functional J is defined by using the solution of some partial differential 
equation on n with boundary conditions in r := an, discontinuities in the cost 
functional may occur if On ---. n but r n -/-+ r . 

Denote for the rest of this article r := an the boundary of the domain 
n and r n := ann the boundaries of the domains On , respectively, where a 
domain means here a nonempty compact subset of JRN. For reasons of clearness, 
sometimes an is used instead of r (ann instead of r n, respectively) . 

Consider t he example of a membrane on On with Dirichlet boundary condi­
tions on r n. One can see that the limit of the solutions On := ( -1 , - ~] u ( ~, 1] 
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behaves still like there were a boundary in {0}, while the real solution of n with 
0 = [-1, 1] has no boundary condition in 0, see Fig. 1. 
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Figure 1. Convergence of the membrane problem for On = [- 1,- ~ J U [ ~, 1 J 

One frequently used convergence criterion in domain optimization is the 
convergence in the Hausdorff metric which has nice compactness propert ies for 
classes of closed sets. Unfortunately, the solution of a PDE may not converge to 
the solution for the limit domain when On ---+ S1 bnt r n + r, as one can see 
in the previous example. Various restrictions on the set of domains, like, for ex­
ample, a cone property or Lipschitz boundaries have been used in order to avoid 
difficulties of this kind, see, for example, Bucur and Zolesio (1994a), (1994b), 
(1994c), (1995), Pironneau (1984) , Haslinger and Neit taanmiiki (1988). It is 
well known that On ---+ 0 ::=::} fn ---+ r holds in Hausdorff sense for domains 
with Lipschitz boundary (see Example 3.2) or cone property (see Chenais, 1975, 
for definition), both with given constants. The motivat ion is now to find more 
general classes of sets such that On ---+ 0 ::=::} r n ---+ r holds. 

Consider now the membrane example on the sets On := [ - 1, 1 - ~] U 

[ 1 - 2~, 1 J. Note that these sets do not have a Lipschitz boundary nor satisfy 
a cone property with given constants. But one can notice heuristically that the 
boundaries r n converge to { -1' 1}' which is the boundary of the limit domain 
[ -1, 1], and also that the solutions of the membrane problems on On converge 
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Figure 2. Convergence of the membrane problem for fin = [- 1, 1- ~) U [ 1- 2
1n, 1) 

Consider now the following variation equations, which may result from 
boundary value problems: 

Find Un E V(nn) such that an(u,, v) = ln(v) Vv E V(nn), 

and analogously for the domain n: 

Find u E V(O) such that a(u,v) = l(v) Vv E V(n), 

where a11 , a are continuous, possibly symmetric V-elliptic bilinear forms on the 
Hilbert spaces V(nn), V(n), respectively. Analogously, ln and l arc continuous 
linear functionals on V(On) and V(On) , while a11 , l11 , a and l depend themselves 
on nn, n. 

The right hand side l11 (v) of variation equations arising from boundary value 
problems of Neumann type usually contains a term fr n fv d[ , fr fv d[ for l( v ), 
respectively. 

Let ns assume that there is a unique solution for the variation equations 
above (see the appropriate literature in this point). Consider now a series of do­
mains n" ___, n (in Hausdorff sense, see Section 2). If p.(r) > 0 then difficulties 
arise in evaluation of the term Ir fv d[. Such a case for nn ---; n, r n ---; r 
and p.(fn) = 0 for all n E N, but p.(f) > 0 is described in Section 4. 

Furthermore , consider the sequence n11. := { 2i" I i = 0, . . . '2n}' Of course, 
r, = nn and one can see intuitively that nn = r, converges for n ....... 00 to 
[0 , 1] in Hausdorff sense (this example will be treated later in a more exact 
way) . But t he Lebesgue measure of r n is always zero and does not converge 
to the Lebesgue measure of [0 , 1] which is 1. One may expect that the volume 
of n, will not be preserved , but t his example shows that also the sequence of 
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2. Preliminaries 

Now the basic ideas and results of Hausdorff metric and Hausdorff convergence 
will be described. Most of the notations and results here are from Salinet ti and 
Wetts (1979). Like in the reference, the results given there can be extended to 
more general normed linear spaces of finite dimension. 

DEFINITION 2.1 The distance between a point X E JRN and a set D c JRN is 
defined as: 

{

inf{llx-y!l} ifD::P0 
d(x, D) := yEO 

oo ifD = 0. 

The Hausdorff distance between two sets Dl c JRN and D2 c JRN is de­
fined as: 

dh(Dl, D2) := max{ sup { d(x, D2) }, sup { d(x, Dl)} }. 
xEflt x Efl2 

Following Salinetti and Wetts (1979) denote by B"(D) := { x E JRN I d(x, D) 
< c} the ball around D with radius c. Furthermore, for any set M denote by 
2M:= P(M) := {N INC M} ={!If: M--+ {0, 1}} the potential set of M. 

If X is a topological space, then a topological structure on 2X or on a subset 
of 2X is called a hyperspace of X. 

The following proposition gives the basic results for the Hausdorff distance, 
the interested reader is referred to Salinetti and Wetts (1979) and Alt (1992) 
for further details: 

PROPOSITION 2.1 

1. It holds that d(x, D) = d(x, fi). Furthermore, if D =I 0 is closed, then 
there exists y ED such that 0:::; d( x , D) = d(x, y) < oo. 

