
Control and Cybernetics

vol. 29 (2000) No. 4

Grammars in genetic programming

by

W. Wieczorek1 and Z. J. Czech2

1 Institute of Computer Science, University of Silesia,
Sosnowiec, Poland

e-mail: wieczor@ultra.cto. us.edu.pl

21nstitute of Computer Science, Silesia University of Technology,
Gliwice, Poland

e-mail: zjc@polsl.gliwice.pl

Abstract: The work consists of two parts. In the first part the
idea of genetic programming is presented and the basic elements of a
genetic programming system are described. In the second part, con
sidering a selected example, we describe the results of investigations
of the influence of program grammars on the efficiency of genetic
programming.

Keywords: strongly typed genetic programming, genetic algo
rithms, grammars.

1. Introduction

Many problems of machine learning and artificial intelligence can be considered
as problems of finding a computer program which produces the desired output
data for the given input data. From this point of view a process of solving a
problem reduces to searching a space of programs in order to find a proper one.
The paradigm of genetic programming defines a way of searching the space such
that the program solving a given problem is discovered with high probability.

Genetic programming, in addition to genetic algorithms (Holland, 1992),
evolutionary programming (Fogel, 1995), evolution strategies (Schwefel, 1981),
and classifier systems (Goldberg, 1989), belongs to the field of evolutionary
computation, which mimics the evolutionary processes appearing in nature.
Genetic programming developing in many directions uses the techniques known
from genetic algorithms, such as the tournament selection (Angeline, 1994), co
evolution (Angeline and Pollack, 1993), the steady-state population (Reynolds,
1992). Many variants of mutation are used, although Koza (1992) points out
th :::. t ll'lllt~tlnn i n UPnPtir nrAOT~ llllnlnrr i <:: ::\ nnliPrl <::n !.l rino·hr A v~ <:: t !.l rnA11nt n f

1020 W. WIECZOREK, Z.J. CZECH

Martin considered prefixed, postfixed and hybrid notations. Various criteria
which can be applied to determine a program fitness are investigated, e.g. a
criterion of program efficiency. The inclusion of information about the program
size into the fitness measure was considered by Kinnear (1993) and Iba (1994).
The separate group of research is devoted to a suitable choice of parameters of
genetic programming. The method of determining a number of tests was pro
posed by Teller and Andre (1997). The interdependence between a population
size and a number of generations was studied by Gathercole and Ross (1997).

In classical genetic programming the closure condition must be satisfied
which means that all elements of a sought program, i.e. terminal symbols and
functions, must be of the same type. Other solutions regarding the syntax of
genetic programs were devised by Montana (1994) and Whigham (1995). Mon
tana proposed a strongly typed genetic programming method in which the types
of terminal symbols, functions and their arguments can be specified. An im
portant aspect of such an approach is reducing the program space which is to
be searched, since determining the types of functions and their arguments for
bids semantically invalid programs. Whigham demonstrated an application of
context-free grammars for defining and manipulating genetic programs. He also
described a method of modifying the grammar productions in a course of an
evolutionary process. An early work on using grammars in genetic algorithms
was presented by Antonisse (1991). He proposed a general reformulation of the
genetic algorithm that makes it appropriate to any problem representation that
can be cast in a formal grammar.

The aim of this work is to verify the hypothesis that genetic programming
is more effective if the programs are built and transformed according to some
predefined syntactic rules established by taking into account the features of
the problem to be solved. To this goal the classical programming system was
compared with the system in which a "suitable" grammar was used.

This work consists of two parts. In the first part (Sections 2 and 3) the
idea of genetic programming is presented and the basic elements of a genetic
programming system are described. In the second part (Section 4), considering
a selected example of the mine-infested area problem, we describe the results of
investigations of the influence of program grammars on the efficiency of genetic
programming. Section 5 concludes the work.

