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Abstract: The paper addresses the problem of analysing infor
mation tables which contain objects described by both attributes 
and criteria, i.e. attributes with preference-ordered scales. The ob
jects contained in those tables, representing exemplary decisions 
made by a decision maker or a domain expert, are usually classi
fied into one of several classes that are also often preference-ordered. 
Analysis of such data using the classic rough set methodology may 
produce improper results, as the original rough set approach is not 
able to discover inconsistencies originating from consideration of typ
ical criteria, like e.g. product quality, market share or debt ratio. The 
paper presents the framework for the analysis of both attributes and 
criteria and a very promising algorithm for generating reducts. The 
algorithm presented is evaluated in an experiment with real-life data 
sets and its results are compared to those by two other reduct gen
erating algorithms. 
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1. Introduction 

As pointed out by Greco et al. (1998b) , the Classic Rough Set Approach (CRSA) 
does not consider criteria, i.e. attributes with preference-ordered domains. In 
many real applications, however, the ordering properties of the considered at
tributes play an important role, e.g. in bankruptcy risk evaluation. Consider, 
for example, two firms, A and B, evaluated by a set of attributes including the 
'debt ratio' (total debt/total assets). If A has a low value while B a high value 
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then, from a bankruptcy risk point of view, A dominates B. Suppose, however, 
that the firm A has been assigned to a class of higher risk than the firm B. 
This is obviously inconsistent with the dominance principle. Within CRSA the 
two firms will be considered as just discernible and no inconsistency will be 
discovered. 

Motivated by the above considerations, Greco et al. (1998a) have proposed 
a new rough set approach to the evaluation of the bankruptcy risk, in which the 
indiscernibility relation, used in CRSA, is substituted with a dominance relation. 
This new approach, called Dominance- based Rough Set Approach (DRSA), 
is general enough to be used with any classification problem involving both 
preference-ordered and preference-neutral attributes (see Greco et al., 1998b). 

The rest of the paper is organized as follows . Section 2 presents the basic 
notions of the the Dominance-based Rough Set Approach (DRSA). Sections 3 in
cludes remarks on reduct generation in DRSA and gives an illustrative example. 
Sections 4 describes the proposed reduct generating algorithm. Section 5 dis
cusses the problems related to generating and applying decision rules in DRSA. 
The experimental evaluation of the algorithm is presented in Section 6. Finally, 
Section 7 summarizes the advantages of the DRSA in general and the reduct 
generating algorithm in particular. 

2. Dominance-based Rough Set Approach {DRSA) 

For algorithmic reasons, knowledge about objects (e.g. fi rms, patients) is often 
represented in the form of an information table. The rows of the table are 
labelled by objects, columns are labelled by attributes and entries of the table 
are attribute-values, called descriptors. 

Formally, by an information table we understand a 4-t uple S = (U, Q, V, f), 
where U is a finite set of objects, Q is a finite set of attributes and criteria , 
v = uqEQ Vq' where Vq is t he domain of attribute q' and f : u X Q --+ v is a total 
function such that f(x ,q) E Vq for every (x,q) E U x Q, called an information 
function (Pawlak, 1991). The set Q is, in general, divided into the set C of 
condition attributes/criteria and the set D of decision attributes/criteria. The 
notion of attribute differs from that of criterion because the scale (domain) of 
a criterion has to be ordered according to a decreasing or increasing preference, 
while the domain of an attribute is unrelated to preference. 

Assuming that all condition attributes q E C are criteria, let Sq be an 
outranking relation (Roy, 1985) on U with respect to criterion q such that xSqy 
means 'x is at least as good as y with respect to criterion q' . We suppose that 
Sq is a total preorder, i.e. a strongly complete and transitive binary relation, 
defined on U on the basis of the evaluations f(x, q). 

Assuming additionally that the set of decision attributes D (possibly a 
singleton { d}) induces a partition of U into a finite number of classes, let 
Cl = { Clt, t E T}, T = {1, ... , n }, be a set of these classes such that each 
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ordered, i.e. for all r, s E T, such that r > s, the objects from Clr are preferred 
(strictly or weakly, Roy, 1985) to the objects from Cl 8 • More formally, if S is 
a comprehensive outranking relation on U, i.e. if for all x, y E U, xSy means 
"x is at least as good as y", we suppose: [x E Cln y E Cl8 , r > s] => [xSy 
and not ySx] . The above are typical assumptions for a multiple-criteria sorting 
problem. 

The key idea of rough sets is approximating one partition by another par
tition. In CRSA, the knowledge approximated is a partition of U into classes 
generated by the set of decision attributes/criteria, while the knowledge used 
for approximation is the partition of U into elementary sets of objects that are 
indiscernible with regard to a set of condition attributes. The elementary sets 
are perceived as 'granules of knowledge', which are further used for creating 
approximations. 

In case of DRSA, where the set C may include both attributes and crite
ria, and where classes are preference-ordered, the knowledge approximated is 
a collection of upward and downward unions of classes and the 'granules of 
knowledge' are sets of objects implied by the dominance relation rather than 
the indiscernibility relation (Greco et al., 1998abc, 1999ab). This is the main 
difference between the CRSA and DRSA. 