2. dh is nonnegative, symmetric and satisfies the triangle inequality on 

21RN X 21RN. If Dl' D2 is closed, then from dh (Dl' D2) = 0 follows Dl = D2. 
Furthermore dh is a metric on {D c JRN I D ::p 0 and D compact} and is 
called Hausdorff metric. 

3. For D1, D2 C JRN the Hausdorff distance can be expressed as: 
dh(Dl,D2) = inf{c > 0 I Dl c Be(D2) and D2 c Be(DI)} 

Using the Hausdorff metric also convergence for sequences of sets can be 
defined, which is a well established concept: 

DEFINITION 2.2 Let (Dn) be a series in {D c JRN I D =I 0 and D compact}. 
Dn converges in Hausdorff sense to D E {D c JRN I D ::p 0 and D compact} :<==::> 

h -
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The following proposition gives mainly the criteria for verifying this con­
vergence. It summarizes results of Pironneau (1984) and Salinetti and Wetts 
(1979), which will be used in the following sections. More details can also be 
found in Hausdorff (1962) and Mosco (1969): 

PROPOSITION 2.2 

1. Let 0, (On) E {0 c ~N I 0 closed}. Then 0,-..!!:._. 0 if and only if one of 
the following conditions holds: 

• 0 = 0 and there exists no E N such that for all n > no , On = 0. 
• For all e > 0 there exists a n" E N such that for all n > n" 

0 ::J 0 c Be(O,) and 0 ::J 0, c Be(O). 

2. If a sequence (0,) c {0 c JRN I 0 closed, bounded} has a Hausdorff 
limes 0, it can be written as: 

0 = {x E lRN l3((x,) C lRN sequence) ('v'(n EN) x, EOn) 

and x, -t x}. 

3. Let (O;,), 0 1 , (0~), 0 2 E {0 c JRN I 0 closed, bounded} with o;, -..!!:._. 0 1 

and 0~ -..!!:._. 0 2 . Then it holds that: 

• (V(n EN) o;, co;,)==} 0 1 c 0 2 

• o;, u o;, -..!!:._. o1 u o2 . 

3. Boundary convergence 

DEFINITION 3.1 Let Y C JRN . 
• Denote by H(JRN) := {0 c JRN I 0 ::J 0, closed, bounded} , together with 

the Hausdorff metric d,.( ., .) , the Hausdorff space on JRN . 
• Denote by H(Y) := {0 c y I 0 ::J 0, closed, bounded}, together with the 

Hausdorff metric d,.(., .), the Hausdorff space on Y. 

From Beer (1993), Theorem 3.2.4, one has immediately: 

C OROLLARY 3.1 Let Y C ~N. It holds that: 

• H(JRN) is complete. 
• H(Y) is compact in H(lRN) {:::::::} Y is compact in JRN. 

If 0, ~ 0 in H(JRN) , then (r,) can be divergent as the following example 
shows: 

{ 
[-1 , 1) 

On : = [ - 1, - ~) U [ ~ , 1) 
if n even 
if n odd. 

One can show that 0, ~ [ -1, 1), but the series of boundaries (r,) is divergent 
• ' ( 1 1 'l 1 ( 1 A 1 1 
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The main technical difficulty of this section is contained in the following 
lemma: 

LEMMA 3.1 Let (nn) C 1i(!RN), n E 1i(!RN) such that nn ~ n. Then (ann) 
has at least one cluster point e. Moreover, for each such cluster point e it 
holds that: 

an c e c n 

Proof. For c: > 0 arbitrary, but fixed, there exists, because of nn ~ n and 
proposition 2.2 (1), an n0 such that for all n ~no, nn c B"(n) where R(n) is 
bounded. Of course, also U;~1 ni is closed and bounded so that Y := U:~1 ni u 
Be(n) is a compact set. By Corollary 3.1 we have now that 1i(Y) is compact and 
therefore there exists a cluster point e of the sequence (fn) C 1i(Y) C 1i(!RN). 
Then, there exists a subsequence (from now on again denoted by (nn)) such 

that nn ...!:-+ n and r n ~ <-3. 
Now assume in a second step that t here exists an X E an such that X fl. e. 

Because e is closed there has to exist an c: > 0 such that 

B"(x) n e I= 0. (1) 

From fn ~ e one has by Proposition 2.2 (1 ) that there exists an no such that 
for all n ~no 

(2) 

Therefore, one gets with (1) that B~(x) n fn = 0 for all n ~ n0 . Hence, either 

B~(x) C RN \ nn or B~(x) C 011 has to hold. So, one can divide the sequence 
nn into two subsequences, both converging to n and their boundaries to e in 
Hausdorff sense, where at least one is infinite so that one has at least one of the 
two cases: 

1. (nj) such that B~(x) c RN \ nj: 

Because nn ~none has by Proposition 2.2 (1 ) that for some index j 0 , 

n c B~(nj) has to hold. So, this is a contradiction to X E an c n . 

2. (nk) such that B~(x) c Ok: 
Because X E an and n is closed there exists a y E RN \ n such that 
d(x, y) :S: ~, 0 < d(y, n ) =: 8 :S: ~ and one has from before that y E i"lk 

for all k. But this is a contradiction to nk ~ n because, by Proposition 
2.2 (1), a ko has to exist such tha t nk c Bf.(n) fork> k0 . 