2. What is genetic programming?

Genetic programming makes possible to solve a problem without a tedious phase
of constructing a program, which solves it, by a human. The genetic program
ming idea uses genetic algorithms (Holland, 1992) whose work is modeled upon
the natural evolution of organisms. The evolution proceeds in accordance to the
Darwinian principle of survival and reproduction of the fittest. A population
in genetic algorithms is a set of problem solut ions (individuals) usually repre-

Grammars in genetic programming 1021

Parents
+

X X

X

Offspring X

Figure 1. Crossover operation in genetic programming: as the result of crossing
over x2 + (x + (x- x)) and x2 + x2 we get x2 + (x + x2)

Population
of programs

1022 W. WIECZOREK, Z.J. CZECH

executed operations: the selection of best solutions and creation new ones out
of them. While creating new solutions the operators of recombination known
from genetic algorithms, such as crossover and mutation, are used. The new
solutions replace other solutions in the population. In genetic programming the
individuals of a population are computer programs. In order to illustrate the
creation new programs from the two parent-programs they are represented as
trees. New programs are built by removing a selected subtree from one tree and
inserting it to another. The crossover operation is illustrated in Fig. 1 where
the subtree representing (x- x) in the left parent is replaced with the subtree
x2 coming from the right parent. The cycle of recurrent operations in genetic
programming is the same as in genetic algorithms and is shown in Fig. 2.

3. Basic notions of genetic program ming

3.1. Preparatory steps

There are six preparatory steps which must be accomplished before a search
ing process for a program to solve the problem can begin. T hese are as fol
lows: (a) choice of terminal symbols constituting the set T = {t1 ,t2 , ... ,tm},
(b) choice of functions constituting the set F = {h, h ... , f n}, (c) defining the
fitness function, (d) defining the control parameters, (e) defining the termination
criterion (Koza, 1992).

The terminal symbols, ti E T, and functions, h E F, are the program
components. For example, in Fig. 1 the internal nodes in the trees are arithmetic
operations +, -, *· Each leaf in the trees must be a terminal symbol x. The
choice of program components, i.e. the terminal symbols and functions, and a
definition of the fitness function determine to a large extent the solution space
which will be searched. The control parameters include the population size, the
probabilities of crossover and mutation, the maximum tree size, etc.

3.2. Choice of terminal sym bols and functions

A terminal symbol ti E T can be a constant, for example ti = 3, or a variable
representing an input datum, or a measurement value coming from a gauge
in an object under control. Every function fi E F of a fixed arity can be an
arithmetic operator(+,-, *• etc.), an arithmetic function (e.g. sin, cos, exp),
a boolean operator (and, or, not), an alternative (if-then-else), an iterative
operator (while), atl arbitrarily defined function appropriate to the problem
under consideration.

The crucial point in selecting the terminal symbols and functions is that
using them one may express a solution to the problem. Furthermore, a closure
condition is. to be satisfied. We say that sets T and F satisfy the closure con
dition if every function from F accepts as its arguments t he values returned by

Grammars in genetic programming 1023

3.3. Fitness function

The aim of the fitness function is to provide the basis for competition among
individuals of a population. It is important that not only the correct solutions
should obtain a high assessment (reward), but also every improvement of an
individual should result in increasing of that reward.

There are several measures of fitness. One of them is raw fitness. Its def
inition depends on the problem of interest. For most problems raw fitness is
defined as the sum of distances (errors) in all tests between the output result
produced by a program for the test data and the expected value for that test.
The raw fitness of an i-th program in a population in time t is defined as follows:

N

r(i, t) = L IW(i, j)- C(j)l
j=l

where W(i, j) is the value returned by the i-th program for the j-th test, C(j) is
the correct answer for test j, and N is a number of tests. If the values returned
by the programs are not numbers, but boolean values true or false, then the
sum of distances is equivalent to the number of encountered errors. For certain
problems raw fitness may not have an error form. For example, in problems
of optimal control raw fitness may be the cost of particular control strategies
(expressed as time, distance, profit in monetary units etc.). For other problems
raw fitness may be a gained result, for example a number of points scored, an
amount of food found, etc. (Koza, 1992).

4. The mine-infested area problem

Consider a rectangular area divided into m x n fields in which a fixed number,
M, of invisible mines were placed. In a field with co-ordinates (initX, initY) an
agent is positioned which may execute one of the following operations:

• Move to one of the eight neighbor fields (operations GoN, GoS, GoW, GoE,
GoNW, GoNE, GoSW, GoSE).

• Open a field it stays on (operation Open) . If this field contains a mine
then the agent ends its work. Otherwise, as the result of opening the
field a number from 0 to 8 indicating a number of mines around the field
shows up.

• Determine the content of the field it stays on (operation H) , or the content
of an adjacent field (operations N, S, W, E, NW, NE, SW, SE).