More precisely, the sets to be approximated in DRSA are the upward and 
downward unions of classes, which are defined as: 

Clt = U Cl 8 ,Clt = U Cls, t = 1, ... ,n. 

The statement x E Clt means "x belongs at least to class Clt", while x E Clf 
means "x belongs at most to class Clt". Let us remark that Cl[ = Cl~ = U, 

Cl~ = Cln and Cl'f- = Ch. Furthermore, for t = 2, ... , n, we have: Clf_ 1 = 
U- Clt and Clt = U- Clf_ 1 . 

We say that x dominates y with respect to P ~ C, which is denoted as xD py, 
if xSqy for all q E P. Given P ~ C and x E U, the 'granules of knowledge' used 
for approximation in DRSA are: 

• a set of objects dominating x, called ?-dominating set, Dt(x) = {y E U: 
yDpx}, 

• a set of objects dominated by x, called P-dominated set, Df,(x) = {y E U : 
xDpy}. 

For any P ~ C we say that x E U belongs to Clt without any ambiguity if 
x E Clt and for all the objects y E U dominating x with respect toP, we have 
y E Clt, i.e. if Dt(x) ~ Cl"f-. Furthermore, we say that y E U might belong 

to Clt if there existed at least one object x E Clt such that y dominates x 
with respect toP, i.e. if y E Dt(x). 

Thus, with respect to P ~ C, the set of all objects belonging to Clt 
' 
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by E._(Clt), and the set of all objects that could belong to Clt constitutes the 
P -upper approximation of Clt, denoted by P( Cl"f-: 

E._(Clt) = {x E U: Dt(x) ~ Clt}, 

P(Clt) = U Dt(x ), fort= 1, ... , n. 

xECl~ 

Analogously, using D? ( x) one defines P-lower and P -upper approximation 
of Cl(: 

E._(Clt) = {x E U: DJ,(x) ~ Cl(}, 

P(Cl() = U DJ,(x ), fort= 1, ... ,n. 

xEClt 

The ?-boundaries (P-doubtful regions) of Clt and Clt are defined as: 
> - > > Bnp(Clt) = P(Clt- E(Clt), 
< - < < Bnp( Clt) = P( Clt - E( Clt), for t = 1, . . . , n. 

Due to complementarity of the rough approximations (Greco et al., 1998b), the 
following property holds: 

Bnp(Clt) = Bnp(Cl(_1 ), fort= 2, .. . , n, 

and Bnp(Cl() = Bnp (Clt+l), fort= 1, ... , n- 1. 

For every P ~ C we define the quality of approximation of partition Cl by set 
of attributes and criteria P, or in short, quality of sorting, as: 

( ) 
card(U- (UtET Bnp(Clt))) card(U- (UET Bnp(Clt))) 

/P Cl = = ------"-"=--.,-----
card(U) card(U) · 

The quality expresses the ratio of all ? -correctly sorted objects to all objects in 
the table. 

Each minimal subset P ~ C such that /p(Cl ) = rc(Cl) is called a reduct 
of Cl and denoted by REDct· Let us remark that an information table can 
have more than one reduct. The intersection of all reducts is called the core 
and denoted by COREct· The problem of generating reducts is interesting 
but difficult, as the complexity of the problem is NP-complete (Skowron & 
Rauszer, 1994). In Section 4, we present one of the most effective algorithms 
for generating all reducts of information systems. 

The dominance-based rough approximations of upward and downward unions 
of classes are also used to induce generalized descriptions of objects in form 
of 'if . .. then ... ' decision rules. The common ground for the problems of 
generating/analysing rules and reducts is that the rules are usually generated 
using only a subset of attributes/criteria and not all of them. Clearly, a subset 
of attributes/criteria that maintains the quality of sorting is much-desired for 
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3. Computation of dominance-based reducts 

The reduct generating algorithms that are based on the notion of discernibility 
list/ matrix, consist of two easily separated phases. Phase I creates and processes 
the list of differences between pairs of objects that are to be distinguished, and 
Phase II performs the actual search for reducts. Because the type of the final 
result of this algorithm is only influenced by its first phase, the algorithm may be 
easily adapted to produce various kinds of results. For example, it can generate 
reducts in the CRSA framework (i.e. classic rough sets approach reducts) as 
well as in the DRSA framework (as presented in this paper). It can also be 
used to produce exhaustive sets of decision rules, because rules are generated 
as minimal subsets of conditions that allow to distinguish some objects of a 
given class from every object of another class (in this sense the decision rules 
are strongly related to reducts). 

What is even more interesting, the most complex part of the algorithm from 
the computational point of view is the Phase II which, in turn, is absolutely 
independent of the type of results that are to be generated. It is this part of the 
algorithm that actually solves the NP-hardness, which underlies the problem of 
generating all reducts (the complexity of the problem in Phase I is, on the other 
hand, merely polynomial). 