2 

Hence, X must be also in e. 
Now in a third step e c n follows directly from n" ~ n, r n ~ e and 
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DEFINITION 3.2 Let f2 E 'H(JRN) and 8 ~ 0. Then we define: 

• gn(x, 8) := d(x, JRN \ Bo(D.)). 
• gn ( 8) : = sup go ( x, 8) is called the boundary complementary capacity of n. 

:rEr 

REMARK 3.1 It is convenient to collect the following prope1· theses of gn(8) 
which are readily observed: 

• Because n is bounded go(8) : JRt ----. JRt is a well defined function for 
each f2 E H(JRN). 

o go(O) = 0 because n is closed. 
• go is strictly increasing, because for 81 < 82 it is clear that B01 (n) C 

Bo2 (n), with Bo1 (D.) =/; Bo)v(f2). Therefore we have that for each x E D. 
d(x,JRN \BoJD.)) < d(x,JR \B02 (D.)) from which the assumption follows. 

e 9fl ( 8) ~ 8 because for all X E D. it holds by definition that d( X , JRN \ 
Bo ( n)) ~ 8 and because r c n this holds also for X E r. 

• gn(8) = dh(f,oBo(D.)) because d(y,f) = 8 for ally E oB0(f2)). From 
the previous point we know that d(x, JRN \ B0 (D.)) ~ 8 and by Proposition 
2.1 (1} that there exists ayE JRN \ B0 (D.) for which d(x,y) = d(x,JRN \ 
B0(D.)), because iRN \ B0 (D.) is closed. That y E JRN \ Bo(D.) has to be in 
o(JRN \ Bo(D.)), otherwise one could easily find one nea·rer to x. Now the 
assumption follows directiy from the definition of dh . 

DEFINITION 3.3 Let 0 C 1t(JRN) . Then we define: 
go(8) :== sup!!ECJ gn(b) is called the boundary complementm·y capacity of 0. 

REMARK 3.2 Of course also go(O) = 0, go(8) ~ 8 holds and go is strictly 
increasing. 

Let now 0 C H(JRN) such that go is continuous from the right in 0. 

Now choose a sequence (D.n) E 0 such that D.n ~ D. . Because H(JRN) is 
complete it holds that D. E H(JRN). 

From Lemma 3.1 we have now that there exists a subsequence of (D.n) (which 

again will be denoted by (D.n)) such that nn ~ nand rn ~ e, where 
r c e c n. So, select now an X E e. From Proposition 2.2 (2) one knows that 
there exists a sequence Xn ----> X with Xn E r n for all n E N. 

Because go is continuous from the right in 0 and the other properties of go 
hold we have that for each c > 0 there exists a 8 with 0 < 8 < c such that 
go(8)::; c. This means that fot:-all n EN it holds that d(xn ,]RN \-Bo(D.n))::; c. 

Because JRN \ B0(D.n) arc closed sets and by Proposition 2.1 (1), for every 
n EN there exists a Yn E JRN \ B0(D.n) such that d(y,,xn)::; c, where we have 

from before that d(yn, D.n) ~ 8. Because Yn is a sequence in the set u:=l Be:(x11 ), 

which is bounded because Xn ----> x, it has a cluster point y. Now it should be 
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Consider now one particular subsequence (which is again denoted by (nn)) 
h h 

for which it holds simultaneously that S1n -----+ S1, f n -----+ 8, Xn -----+ X and 
Yn -----+ Y· 

By the triangle inequality it holds that 

where d(x,xn)-----+ 0, d(yn,Y)-----+ 0 and d(xn,Yn) ~ t:. Therefore, also 

d(x, y) ~ t:. 

Furthermore, as n is closed we have by Proposition 2.1 (1), that there exists 
a z E n such that d(y, z) = d(y, n). Let now Zn be a sequence such that (see 
Proposition 2.2 (2)) Zn E nn for all n E .N and Zn -----+ z. Then we have by the 
triangle inequality 

/5 ~ d(yn, y) + d(y, z) + d(z, Zn) 

and as d(yn, y)-----+ 0 and d(z, Zn)-----+ 0 we get 

/5 ~ d(y, z) = d(y, n). 

So, finally We have that for an arbitrary X E e and for all t: > 0 there exists 
a y E Be(x) for which 0 < /5 ~ d(y, n). Therefore X must be a boundary point 
and we have proved the following: 

LEMMA 3.2 Let 0 C 1-l(IRN) and let go be continuous from right in 0. Then it 
holds for every sequence (S1n) C 0 that 

h h nn -----+ n ===} r n -----+ r. 

Additionally to the previous lemma, from the proof above one gets the fol­
lowing compactness criterion as a side result: 

LEMMA 3.3 Let g : IRci -----+ IRci be a function continuous from the right in 0. If 
there exists an 0 c 7-i(IRN), 0 -:f. 0 with go = g, then 1-l(g) := {n E 1-l(IRN) I 
gn ~ g} is complete. 

Using the lemmas above one can now prove the main result of this section: 

THEOREM 3.1 Let 0 be a compact subset of 7-i(JRN ). Then it holds that go is 
continuous from right in 0 if and only if for every sequence (n,) C 0 

h - h ~ 
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Proof. 
==}: Follows directly from Lemma 3.2. 