• Determine the number of opened or unopened adjacent fields (operations
NumOp, Numln).

Solving the mine-infested area problem consists in finding a program which
controls the agent. Such a program executed at most L times should open as
large a part of the area as possible (surely, of at most m x n- M fields). The

1024 W. WIECZOREK, Z.J. CZECH

position (initX, initY). The execution i + 1 begins from the position reached by
the agent after execution i, 1 ::; i < L. The agent's control terminates before L
executions are completed if in the last execution a field with a mine was opened,
or the given number of fields, K, 0 < K::; m x n- M, was opened.

For the purpose of experiments the following values of parameters were fixed:

• m = n = 5 (defining the size of the mine-infested area, m x n = 5 x 5),
• M = 5 (the number of mines placed on the fields with co-ordinates (1 , 0),

(2, 1), (3, 1), (2, 2), (1, 3)),
• initX = 4, initY = 3 (agent's initial position),
• L = 25 (the maximum number of program executions),
• K = 18 (the minimum number of fields which are to be opened).

0 2 3 4
X

? ? ? ? ? 1 * 3 2 1 ? ? 3 2 1

? ? ? ? ? 1 3 * * 1 ? ? ? ? ?

? ? ? ? ? 1 3 * 3 1 ? ? ? 3 1

? ? ? ? ? 1 * 2 1 0 ? ? 2 1 0

? ? ? ? ? 1 1 1 0 0 ? 1 1 0 0

y

Figure 3. From left to right: the init ial state of the area; the distribution of
mines (indicated by asterisks) and numbers counting the mines around fields; a
sample state of the area during the run of t he program

Now let us define the elements of a system of genetic programming. Assume
the following set of functions

F = { IfEq, Prog2 , Pr og3}

with four, two and three arguments, respectively. The function IfEq executes
the subtrees represented by its first and second argument, arg1 and arg2 , re
spectively. Then it executes and returns a result of the execution of the third (if
the execution result of arg1 is equal to that of arg2) or fourth (if the execution
result of arg1 is not equal to that of arg2) argument, i.e. result of execution
of arg3 or arg4, respectively. The functions Prog2 and Prog3 execute in turn
their arguments (arg1 , arg2 for Prog2, and arg1 , arg2, arg3 for Prog3) and

Grammars in genetic programming 1025

Let us specify the following set of terminal symbols:

T= {NumOp, Numln, Open, GoN, GoS, GoW, GoE, GoNW, GoNE, GoSW, GoSE, H, N, S,
W, E, NW, NE, SW, SE, 0, 1, 2, 3, 4, 5, 6, 7, 8, ?, e}.

The Open operation returns the opened number. The operations from the ,Go"
group also return the content of a field the agent moved onto, in particular the
value ?, if the field has not been opened yet. The symbol e denotes the edge
of the area. It is returned, for example, by the operation NE when the current
position of the agent is (2, 0).

The function which evaluates a quality of generated programs counts the
opened fields of the area. Hence, raw fitness value belongs to the range (0, 20].

Having set the parameters: the probability of crossover equal to 0.7, the
probability of mutation equal to 0.1 and the size of population equal to 200 we
generated and evaluated1 7593 programs. A sample solution which was found
is shown below.