The two-phase structure of the algorithm considerably helps in its devel
opment, because the algorithm may be adapted to generate different kinds of 
results, such as reducts in DRSA or CRSA, by modifications to its Phase I. On 
the other hand, its computing time may be independently improved by devel
opments of the Phase II. 

In its current form, the FRGA algorithm differs from the early discerni
bility matrix based algorithm RGA (Skowron & Rauszer, 1992; Tannhauser, 
1994) in two aspects. Firstly, its Phase I has been adapted to the framework of 
the DRSA, so that it can handle both indiscernibility and dominance between 
objects from U (Susmaga et al., 1999). Secondly, its Phase II underwent a de
velopment and allows much quicker computation, which is due to the minimality 
tests that have been introduced in (Susmaga, 1998b ). 

From the computational point of view, which is assumed in the discernibility 
based family of algorithms, it is advantageous to consider a differently formu
lated, but an equivalent definition of reducts. According to the definition above, 
the reduct is a minimal subset of attributes/criteria that preserves the value of 
the quality of sorting. A re-formulation of the definition is as follows. 

Let C be the set of attributes/criteria and x, y E U denote two objects such 
that x E Cl,., y E Cl 8 , r > s, none of the objects is dominated by another and 
at least one of the objects belongs to a lower approximation of any union of 
classes. Let PC C. If yDPx then the set P caused a conflict between x and y, 
because x is now dominated by y, i.e. an object that belongs to a class of lower 
preference. To prevent conflicts, the set P must contain: 

• at least one (preference-neutral) attribute q, such that f(x, q) "I f(y , q), or 
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Other attributes/criteria may be discarded from P, thus allowing for the reduc
tion of information without introducing conflicts between objects. Obviously, 
in the process of reduct generation all appropriate pairs of objects of a different 
decision must be analysed. A pair is appropriate only if at least one object of 
the pair does not belong to any Bnc( Cl() for t = 2, ... , n. For each such pair, 
the set of all attributes that satisfy above conditions is established. All the 
resulting sets are stored in a list called the Dominance Retaining List (DRL). 

The idea of the DRL resembles that of the discernibility list , which, in turn, 
originates from the discernibility matrix (Skowron & Rauszer, 1992; Susmaga, 
1998a; Tannhiiuser, 1994). The Discernibility List is a special case of the DRL 
computed for a system in which there exist exclusively preference-neutral at
tributes. 

After being created, the DRL is processed using the law of absorption
elements that are supersets of some other elements are discarded from the list. 
Finally, the list is sorted in the ascending order of the cardinality of its ele
ments, producing the Sorted, Absorbed Dominance Retaining List (SADRL). 
The SADRL may be directly used for generating reducts, which are found as all 
minimal subsets of attributes/criteria that have non-empty intersections with 
each element of the SADRL. It must be stressed that both absorbing and sort
ing the DRL has the only object ive of improving the effectiveness of the reduct 
generating algorithm but does not affect the actual result . 

To give a better idea of the introduced approach, we shall present an exam
ple. Let U be a set of nine examples, x1, ... , x 9 , described by four condition 
criteria c1, c2, c3, c4 and a decision criterion d. Let us also assume that domains 
of criteria c1, c2, c3, c4, d, are: the set { 0, 1, 2}, the interval [0, 1], the interval 
[1,5], the set {1,2,3}, and the set {I,II,III}, respectively. Finally, the prefer
ence is increasing with the values, e.g. 1 is preferred to 0 on criterion c1, 4 is 
preferred to 3 on criterion C3 and III is preferred to II on criterion d. In general, 
criteria may take values from different domains, including non-numerical ones, 
providing that the preference of all t he values is clearly defined. For compu
tational reasons, such values are usually translated into numeric ones. In the 
current example, we assume that the domains have already been translated. 

The descriptions of objects Xi by values of criteria Cj and d, i.e. the infor
mation function f : U x Q -? V, is given in Table 1. 
. The decision criterion d takes three different values, so it implies three classes 
of objects: 

• Cli = {xs, xg}, 
• Cln = {x1>x2,x3}, 
• Clm = {x4,xs,x6,x7} . 

With such a criterion, the following unions of classes may be considered: 

• "at most I" ( Clf) versus "at least II" ( Cljj)__, 
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C1 C2 C3 C4 d 
Xl 0 0.4 0 2 II 
X2 0 0.4 3 1 II 
X3 1 0.9 0 3 II 
X4 1 0.9 0 3 III 
X5 0 0.9 3 3 III 
X6 0 0.9 3 2 III 
X7 1 0.4 3 3 III 
xs 1 0.1 5 3 I 
Xg 2 0.9 5 2 I 

Table 1. Exemplary information table 

The contents of the class unions is as follows: 

• "at most I": Cl( = Clr = {xs,xg}, 

• "at most II": Clfi = Clr U Cln = {x1,xz,x3 ,xs,xg}, 
• "at least II": Cl~ = ClnUClm = {xl,xz,x3,x4,xs,x6,x7}, 
• "at least III": Cl~1 = Clm = {x4,xs,x6,x7}. 
Now, let us examine and present the dominance between objects with regard 

to the set C of all the condition criteria. This is done by presenting for each 
pair of objects, (x;,xj), one of the following: 

• '2:', if Xi dominates Xj, 
• ':S', if Xi is dominated by Xj, 
• '=',if Xi is identical with Xj, and 
• 'i=', otherwise. 
The dominance information is collected and presented in Table 2. 