~: Let 0 be a compact subset of 1t(JRN) such that nn ~ n ==} r n ~ r. 
Assume now that go is not continuous from the right in 0, which means, as 

go(O) = 0 and go is strictly increasing, that there exists an E > 0 such that for 
all 8 > 0 go ( 8) > E. That means there exists an E > 0 such that for all 8 > 0 
there exists an n E 0 and X E r for which it holds that 

go.(x, 8) = d(x, JRN \ B6(0)) >E. (3) 

Let now E > 0 be such that (3) holds for all 8 > 0. 
Select a sequence 8k with 8k -----+ 0. Then one can select a sequence (Ok), 

and Xk E rk such that 

(4) 

where rk denotes the boundary of Ok. By compactness of 0 there exists a 

subsequence of f2k (again denoted by f2k) SUCh that f2k ~ f2 and Xk -----+ X. 
This can be done because (xk) is in the compact set u;:o1 01 u Bv(O), where v 
is such that for all m > mo Om C Bv(O) holds (by Proposition 2.2 (1)). 

By Proposition 2.2 (2) X E h-lim rk holds. If X E r then there has to be a 
y E JRN \0 such that d(x, y) < c/2. 

Let now ko be such that for all k > ko d(xk,x) < c/2. Then by the triangle 
inequality it holds that 

d(xk,y) :S d(xk,x) + d(x,y) <E. (5) 

Therefore, one can choose for k > k0 a sequence Yk such that Yk E nk and 
d(yk, y) :S 8k. (If y E Ok choose Yk := y. If y tj. Ok then by (4) and (5) y has 
to be in B6k (Ok), which means that d(y, Ok) < 8k. Therefore Yk E Ok can be 
selected such that d(y, Yk) :S 8k-) 

Hence we have constructed a sequence Yk -----+ y with Yk E nk and by Propo­
sition 2.2 (2) it holds that y E 0, which contradicts the choice of y E JRN \ 0. 
Therefore X E r cannot be true. • 

EXAMPLE 3.1 

• Let us consider the example mentioned in the introduction where the do­
mains On can be seen in Fig. 3: 

01 := {On:= [ -1, -~] U [~, 1]} U {[-1, 1]} 

Because for each 8 > 0 one can find annE N such that B0 (On)= J -(1 + 8), 
1 + 8[ by selecting n such that~ < 8. Then 8B0(0n) = { -(1 + 8), 1 + 8} 
and ann= { -1, -~, ~' 1 }. So go.(8) = 11 + 8- ~I > 1 because~ < 8. 
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-1 
l 
n 

Figure 3. fln = [ -- 1, -~] U [~, 1] 

• On the other hand we may consider the following example, see Fig. 4: 

02 : = { nn : = [ - 1' 1 - ~] u [ 1 - 2~ ' 1] } u { [ -1' 1]} 

Note that for this 0 2 the Lipschitz condition fo r the boundary or the cone 
property with given constants does not hold (the definition of the Lipschitz 

-1 1 

0 1- .l.. 
2n 

Figure 4. rln = r- 1,1- l j u [1- ,f.-, 1] 
• 1~ - n 

boundary can be found in E.1:ample 3.2, for the cone property see Chenais, 
1975). For every 8 > 0 one has 

- { ]-(1 + 8), 1 + 8[ if b > 4\ 
Bo(nn)- ]-(1 + 8) 1-l +8fu)1- .l..- 8 1 + 8[ zj8 < .1. 

' n L 2n ' - 4n 
and 

{ 
{ -(1 + 8), 1 + 8} if 8 > ;}-

oBo(n,.) = f -(1 + 8) 1-.!. + 8 1- .l..- 8 1 + 8} zf8 < .f 
l ' n ' 2n ' -- 4n 

where 

ann = { -1' 1 - ~' 1 - 2_' 1}. 
n 2n 

Therefore 

{
1.+8 zj'8>.l.. 
n 4{' 

90n = {; ij {; < __ 
- 4n 

and goJ 8) ::; 48 + 8 = 58. So go2 ( 8) is continuous from the right in 0. Es-

pecially for (Hn), for which nn ~ [-1 , 1] holds, this means by Lemma 3.2 

that ann~ a[-1, 1]. 

So, we see that if a hole vanishes, then it has to m ove close to a not vanishing 
. h h 

bo·undary, to make SUTe that from nn ~ n follOWS r n ~ r. 

Because domains with Lipschitz boundary play an important role in the . . 
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EXAMPLE 3.2 n c JRN has a Lipschitz boundary :{::=> there exist constants 
l > 0, l/ > 0 such that for all X= (x1, ... ,XN) E an there exists a local 
coordinate system (rotated with respect the original) and a function 

'" . K1, ... ,N-1(x)---+ lR y ---+ '" .(y ) .,-x · 11 1, ... ,N-1 .,-x 1, ... ,N-1 

which is Lipschitz continuous with constant l, such that for all y1, ... ,N - 1 E 
Kt, ... ,N-1(x) it holds that: 

• (Y1 , .. . ,N-1, CfJx(Y1, .. . ,N-d) E an 
• Y1, ... ,N-1 E Kt, .. . ,N- 1(x) and CfJx(Y1, ... ,N-1) < YN < CfJx(Y1, ... ,N-1) + 

lv,JN- 1 =>yEn 
• Y1, .. . ,N -1 E Kt·····N- 1(x) and CfJx(Y1, ... ,N-1) - lv,JN- 1 < YN < 

CfJx(Y1, ... ,N-d => Y rf_ 0 
where Kt ·····N- 1(x) denotes theN- 1 dimensional cube with center in (x 1, ... 