(Prog3 (Prog2 (IfEq (Prog3 (Prog2 GoNE GoE) (IfEq
(IfEq NW Open 3 1) E Open Go E) (IfEq SE SE GoSW
Numln)) (Prog2 (IfEq GoNW 4 GoNE GoNE) (Prog2 GoE
GoW)) (IfEq (IfEq 8 E 3 4) (IfEq S GoW NE 8) (Prog2
GoSW e) (Prog2 SW NumOp)) (Prog3 (Prog2 2 GoS) (Prog3
1 W SW) (Prog2 e S))) (IfEq (Prog3 (Prog2 6 GoNE)
(Prog2 5 NE) (Prog3 SE 5 GoSW)) (IfEq (IfEq GoSE 3
GoSE 6) (IfEq NE Open N 8) (IfEq NW Open 3 1) (Prog3 5
H Numln)) (IfEq (IfEq 4 5 6 E) (IfEq 5 GoE GoW NE)
(Prog3 GoS GoSE 8) (Prog3 GoNW GoN 8)) (IfEq (IfEq E
GoSE 1 SE) (IfEq GoSW SE GoSE W) (Prog2 Open GoS) (IfEq
NE Numln GoSE (IfEq 5 GoE GoW NE))))) (Prog3 (Prog2 (Prog3
(Prog3 GoNW GoN 8) (IfEq GoNE GoSE 1 5) (Prog2 H 5)) (IfEq
(IfEq NumOp 0 5 GoN) (Prog3 (Prog3 (Prog3 (Prog2 S NumOp)
(IfEq NW GoS GoNE 1) (IfEq GoW H ? GoW)) (IfEq (Prog3 E
1 GoS) (Prog3 N GoW 3) (Prog2 H S) (IfEq GoN GoW GoNW 8))
(Prog2 (Prog2 GoSE e) (IfEq GoSW N NE GoSW))) (Prog3 (IfEq
(Prog2 Open Numln) (IfEq Open H GoNE GoW) (Prog3 SW E S)
(IfEq e 6 3 GoNW)) (IfEq (IfEq e Open 5 GoNE) (Prog2 GoSW
GoNE) (IfEq GoS GoN W Numln) (IfEq GoS 7 2 4)) (IfEq (Prog2
NE GoW) E (Prog2 6 0) 2)) (Prog2 6 GoNE)) (Prog3 N Open
GoN) (Prog2 8 GoS))) (Prog3 (IfEq (Prog3 e GoSW GoN) (Prog2
7 NE) (IfEq SE H 3 5) (IfEq 7 Numln 4 GoSW)) (Prog3 (Prog3
NW GoN GoSW) (Prog2 S NumOp) (IfEq GoSE SENE Numln)) (Prog2
(IfEq 7 GoNE SE 6) Numln)) 5) 4)

1 The evaluation consists in the execution of a program at least L times for the test area

1026 W. WIECZOREK, Z.J. CZECH

Note that we stopped the genetic system when a given number of programs
have been generated and evaluated, instead of executing a certain number of
its cycles. This was because we used a genetic algorithm with a steady-state
replacement (Syswerda, 1991). In such an algorithm a new individual is created
in each generation, and it replaces another individual of the population. The
most popular method of choosing an individual for replacement is based on a
tournament selection. In this approach a set of r individuals is considered and
the best individual (or the worst, while choosing a candidate for replacement)
is selected.

When analyzing the program we may find in it some parts, e.g. (Prog3 6
e 4) or (IfEq NumOp 5 NW 6), which do not make much sense from the se
mantic point of view, as the executions of arguments 6, e, 4 and 5 are empty.
However, such fragments may appear, as we need to satisfy the closure condi
tion which says that every function and terminal symbol can be an argument
of another function. In other words, the programs are generated according to a
context free grammar with the following productions (nonterminal symbols are
enclosed in angle parentheses):

Grammar 1

<program> --+ <F>
<F> --+ (IfEq <F> <F> <F> <F>) I (Prog2 <F> <F>)
<F> --+ (Prog3 <F> <F> <F>) I <T>
<T> --+ NurnOp I Numln I Open I GoN I GoS I GoW I GoE I GoNW I GoNE I GoSW
<T> --+ GoSE I H I N I S I W I E I NW I NE I SW I SE I 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I
? I e

In a conventionally written program we would distinguish in set T the symbols
concerned with the "real activities" of the agent on the explored area (e.g. GoN,
Open). Furthermore, we would determine the ones which provide the agent with
the information enabling it to select a particular activity (e.g. H, NumOp, 7). The
latter symbols could be the building elements of expressions. Thus, let us define
a grammar which from a point of view of semantics of the program, that we
look for, is "more suitable" :

Grammar 2

<program> --+ <instr>
<instr> --+ GoN I GoS I Go~l I GoE I GoNW I GoNE I GoSW I GoSE I Open
<instr> --+ if <expr> = < expr> then begin <instr> end else begin <instr>
end
<instr> --+ <instr> <instr>
<expr> --+ H I N I S I W I E I NW I NE I SW I SE I NurnOp I Nurnln
<expr> ___. o 1 1 1 2 1 3 1 4 1 5 1 6 1 1 1 8 I ? I e

The fourth production of this grammar plays a similar role as the functions
Prog2 and Prog3 in Grammar 1. Due to this production the constructed pro-