X5 xs Xg 

< < < < < 
< < < 

X5 > > 

xs 
Xg > > > 

Table 2. The matrix of dominance information in the example 

Having established the dominance, it is easy to create the dominating and 
dominated sets for a given object x;, i.e. the set of objects that dominate Xi, 
Di:(x;), and the set of objects dominated by Xi, DC.(x;). An object Xj belongs 
to Di:(xi) if there is'=' or ':S' in row Xi and column Xj of the dominance table. 
On the other hand, an object Xj belongs to DC.(xi) if there is '=' or '2:' in 
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• x1: D~(xl) = {xl,x3,x4,x5,x6,x7,::_9}, D(:(xl) = {xt}; 
• x2: Dc(x2) = {x2,x5,x6,x7,Xg}, Dc(x2) = {x2}; 
• 
• xg: D6(xg) = {xg}, D(:(xg) = {x1,X2,X6,Xg}. 
Finally, the approximations of class unions with regard to all condition cri

teria (i.e. the set C) may be defined. In the example we have: 

• Q(Cl() = {xs}, C(Cl() = {xl,X2,x6,xs,xg}, Bnc(Cl() = {x1,x2, 
x6, xg}, 

• Q(Clij) = {x1,x2,xs}, C(Clij) = {xl,x2,x3,x4,x6,xs,xg}, Bnc(Clij) = 
{x3,X4,X6,X9}, 

• Q(Cl~) = {x3,x4,X5,x7}, C(Cl~) = {xl,X2 , X3,x4,X5,x6,x7,x9}, 
Bnc(Cl~) = {xl,x2,x6,x9}, 

• Q(Cl~I) = {x5,x7}, C(Cl~I) = {x3,x4,x5,X6,X7,x9}, Bnc(Cl~I) 
{x3,X4 1 X6,Xg}. 

As it can be easily observed, Bnc(Cl( ) = Bnc(Cl~) and Bnc(Clij) 
Bnc( Cl~1 ). If so, all objects belonging to the doubtful regions are: 

Bnc(Cli) U Bnc(CLn) = Bnc(Cl~) U Bnc(Cl~1 ) 
= {Xt,X2,X3,X4 , X6 1 Xg}. 

All the remaining objects, i.e.: x5 , x7 and x8 , do not enter any of the doubtful 
regions and, as such, determine the quality of sorting. Because in the example 
there are only three (out of nine) such objects, the quality of sorting lc(Cl) 
equals 3/9 ~ 0.33. The identified objects x5, X7, xs are especially important in 
the reduct generation process, because in the reduced table they must remain 
outside every doubtful region. 

Because the dominance relation is monotonic, removing an attribute/crit
erion will not affect existing dominance between pairs of objects. A dominance, 
however, may be produced between so far incomparable pairs (i.e. pairs de
scribed with 'f.' in the dominance table). As long as domination between any 
two objects coming from doubtful regions is not produced, the quality of sorting 
is not changed. However, as soon as one of the objects X5, X7, xs would begin 
dominating an object from a higher class or become dominated by an object 
from a lower class, a situation referred to as the conflict would occur. In result, 
the qiiatity of sorting would decrease. To prevent this, if a subset of condi
tion attributes/criteria is to satisfy the definition of a reduct, it must not cause 
conflicts that would involve objects x5, X7 or xs. 

In the example, a conflict would be created if: 

• x5 (class Clm) began to be dominated by any object from Cl1 U Clu, 
• x7 (class Clm) began to be dominated by any object from Cl1 U Cln, 
• xs (class Cl1) began to dominate any object from Cln U Clm. 
The algorithm presented solves the problem by computing the list of at-
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objects. Let us consider the object x5. The corresponding line from the domi
nance table is: 

To maintain the current level of quality of sorting, we must control the relation 
between xs and every object from the lower classes, i.e. from Clr U Gin = 
{x1,xz,x3,xs,xg}. Because out of these, x1 and xz are already dominated 
by x5 , it is enough to consider only three objects: x3, xs and Xg. Let us focus 
on X3. Appropriate descriptions of X3 and xs are as follows: 

C1 C2 C3 C4 d 
X3 1 0.9 0 3 II 
Xs 0 0.9 3 3 III 

Notice that the only criterion that prevents x5 (class Clm) from being domi
nated by X3 (class Cln) is the attribute c3. If this criterion were removed from 
the decision table, a conflict would be created and the quality of sorting would 
decrease. In result, c3 must be included in every reducts of the decision table. 
To remember this, the presented reduct generating algorithm stores the set { c3} 
as an element of the Dominance Retaining List (DRL). The remaining elements 
of DRL are created by analysing all other potential conflicts. 