. . . , x N -d and side length 2v. 
Although it is well known, it should be demonstrated here that 1t( l, v), which 

denotes the sets in 1t (JRN) satisfying the Lipschitz condition with constants l 
and ll, has the property that n11 ---+ n => r 11 ---+ r for all sequences (nn) c 
1t(l, v). 

c 

a 
T 

-- -- --
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Let now 8 be sufficiently small and let n E 1i(RN) have a Lipschitz boundanJ 
with constants l and v. Let furthermore X E r be a7·bitrary, but fixed. Then there 
exists a coordinate system such that r can be expressed as a Lipschitz continuous 
function with constant l. 

Because of the Lipschitz condition the boundary (x1, ... ,XN-l,'Po:(.'L1,··· 
... ,XN-1)) has to be outside of the open cone with vertexx, axes (0, ... ,0,-1) 
and slope l and -l respectively (see Fig. 5}. 

So, one can calculate c = la + y = a(l + t). Therefore, a = c 1 ~ 12 and 

with the usual formulas for triangles 82 = cy = l:1 . From that, it follows that 

c = 8~. This means that for 8 sufficiently small (8 < v, 8(~ + 1) 
< lv.../N -1} the distance between (x1, ... ,XN-l,Xn- 8~) and 0 is 
g1·eater than or equal to 8, but d(x, (x1, ... ,XN-1, x,.- 8~)) = 8~. 
It follows that gn(8) ~ 8~ for all 0 E 1i(l, v). Therefore, grt(l ,v)(8) ~ 
8~ holds, which means, because of grt(l,v)(O) = 0 and the property that 
this function is strictly increasing, that it is continuous from the right at 0. 
So, by Lemma 3.2 we have for every sequence (0,.) C 1i(l , v) the implication 
nn ___, n ==} r n ___, r. 

3.1. Conclusion of boundary convergence 

REMARK 3.3 As go(O) = 0, go(8) 2: 8 and go is strictly increasing, it is 
StLfficient to show that for a function f which is continuous from the right in 0 
with f(O) = 0 we have go ~ f within some neighborhood of 0. The function f 
may tend to 0 m·bitrarily slowly. As one can see from Example 3.2 as a special 
case, for domains with Lipschitz boundary with constants l > 0, v > 0 this holds 
for the function f(8) = 8~, which is linear in 8. 

One sees immediately that go is continuous from the right in 0. T herefore 
g11 (8) ___, 0 uniformly for all n E 0 if 8 ___, 0. By the last point of Remark 3.1 

this means that 8B6(0) _!>:__. r uniformly for all n E 0 if 8 ___, 0. Hence one can 

replace in Lemma 3.2 "go is continuous from right in 0" by "8B6(0) __!:____. r 
6->0 

uniformly for all 0 E 0 if 8 ----> 0". 
Especially Theorem 3.1 can be rewritten as follows: 

THEOREM 3.2 Let 0 be a compact subset of 1i(RN) . Then the following state­
ments are equivalent: 

8B6(0) __!:____. r uniformly for all n E 0, 
6->0 

On _!>:__. n ==? r, _!>:__. r for all sequences (On) c 0. 

(6) 

(7) 
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COROLLARY 3.2 Let Y be a compact subset of ~N and let 0 C 1i(Y). Then 
the following statements are equivalent: 

oB0(D) __!:____. r uniformly for all D. E 0, 
0--+0 

h h 
Dn - n ===} rn - r for all sequences ( Dn) c 0. 

Of course it can also be seen in Example 3.1 that for the first set 0 1 the 
boundaries oB0(Dn) have distance greater than 1 to r n if ~ < 8, whereas for 
every n" of the second set 02 it holds that dh(oB0(Dn) , fn) :S 8. Also in 
Example 3.2 it can be seen that d~t(8B0 (D) , f) :S 8~ for all D. E H(l , v). 

So, we have as the main result that if for a set of closed subsets of ~N the 
boundary of Bo(D) converges to the boundary of n uniformly for all n in this 

set then for any sequence Dn from Dn __!!:__. nit follows that r n - r. If the set 
of domains is compact also the reverse direction holds. 

One should notice that for a sequence (Dn) for which the restriction (6) holds , 
the topology of the Dn may change in any stage of Dn C BE: (D) 'Vn 2: no for 
c > 0 arbitrarily small, which is not possible in the case of Lipschitz boundaries. 
Consider finally an example, where Corollary 3.2 can be applied, but which is 
not satisfying any Lipschitz condition: 

EXAMPLE 3.3 In contrast to Example 3.2 consider now the following set 0 of 
domains: A domain in 0 is the union of a fixed number of k closed balls with 

r r 
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radius r E ~+, located within a compact subset Y of IR2
. The radius may vary 

but is the same for each of the balls belonging to one domain. The balls of one 
domain are located arbitrarily in Y and possibly touching others, but two of them 
have not more than one point in common, means the point of contact. 

It is obvious that the sets in 0 are not satisfying any Lipschitz condition, 
because if two balls are touching each other, the boundary at the point of contact 
can neither be described as a single f unction nor can a Lipschitz condition be 
found. 

Because all 0 E 0 are s~tbsets of a compact set Y, there exists a maxi­
mum possible radius rmax for the balls of n. The worst case for the distance 
d~t(I', 8B0(0)) occurs at a point of contact. Assuming that 8 is sufficiently small 
it can be calculated using the usual equations for triangles as J 82 + 2r8, see 
Fig. 6. Hence, d,(r, 8B0(0 )) :::; JP + 2rmax8 means that 8B0(0) converges 

uniformly to r for 8 -----. 0. By Corollary 3. 2 one has that r n __!:__. r if On __!:__. 0. 