Grammars in genetic programming 1027

alternative may contain arbitrarily long sequences of instructions. While ma
nipulating the programs, i.e. in a course of their crossing and mutation, because
the closure condition is not satisfied, we have to assure that for the subtrees
being exchanged their dominating nodes are either all instructions or all ex
pressions. To maintain the syntactic correctness of the generated programs we
cannot replace instructions with expressions or expressions with instructions.
For the parameters given above, the new grammar and the constraints men
tioned before, an example of a genetic program we obtained is as follows:

GoN GoSW if H = N then begin GoW GoW GoSW Open GoNE
GoNE GoS GoSW GoW GoNE GoS GoN GoS end else begin if H
= Numin then begin GoS GoN GoS GoN GoE GoN end else
begin if N = H then begin GoS if 7 = H then begin GoS
end else begin Open end end else begin GoSE end end
GoNE Open GoNW Open GoN GoE GoN end GoW Open GoE GoSE
Open GoSW GoE GoNE if N = NW then begin GoS GoSW GoSW
Open if S = H then begin GoN GoE GoN end else begin
GoN end end else begin GoSE GoE GoNE if Numin = NW
then begin GoS GoSW GoNE GoW GoE GoSE Open GoSW if N
Numin then begin GoNE GoSW GoS end else begin GoNE GoE GoSW
GoNW GoNW GoW GoN GoW GoE GoE Open GoS GoSW GoSE GoNE GoW
GoE GoSE Open GoSW GoE GoNE if SE = NW then begin GoS GoSW
GoN if 1 = NumOp then begin GoW end else begin GoW end end
else begin GoSE GoS GoN GoS end GoNW GoSE GoSW Open GoS
GoNW if H = 6 then begin if E = 2 then begin GoSE Open Open
end else begin GoSW end if H = 6 then begin GoSE end else
begin GoE GoSW GoW GoNW GoW if NumOp = S then begin GoNW
end else begin GoNE GoNW GoW Open end GoSE GoS Open GoNW
GoNE end end else begin GoN GoW end end GoW GoE GoSW GoN
GoN GoW GoNE GoS GoN GoS end else begin GoN GoS end GoNW
GoSE GoNE GoS GoN GoS end GoW Open

In order to compare the efficiency of genetic programming for Grammar 1
and 2 both systems were executed 100 times. An execution was terminated
when the solution to the problem under consideration was found . After each of
100 executions a number of generated and evaluated programs2 was counted.
The histogram depicting the number of executions of the systems (E) versus the
number of generated and evaluated programs (P) which guaranteed finding the
final solution is presented in Fig. 4. Note that the application of the more general
Grammar 1 which results in the wider exploration of the space of programs has
two aspects- positive and negative. The positive aspect follows from the fact
that we may reach such the areas, unreachable for Grammar 2, whose searching
causes a fast convergence to the proper solution. Considering those executions of

1028 W. WIECZOREK, Z.J. CZECH

the systems which succeeded before the 4,000 programs were generated (the first
pair of bars in Fig. 4) it turns out that the system with Grammar 1 is slightly
better. The negative aspect consists in penetrating those areas of program space
which are worthless in terms of finding the final solution. If we compare the num
bers of those executions which did not give a success before the 16,000 programs
were generated, it is clear that the system with Grammar 1 is much worse (the
black bar of the last pair in Fig. 4 is significantly shorter than the white one).

E so

40

30

20

10

0

(0,4] (4,8] (8,12] (12, 16] above 16

p X 1000

Figure 4. The number of executions of the systems versus the number of gener
ated and evaluated programs

Yet another comparison of the genetic programming systems with Grammar
1 and 2 is shown in Fig. 5, which depicts the probability of success in finding the

1.0 ··- --·--------

s
0.8

l
I

~Grammar 2 I
0.6 Gr ammar 1 I

0.4

J 0.2

0.0
1 30 60

p X 1000

Figure 5. The probability of success versus the number of generated and evalu-

Grammars in genetic programming 1029

final solution (S) versus the number of generated and evaluated programs (P).
Let the termination criterion of the genetic programming systems be the gener
ation and evaluation of 15,000 programs. Based on the graph in Fig. 5 we can
then expect that for 100 executions approximately 70 will end successfully in
case of Grammar 1, and approximately 90 in case of Grammar 2. If we increase
the number of programs to 60,000, the probabilities of success will increase to
0.9 for Grammar 1, and to 1.0 for Grammar 2. It also turned out that for
Grammar 1 the number of generated programs even as large as 200,000 was
not sufficient to achieve the probability of success equal to 1.0. Thus, it seems
that application of a more precise grammar increases significantly the chances
of finding the solution after generating an appropriate number of programs.