In the example, the subsets of criteria preventing conflicts between the fol-
lowing pairs of objects are: 

• (xs,x3): {c3}, (xs,xs): {cz}, (xs,xg): {c4}, 
• (x7,x3): {c3}, (x7,xs): {cz}, (x7,Xg): {c4}, 
• (xs, xi): { cz}, (xs, xz): { cz}, (xs, x3): { cz}, (xs, x4): { cz}, (xs, xs): { cz}, 

(xs,xG): {cz}, (xs,x7): {cz}. 
In result, the DRL consists of the following 13 elements: {c3}, {cz}, {c4}, {c3}, 
{cz}, {c4}, {cz}, {cz}, {cz}, {cz}, {cz}, {cz}, {cz}. Clearly, there is a great deal of 
redundancy in this list. As it turns out, however, all the repeated elements may 
be removed from DRL in the process called absorption. In general, absorption 
allows to remove elements that are not minimal with regard to inclusion, i.e. 
elements that are supersets of some other elements. In the example, all DRL 
elements are singletons, so only removal of repeated elements takes place. The 
resulting absorbed DRL (ADRL) consists merely of 3 unique elements: {cz} , 
{ c3} and { c4}. 

According to the reduct generating algorithm, the ADRL should now be 
sorted with regard to the cardinality of its elements, producing the Sorted ADRL 
(i.e. SADRL). Because in the example all elements are of the same cardinality, 
the list may be treated as sorted. 

The SADRL is finally used in the reduct generation process. A reduct is a 
subset of attributes/criteria that has a non-empty intersection with all elements 

- - - - - - -
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reduct may also have non-empty intersection with all elements of SADRL. In 
the example there exists only one such subset , namely the set {c2,c3,c4}. 

4. The Fast Reduct Generating Algorithm 

The actual algorithm used for generating dominance-based reducts is an adapta
tion of the Fast Reduct Generating Algorithm, FRGA, which is a representative 
of the family of algorithms based on t he notion of discernibility matrix. The 
modification concerns the fi rst phase of the original algorithm, in which the 
procedure for creating the Absorbed Discernibility List is substituted with that 
of creating the SADRL. 

The algorithm consists of two phases: Phase I creates, absorbs and sorts the 
list of necessary conflict-preserving attributes, while Phase II generates reducts 
using the resulting list. The most important part of the algorithm, as far as 
its computational effectiveness is concerned, is the Fast Prime Implicant Test 
(FPI) introduced in Susmaga (1998b ). 

The algorithm is presented in Fig. 1. 
The main part of the algorithm is a breadth-first search for minimal subsets 

of attributes/criteria that have non-empty intersections with all elements of the 
SADRL. The current solution is the set Redi, which initially contains only one, 
empty subset, Redo := {0}. In each iteration i of the loop, the set Red; is 
confronted with C; (the i'th element of the SADRL) and split in two disjoint 
parts: the set of elements that have a non-empty intersection with ci and the 
set of those which have not . An element with a non-empty intersection does 
not have to be modified in any way and is simply stored in Si. An element with 
an empty intersection, on the other hand, has to be augmented with successive 
elements of C; , giving rise to a family of attribute subsets, the union of which 
is stored in T;. Elements ofT; are subsequently checked for minimality by the 
F PI ( R) and those that passed the test are finally stored in Redi+l· 

The main computational difficulty of the augmenting procedure is to avoid 
generating subsets of attributes/criteria that are not minimal with regard to 
inclusion. It also turns out to be the main challenge of the algorithm, because 
the algorithm's overall computing time is most strongly influenced by testing 
for minimality. In a simple approach minimality testing may be achieved by 
checking if for each R E Red; there exists another R' E Red; such that R' ~ R. 
If so, the set R is not minimal with regard to inclusion and should be discarded 
from Red; . 

A much better approach consists in discovering redundant attributes/criteria 
in R (Skowron & Rauszer, 1992; Tannhiiuser, 1994). An element q E R (R E 

Redi) is not redundant in R if there exists Cj E SADRL, j < i, such that 
R n Cj = { q}, otherwise the element is redundant . The subset R that contains 
at least one redundant element is not minimal with regard to inclusion. Compu-
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Input: A set of objects U (lUI = N); 
the objects are described by values of attributes from the set Q. 

Output: The set K of all reducts for the set U. 

PHASE ! - creation of the Sorted, Absorbed Dominance Retaining List (SADRL) 

Step 1 
Create the Dominance Retaining List by storing subsets C; of those attributes 

and criteria that retain dominance between all appropriate pairs of objects 
The resulting list contains elements (CI,C2, ... ,Co). 

Step 2 
Absorb the created Dominance Retaining List by eliminating 

empty and non-minimal elements from DRL: 
ADRL := { C; E DRL : C; f 0, C; is unique in ADRL 
and for no Ci E ADRL: Ci C C;}. 

The resulting, absorbed list contains elements (C1 , C2, ... , Cd), 
and usually d « D. 

Step 3 
Sort the ADRL in the ascending order of its element cardinality (create SADRL) . 

PHASE IJ- -a Breadth-First Search for reducts 

Step 1 
Redo:= {0}. 