4. The Lebesgue measure convergence of boundaries 

Another important question in shape optimization is the following: Does the 

boundary preserve Lebesgue measure 0 when On __!:__. n. In this section a similar 
criterion as before for boundary convergence is proven. 

Denote from now on by J.L theN-dimensional Lebesgue measure. As one can 
see, in the following example one may have J.L(r n) + J.L(h-lim(r n)): 

EXAMPLE 4.1 Let On := { zin I i = 0, ... , 2n } . It is clear that r n = On and by 

d" (rn, [0, 1]) = 2n1+1 it holds that r n __!:__. [0, 1]. But J.L(I' n) -----. 0 where 
h 

J.L(h-lim(I'n)) = J.L([O , 1]) = 1. Of course in this case also I'n + 8[0, 1]. 

EXAMPLE 4.2 Now consider the sequence (On), where no := [0, 1] and On is 
that set obtained by 1·emoving an open interval of the length 1/(6(3n-l )) from 
the middle of each of the 2n- 1 connected disjoint subsets of On_ 1 . It is well 
known that 0 := nnEN On is a Cantor set with Lebesgue m easure 1/2 because 
the removed parts have the measure 

oo 1 ( 2 ) n-1 

L6 3 
n=l 

1 
-
2 

as one can calculate by the formulas fo r geometric series. Furthermore, it is 
closed because it is an infinite intersection of closed sets. Therefor·e, 0 E H(IRN) 
holds. Because Dn is divided into 2n disjoint subsets with length of each less 
than 1/2n it is clear that 0 consists of boundary points only (for a fixed X E 0 
and E > 0 simply c,hoose n such that 1 /2" < E, then B" ( x) C On cannot be true 
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Furthermore, it can be seen that Dn __!:___. D because dh(Dn, D) :::; 1/3n --> 0. 

Also rn __!:___. r because dh(rn,r) = dh(rn,D):::; 1/3n--> 0, where !-L(rn) = 0 
. h h 

for all n E N but !-L(r) = 1/2. Th~s means that Dn --> D, r n --> r and 
!-L(r n) = 0 for all n E N does not guarantee that r has Lebesgue measure zero. 
Note that because every boundary is closed it is Lebesgue measurable. 

Consider now the following well-known theorem from measure theory, see 
for example De Barra (1974), p. 111: 

THEOREM 4.1 Let (Dn) be a sequence of measurable sets. If Dn :J Dn+l for 
all n EN and !-L(DI) < oo then !-L(n:=l Dn) = limn-+oo !-L(Dn) holds. 

00 n Dn = h-lim(Dn)· 
n=l 

Proof. As Dn :J Dn+l for all n E Nit holds that (Dn) C 'H(DI) and therefore 

there exists a subsequence (Dk) C (Dn) with Dk __!:___. e. We will show now that 

n:=l nn = e: 
• By Proposition 2.2 (3) and n:=l fln c flk for all k E N it holds that 

n~=l Dn c e . 
• Assume now that there exists X E e such that X rt n~=l fln. As n~=l nn = 

{x E ~NIXE nn for all n EN} there has to be no EN such that X rt flno· 
Now fln :J fln+l for all n E N hence x rt fln for all n ~ no. As (Dk) is 
a subsequence of (fln) there has to be ko E N such that x rt nk for all 
k ~ ko. Because nko is closed E := d(x, nko) > 0 holds and as nk :J nk+l 
it follows that d(x, flk) ~ c: for all k ~ k0 . But by Proposition 2.2 (2) e is 
the set of all points y for which a sequence (yk) exists with Yk E flk and 
Yk --> y. This is a contradiction to d(x, flk) ~ e for all k ~ ko. 
Therefore x E n~=l fln has to hold for every X E e. 

As n~= 1 fln = e, for every cluster point e of (Dn) one has also the unique-

ness of e and fln __!:___. n~=l Dn· • 

LEMMA 4.2 Let (Dn) c H(IRN) such that fln __!:___. n. Then !-L(fln \ fl) --> 0 
holds. 

Proof. As f1 and fln are closed, they are Lebesgue measurable and so are 
fln u fl, fln \ f1 and f1 \ fln. Note that f1 and fln \ f1 (respectively fln and 
n \ fln) are disjoint and therefore !-L(fln u fl) = !-L(fl) + !-L(nn \ fl) (respectively 
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nn u n _!::__. n follows directly from Proposition 2.2 (3). For a fixed n let n 
denote that number for which by Proposition 2.2 (1) ni U n c Bd,.(nnun,n)(n) 
holds for all i > n. Define now 

En :=max{ dh(nk u n, n) I n ~ k ~ n }. 

As nk u n are all bounded, En is well defined for all n E N and one has that 
nn U n c BE:n (n) by Proposition 2.1 (3) and therefore 

(8) 

Furthermore, En ---> 0 holds by definition (because n, U n _!::__. n) and therefore 
B,n (n) is a decreasing sequence of sets, meaning that Ben (n) :::> Bc,.+t (n) for 
all n EN. 