5. Conclusions

Genetic programming is a dynamically progressing research direction in a cur
rent development of evolutionary computation. In genetic programming we
search through a space of computer programs in order to find the best one, i.e.
the fittest. The search is conducted by creating a population of executable com
puter programs, in which programs compete with each other. Weak programs
die out, whereas the strong ones reproduce. With regard to the selection of a
suitable grammar for the generated programs we showed that for the problem
of the mine-infested area, the more precise grammar of generated programs, the
more effective genetic programming.

References

ANTONISSE, H.J. (1991) A grammar-based genetic algorithm. In Foundations
of Genetic Algorithms, Morgan Kaufmann, 193- 204.

ANGELINE, P.J. (1994) Genetic programming and emergent intelligence. In
Kinnear, Jr., K.E., ed., Advances in Genetic Programming, MIT Press.

ANGELINE, P.J. and POLLACK, J.B. (1993) Competitive environments evolve
better solutions for complex tasks. In Forrest, S., ed., Proc. 5th International
Conference on Genetic Programming, ICGA-93, Morgan Kaufmann.

FOGEL, D.B. (1995) Evolutionary computation: toward a new philosophy of
machine intelligence. IEEE Press, Piscataway, NJ, USA.

GATHERCOLE, C. and Ross, P. (1997) Small populations over many genera
tions can beat large populations over few generations in genetic program
ming. In Koza, J.R. et al., eds., Genetic Programming 1997: Proc. 2nd
Annual Conf., Stanford University, CA, USA, Morgan Kaufmann.

GOLDBERG, D.E. (1989) Genetic algorithms in search, optimization, and ma
chine learning. Addison-Wesley Publishing.

HOLLAND, J.H. (1992) Adaptation in natural and artificial systems, an intro
ductory analysis with applications to biology, control and artificial intelli-

1030 W. WIECZOREK, Z.J. CZECH

IBA, H., DE GARIS, H. and SATO, T . (1994) Genetic programming using a
minimum description length principle. In Kinnear, Jr., K.E., ed., Advances
in Genetic Programming. MIT Press.

KEITH, M.J. and MARTIN, M.C. (1994) Genetic programming in C++: im
plementation issues. In Kinnear, Jr., K.E., ed., Advances in Genetic Pro
gramming. MIT Press.

KINNEAR, JR., K.E. (1993) Generality and difficulty in genetic programming.
In Forrest, S., ed., Proc. 5th International Conference on Genetic Algo
rithms. ICGA-93, Morgan Kaufman.

KozA, J .R. (1992) Genetic programming: on the programming of computers by
means of natural selection. A Bradford Book, The MIT Press.

MONTANA, D.J. (1994) Strongly Typed Genetic Programming. BBN technical
report #7866, Cambridge, Mass., USA.

REYNOLDS, C.W. (1992) An evolved, vision-based behavioral model of coordi
nated group motion. In Meyer, Wilson, eds., From Animals to Animats,
Proc. of Simulation of Adaptive Behaviour. MIT Press.

SCHWEFEL, H.-P. (1981) Numerical optimization of computer models. John
Wiley, Chichester, UK.

SYSWERDA, G. (1991) A study of reproduction in generational and steady state
genetic algorithms. In Rawlings, G.J.E., ed., Foundations of Genetic Al
gorithms. Morgan Kaufmann, Indiana University.

TELLER, A. and ANDRE, D. (1997) Automatically choosing the number of
fitness cases: the rational allocat ion of t rials. In Koza, J.R. et al., eds.,
Genetic Programming 1997: Proc. 2nd Annual Conf., Stanford University,
CA, USA, Morgan Kaufmann.

WHIGHAM, P.A. (1995) Grammatically-based genetic programming. In Rosca,
J.P., ed., Proc. of the Workshop on Genetic Programming: From Theory
to Real- World Applications, Tahoe City, California, USA.