Step 2 
For every i = l..d compute: 

S; := {R E Red;-!: RnC; f 0}. 
T; := uqEC; URERed,_,:RnC;=0{R u {q} }. 
MIN;:= {RET;: FPI(R) =true}. 
Red;:= S; u MIN;. 

The final result is K := Rd. 

Figure 1. The Fast Reduct Generation Algorithm (FRGA) 

more effective in practical applications. The testing used in the presented al
gorithm has been introduced and evaluated in (Susmaga, 1998b) and is briefly 
characterized below. 

Each family F of subsets R 1, R2 , ... , RP (P = IC;I) from T; has a predeces
sor R' E Red;-1 such that R 1 = R' U { q1 }, R2 = R' u { q2

}, ... , RP = R' U { qP}, 
where the attributes q1

' q2
' ... 'qP are elements of C; ( ci = { rl' q2

' ... 'qp} ). 
Because in iteration i - 1 the elements of R;_ 1 all passed the minimality test, 
that means that for each q E R' there exists a C E SADRLt..i-1 such that 
R' n C = { q}. What remains to do is to check if the same holds for each 

r n 1 n ? n P _ r J 1 
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R 1 , R2 , •• • , RP the following auxiliary list Sing is created: 

Sing= {(CJ, a): CJ E SADRLl..i, IRJ n CJI ={a}}. 

The test for inclusion minimality for a given Ri ( Ri = R' U { qi}) consists in 
looking for elements ( C, a) E Sing such that qi rf. C. If qi rf. C then Ri n C 
remains equal to {a}, which means that a is not redundant in Ri. If there 
are no redundant attributes in Ri then Ri is minimal with regard to inclusion, 
otherwise it is not minimal. Additionally, a set R1 that is a singleton (contains 
only one element) is always minimal. 

More on effective tests of inclusion minimality may be found in Susmaga 
(1998b, 2000). 

5. Generation and application of decision rules in DRSA 

The dominance-based rough approximations of upward and downward unions 
of classes can also serve to induce a generalized description of objects from 
the information table in terms of 'if ... then .. .' decision rules. The common 
ground for the problems of generating/analysing rules and reducts is that the 
rules are usually generated using a subset of attributes/criteria and not all of 
them. Clearly, a non-conflict ing subset of attributes/criteria is much-desired for 
this purpose, so this is where a dominance-based reduct may be directly applied. 

Actually, all the details related to assessing and applying the decision rules 
are beyond the scope of this paper. As a result, the current section introduces 
the definition of rules only for the sake of completeness of the presentation of 
Dominance-based Rough Set Approach. 

For a given upward or downward union of classes, Clf or Clf-, the decision 
rules induced under a hypot hesis that objects belonging to E._( Clf) or E._( Clf-) 
are positive and all the others negative, suggest an assignment to "at least 
class Clt" or to "at most class Cls", respectively; on the other hand, the deci
sion rules induced under a hypothesis that objects belonging to the intersection 
P(Clf-) n P(Clf) are positive and all the others negative, are suggesting an 
assignment to some classes between Cls and Clt (s < t). 

Assuming that for each continuously valued q E C, (i.e. Vq is quantitative) 
and for each x, y E U, f( x , q) 2: f(y, q) implies xSqy (i.e. Vq is preference
ordered), the following three types of decision rules can be considered: 

1. D> -decision rules wit the following syntax: 
.- > 
if f(x, Ql) 2: rql and f(x, q2) 2: rq2 and ... f (x, qp) 2: rqp, then x E Clt:, 
where P = { q1, ... , qp} ~ C, (rql, ... , rqp) E Vql x Vq2 X ... X Vqp and 
t E T; 

2. D< -decision rules with the following synt ax: 

if f(x, qt) :::; rql and f(x, q2) :::; rq2 and ... f (x, qp) :S rqv• then x E Cl(, 
where P = {q1, .. . ,qp} ~ C, (rqt, .. . ,rqp) E Vql x Vq2 x ... x Vqp and 
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3. D~~ -decision rules with the following syntax: 
if f(x, q1) 2:: rql and f(x, q2) 2:: rq2 and ... f(x, qk) 2:: rqk and f(x, qk+l) ::; 
rqk+l and ... f(x, qp) 2:: rqp, then x E Cls U Cls+l U ... U Clt, where 
0' = { ql, 0 0 0 , qk} ~ c, 0" = { qk+l, 0 0 0 , qp} ~ c, p = 0' u 0", 
0' and 0" not necessarily disjoint, (rq 1, ... , rqp) E Vq 1 x Vq 2 x . .. x Vqp, 
s, t E T such that s < t. 

As it is possible that { q1 , ... , qk} n { qk+l, .. . , qP} -::J 0, in the condition part 
of a D~~-decision rule we can have 'f(x,q) 2:: rq' and 'f(x,q) ::; r~', where 
rq ::; r~, for some q E C. Moreover, if rq = r~, the two conditions boil down to 
'f(x, q) = rq'· 

Since each decision rule is an implication, by a minimal decision rule we 
understand such an implication that there is no other implication with an an
tecedent (i.e. the if part) of at least the same weakness and a consequent (i.e. 
the then part) of at least the same strength. 