By Lemma 4.1, BcJn) _!::__. n~=l Bcn(n) and because dh(n,BE:n(n)) =En 

one has n~=l B"Jn) = n. 
By Theorem 4.1, J.t(-=B,....c,_,.(c-:=n-:-)) ---. J.L(n~=l Ben (n)) = J.L(n) and considering 

(8) one has J.L(nn \ n) ---> 0. • 

REMARK 4.1 From Lemma 4.2 one has Jt(n, \ n) ---> 0 if n, _!::__. n, but 
p.(n \ nn) may not converge to 0! 

Consider now the following theorem, which can be found in Beer (1974), 
p. 64: 

THEOREM 4.2 Let (nn) C 1i(IRN), n E 'H(IRN) be such that n, _!::__. n. Then 
it holds that 

J.L(nL:.nn)---. 0 {::::::::} J.L(B6(nn)) ------* J.L(nn) uniformly for all n EN 
6--+0 

where nL:.nn := n \ nn u n, \ n denotes the symmetric difference of n and nn. 

By using Lemma 4.2 and the fact t hat n \ n" and n, \ n are disjoint and 
measurable one has immediately: 

COROLLARY 4.1 Let (nn) C 1i(IRN), n E 'H(!RN) be such that nn _!::__. n. Then 
it holds that 

J.L(n \ nn)---> 0 {::::::::} J.L(Bo(nn)) ------* J.L(nn) uniformly for all n EN. 
0--+0 

By using Corollary 4.1 and Lemma 4.2 one can also prove the following: 

COROLLARY 4.2 Let (n,) C 1i(IRN), n E 'H(!RN) be such that nn _!::__. n. Then 
it holds that 

/1(nn)---> /1(n) {::::::::} /1(B6(nn))------* /1(nn) uniformly for all n EN. 
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Proof. From 

h 
one has JL(D.n) = JL(D.) + JL(D.n \D.) - JL(D. \ D.n). By D.n -- D. and Lemma 4.2, 
JL(D.n \D.)-- 0 holds. Therefore, JL(D.n)-- JL(D.) if and only if Jt(D.\D.n)-- 0. 
The proof follows directly from Corollary 4.1. • 

LEMMA 4.3 Let 0 C H(JRN) be such that JL(B6(r)) ------. JL(r) uniformly for 
6->0 

all D. E 0. Then it holds that 

rn _!:_, e ==} JL(r n) -- JL(e). 

Proof. Follows directly from Corollary 4.2. • 
THEOREM 4.3 Let 0 C H(JRN) be compact. Then the following statements are 
equivalent: 

• JL( B6 (r)) - JL(r) uniformly for all D. E 0. 
6->0 

h 
• r n-- e ==} JL(rn)-- JL(e). 

Proof. "==?": Follows directly from Lemma 4.3. 
"{::::=": Assume that JL( B6 (r)) ------. JL(r) uniformly for D. E 0 does not hold. 

6->0 
This means that there is a e > 0 such that for all 8 > 0 there exists a D. E 0 
with IJL(B6(r))- JL(r)l >e. 

Let now e > 0 be such that the above statement holds. So by selecting a 
sequence 8k-- 0 one can choose D.k such that IJL(B6k(rk))- JL(rk)l >e. By 
compactness of 0 and Lemma 3.1 there exists a subsequence (again denoted 

by (D.k)) such that both D.k _!:_, D. E 0 and rk _!:_, e, but IJL (B6k (rk)) -
JL(rk)l >e. So by Corollary 4.2 JL(r n) -- JL(G) cannot be true. • 

h 
REMARK 4.2 Note that for Lemma 4.3 and Theorem 4.3 only r n -- e is 

required, r = e and D.n _!:_, D. is not necessary and may not hold. For an 
example, where r = e does not hold consider 0 1 of Example 3.1. For an 

example where D.n _!:_, D. does not hold consider the example of nn := [-1 , 1] 
for n even, D.n := { -1, 1} for n odd. In both cases r n = { -1, 1} , therefore 
JL(rn) -- JL( { -1, 1}) = 0, but ( D.n) has no Hausdorff limit. Of course one 
has by Lemma 3.1 under the assumptions of Lemma 4.3 or Theorem 4 .3 that if 

D.n _!:_, D. then JL(rk) -- JL(8) holds for each cluster point 8 of (r n), where 

(r,_,) denotes the corresponding subsequence of (rn) with rk _!:_,e. 

So, one has as an important special case the following criterion for Lebesgue 
measure preservation 0 of the boundary. This case is very important for shape 
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COROLLARY 4.3 Let 0 c 'H(IRN) be compact. Then the following statements 
are equivalent: 

• J..t(Bo(r))----+ 0 uniformly for all 0 E 0. 
0-+0 

• For each sequence (On) c 0 it holds that On ~ 0 => J..t(G) = 0, where 
e is any cluster point of (r n)· 

Proof. It remains to show that from J..t (B0(f)) ----+ 0 it follows that J..t(f) 
6-+0 

= 0. The rest follows directly from Theorem 4.3 and Lemma 3.1: 
As for any ok ____... 0 it holds that n~1 Bok (f) = r ( ":J" holds by defini­

tion, "c" because r is closed, otherwise there would exist X E n~l Bok (f) 

with d(x , r) = c > 0) and as B6k (r) c B26k (r) and 0 :S J..t ( Bok (f)) :S 

J..t(B2ok(f)) ____... 0 also, we obtain by Theorem 4.1, 0 = limk-+ooJ..t(B0k(r)) = 

J..t(n:=l B6k (r)) = J..t(r). • 

EXAMPLE 4.3 Similarly as in Example 3.2 it should be demonstrated that the 
subset 'H(l , v) of closed, bounded, domains 0 C IRN which have a Lipschitz 
boundary with constants l, v, has the property 

On ~ 0 => J..t(f) = 0 

for every converging sequence (On) C 'H(l, v). Using Lemma 4.3 this can be 
done without proving that 1i(l, v) is complete (meaning that the limit of every 
converging sequence of 1i(l , v) is again in 'H(l, v)), which may cause a lot of 
technical effort to prove or counterprove. 

Let now (On) C 1i(l, v) be a converging sequence On ~ 0. From Exam­

ple 3.2 we know already that in that case fn ~f. Because 1i(l, v) C 1i(IRN) 
and 1i(IRN) is complete also 0 E 1i(IRN), meaning that 0 is compact. 

Hence, forE: > 0 arbitranJ, but fixed, there exists (by Proposition 2.2 (1)) 
an no such that for all n ~ no, On C Be:(O). So , we have for all n E N that 
On c l' := U~~ 1 Oi u Be:(O), where l' is compact. This means that for every 
{) > 0 there exists a finit e covering of l' with balls of diameter {) . Because 
r c 0 c l'' this finite covering will also cover r . 

Consider now an arbitrary, but fixed, ball of this covering such that a point 
X E r is within this ball. Then, by the assumption that 0 has a Lipschitz 
boundary with constants l, v there exists a coordinate system and an N - 1 
dimensional cube K~ , ... ,N- 1(x) such that r can be represented as a Lipschitz 
function <px(Y1 , ... ,N-1) with Lipschitz constant l. Furthermore, there must not 
exist any othe1· part of r within 

{y E IRN I y _ E K 1, ... ,N-1(x) and 1, ... ,N 1 II 

YN E ]<px(Y1, .. . ,N-1) -lv)N- 1, <px(Y1 , ... ,N-d + lv)N- 1[}. (9) 

Taking into consideration that the slope is bounded by l (-l respectively), the 
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X 

Figure 7. A ball B, possibly touching t.px only 

Hence a ball B{l, possibly touching the boundary (meaning touching L1 and L2) 
but not touching any other part of r than represented by CfJx must be within 
the region given by (9). So in the worst case this ball must be located like in 
Fig. 7. By the usual equations for triangles the maximum radius for such a ball 

calculates as '13 :::; 1 ~'f.JfiT. 1 (see Fig . 7). If{) was selected suitably small (meaning 

{) < min (%, 1~J/t;11 )) there will be no other part of r within Be than that one 

represented by CfJx within K~, ... ,N-1(x). Denote now by k the number of balls 
with that radius {) used for the finite covering of Y . 

So, select now a ball B{l from the above covering with r n B{l "I 0. Then 
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K~, ... ,N-1(x). By a similar calculation as in Example 3.2 one obtains that a 
ball of radius 8 must be covered by (see Fig. 8}: 

{y E IRN I y _ E K 1, .. . ,N-1(x) and 1, ... ,N 1 v 

YN E ]cpx(Y1, ... ,N- d- oJZ2+l, 'Px(Y1 , ... ,N-1) + oJZ2+1[}. (10) 

The same holds for each other point of the graph of 'Px within K~ , .. . ,N-1(x) . 
Therefore the Lebesgue measure of B0 (graph(cpx)) is (within K~ , ... ,N- 1(x)) lim-

c 

Figure 8. A ball Be covered by (10) 

ited by the Lebesgue measure of (10}, which is (2v)N- 1(28Ji2+1). Remem­
be~i.n~. tl~~t ~~w finite covering consists of k balls B{) we have p.(B0(f)) :S 
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This proves that J.L(B6(fn)) ---+ J.L(f n) = 0 uniformly for all r!n and by 
6--+0 

Lemma 4.3 using Example 3.2 one has nn -!:... n ==> J.L(r) = 0. Because this 

holds for any sequence (r!n) c H(l, v) with nn -!:... n, this completes the proof. • 

EXAMPLE 4.4 Consider now again the set 0 of domains from Example 3.3, 
which does not satisfy any Lipschitz condition. If for each n E 0 it holds that 
J.L(B6(r)) ~ k(1·+8) 21r-k(r-8)21r = 4kr87r when 8 is sufficiently small, meaning 
8 ~ T. Hence, for each n E 0 J.L(B6(r)) ~ 4krmax81f' ---+ 0 = J.L(f). Using 

6--+0 

the result of Example 3.3 one has by Lemma 4.3 that nn -!:... n ==> J.L(f n) ----+ 

J.L(f) = 0. 

5. Concluding remarks 

The final result for shape optimization is that for any set 0 of admissible do­
mains it is sufficient to show that 

• 8B6(f!) __!:___. f uniformly for all f! E 0 , 
6--+0 

• J.L(B6(f)) ---+ 0 uniformly for all f! E 0 
6--+0 

in order to make sure that 

REMARK 5.1 Please note that for a sequence of domains nn -!:... n the proper­

ties r n -!:... r and J.L(fn) ----+ J.L(f) are completely independent. For an example 

where r!n __!:.,. n and r n __!:.,. r but J.L(f n) -ft J.L(f) consider Example 4.2. In 
h h 

contrast, for an example where nn ----+ n and J.L(f n) ----+ J.L(f) but r n + r 
consider 01 from Example 3.1. 
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