A set of decision rules is complete if it fulfils the following conditions: 

• each y E Q( Clt) supports at least one D>-decision rule of the type 'if 
f(x,qi) 2:: rql and f(x,q2) 2:: rq2 and ... J(x,qp) 2:: rqp, then x E Cl~', 
with r, t E {2, . . . , n} and r 2:: t, 

• each y E C( Cl() supports at least one D<-decision rule of the type 'if 
f(x,qi)::; rql and f(x,q2)::; rq2 and ... J(x,qp) ::; rqp, then x E Cl~', 
with u, t E {1, ... , n- 1} and u::; t, 

• each y E C(Clt) n C(Clt) supports at least one D~~-decision rule of 
the type 'if f(x, q1) 2:: rql and f(x, q2) 2:: rq2 and ... f(x, qk) 2:: rqk and 
f(x,qk+I) 2:: rqk+l and ... f(x,qp) 2:: rqp 1 thenx E ClvUClv+lU . . . UClz', 
with s,t,v,z E T and s::; v < z::; t. 

Let us remark that application of any complete set of decision rules on the 
objects from the information table results in either exact or approximate reas
signment of these objects to the classes Clt, t E T. This may be explained in 
greater detail as follows . For an object x E U, reassignment means the intersec
tion of all unions of classes suggested by the consequents of rules matched (sup
ported) by x. Given a complete set of rules, and an object y E U, such that y ~ 
Bnc(Clt) andy~ Bnc(Cl~) for any sET, the following situations may occur: 

• y E Clt, t = 2, ... , n- 1; then there exists at least one D>-decision rule 
whose consequent is X E Clt, and at least one D<-decision rule whose 
consequent is X E Clt; -

• y E Ch; then there exists at least one D<-decision rule whose consequent 
~ Cl~· -1 , 

• y E Cln; then there exists at least one D>-decision rule whose consequent 
is x E Cl'A:. -

In all the above situations, application of the complete set of rules to object y 
will result in exact reassignment of y to class Clt. Similarly, for each object 

-:::::; , -... / ~ -= - ~· ""> · • • . -:::: , -·<' ' """':::::' .. -· '> . 
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t ::=;[<] t1, which means that y belongs exclusively to boundaries Bnc(Cl~), 
v = s + 1, ... , t, and Bnc(Cl'f) , z = s, . .. , t -1, there exists at least one D::::~
decision rule whose consequent is x E Cl8 U Cls+l U . . . U Clt. Thus, in result of 
application of the complete set of rules to object y, the object will be assigned 
(approximately) to classes Cls U Cls+l U ... U Clt. 

A set of minimal decision rules is called minimal if it is complete and non
redundant, i.e. exclusion of any rule from this set makes it non-complete. Many 
induction strategies can be adopted to obtain a set of decision rules (e.g. Ste
fanowski & Vanderpooten, 1994): 

• generation of a minimal description, i.e. a minimal set of rules, 
• generation of an exhaustive description, i.e. all possible minimal rules for 

a given information table, 
• generation of a characteristic description, i.e. a set of minimal rules cov

ering relatively many objects each, but in total not necessarily all objects 
from U. 

It is worth mentioning that the reduct generating algorithms may be easily 
adapted to the task of generating exact decision rules. Especially adaptation to 
the problem of generating exhaustive rule sets is easy. This is because reducts 
and rules are, from a certain point of view, a global and a local solution to the 
same problem (which may be formulated either in CRSA or DRSA). 

Let us now consider both reducts and rules in CRSA. The set of all reducts 
is in fact the set of all minimal subsets of att ributes that allow to distinguish 
all objects belonging to lower approximations of different classes from other 
objects. In this sense it is a global problem. 

When generating exhaustive sets of decision rules, on the other hand, we are 
looking for minimal subsets of conditions that allow to distinguish particular 
objects, provided that these objects belong to lower approximations of classes, 
from all objects belonging to different lower approximations of class unions. So 
this is a kind of local problem, as it regards a given object. In consequence, the 
computation must be repeated for each object from any lower approximation 
(the resulting rules must also be finally checked for minimality, but this does 
not influence the way they are generated). 

Despite some differences between generating reducts and rules, it is impor
tant to stress that the main computational mechanism is actually the same
searching for minimal subsets of attributes that maintain discernibility between 
pre-specified objects. The seemingly impairing incompatibility, namely the fact 
that in generating rules we are looking for subsets of conditions defined on at
tributes and not for subsets of attributes, may be easily solved by the introduc
tion of attribute binarization (Ziarko & Shan, 1995). After binarization, each 
attribute in the binarized information table corresponds to an (attribute,value) 
pair in the original table. As such, the pair univocally represents a simple con
dition, which is the basic building block of a decision rule. In result, from the 

r ' 
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decision rules may be viewed as the same problem and, as such, solved using 
similar algorithms. 

6. Experimental evaluation of the Fast Reduct Generation 
Algorithm 

The computational capabilities of the presented algorithm are best illustrated 
with results of an experiment. The experiment focused on generating reducts 
(rather than decision rules) , as from the computational point of view it is a 
more demanding problem. The data sets used in this experiment were real-life 
data sets of various origin, created for scientific purposes and used in different 
experiments and analyses (e.g. Stefanowski & Slowil1ski, 1997) . 

Table 3 presents the characteristics of the data sets. There are basically only 
four different data sets, but as many as 22 various configurations of condition 

Data Set Conf. #Objects #Classes #Attr+Crit #Attr #Crit 
Cars-ac/0 159 6 43 28 15 
Cars-ac/1 159 6 43 12 31 
Cars-ac/2 159 6 43 8 35 
Cars-ac/3 159 6 43 8 35 
Cars-ac/4 159 6 43 16 27 

Cars-e 159 6 43 0 43 
Urod2-a 343 2 33 33 0 

Urod2-ac/1 343 2 33 3 30 
Urod2-ac/2 343 2 33 6 27 

Urod2-c 343 2 33 0 33 
Livdpl-a 80 2 22 22 0 
Livdpl-ac 80 2 22 19 3 
Livdpl-c 80 2 22 0 22 
Eswl-a/1 500 2 28 33 0 
Eswl-ac/1 500 2 28 25 3 
Eswl-c/1 500 2 28 0 33 
Eswl-a/2 500 3 28 33 0 
Eswl-ac/2 500 3 28 25 3 
Eswl-c/2 500 3 28 0 33 
Eswl-a/3 500 6 28 33 0 
Eswl-ac/3 500 6 28 25 3 
Eswl-c/3 500 6 28 0 33 

Table 3. Characteristics of the data sets configurations 

attributes and criteria were constructed. The column Data SetjDec. No denotes 
the data set configuration. The exact number of attributes and criteria in a 
particular configurations is given in columns #Attr and #Grit. 

It must be also finally stressed that the experiments were conducted with 
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algorithm and that no claim is made as to any potential applications of these 
particular results. As it can be observed, in some data configurations the car
dinality of the total outcome reaches thousands of reducts. Analysis of such 
a number of reducts would be difficult in most applications. In such difficult 
cases the search for reducts should be accompanied by additional constraints 
concerning the reducts to be generated. 

An approach in which subsets of constrained reducts may be generated is 
presented in e.g. (Susmaga, 1999). 

It is additionally worth noting that changing the preference-neutral attributes 
into criteria decreases the number of generated reducts. 

Table 4 presents the results of reduct generat ion in form of the number of 
reducts computed for each data configuration and the computing time in sec
onds of CPU. Entries '######' denote that a particular algorithm did not 

Data Set Conf. #Reducts FRGA (s] RGA [s] ROM [s] 
Cars-ac/0 26519 1.63E+Ol 4.77E+02 ###### 
Cars-ac/1 11246 8.90E+OO 1.58E+02 ###### 
Cars-ac/2 6659 7.27E+OO 1.72E+02 ###### 
Cars-ac/3 7228 7.87E+OO 1.73E+02 ###### 
Cars-ac/4 11004 l.OlE+Ol 3.31E+02 ###### 

Cars-e 4297 5.97E+OO 9.57E+Ol ###### 
Urod2-a 38207 9.65E+01 ###### ###### 

Urod2-ac/1 11918 2.37E+01 3.26E+03 ###### 
Urod2-ac/2 7873 1.78E+01 1.31E+03 ###### 

Urod2-c 4 9.13E+OO 9.35E+OO ###### 
Livdpl-a 1295 1.30E+OO 6.62E+01 ###### 
Livdpl-ac 1058 1.12E+OO 4.06E+01 ###### 
Livdpl-c 47 4.80E-01 5.10E- 01 4.47E+02 
Eswl-a/1 963 1.43E+01 4.24E+01 ###### 
Eswl-ac/1 210 1.34E+01 1.40E+01 ###### 
Eswl-c/1 1 1.34E+01 1.35E+OO 2.17E+03 
Eswl-a/2 809 1.44E+01 2.30E+01 ###### 
Eswl-ac/2 166 1.42E+01 1.46E+01 ###### 
Eswl-c/2 1 1.42E+01 1.41E+OO 1.86E+03 
Eswl-a/3 587 1.50E+01 2.04E+Ol ###### 
Eswl-ac/3 119 1.47E+01 1.60E+01 ###### 
Eswl-c/3 1 1.41E+01 1.39E+01 1.91E+03 

Table 4. Computing times [in seconds of the CPU] of three reduct generating algo
rithms for each of the data set configuration. Entries '######' mean that the 

computing time exceeds the assumed limit of l.OOE+04 seconds. 

terminate in reasonable time of 10,000 seconds of CPU, i.e. almost 3 hours, 
and was terminated. The actual computing time remains in this case unknown 
(but it certainly exceeds 10,000 seconds). The column FRGA presents the com-
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paper. As a comparison, the column RGA presents the times obtained by an
other algorithm of the discernibility matrix family (Skowron & Rauszer, 1992; 
Tannhiiuser, 1994), and the column ROM presents the times obtained by a com
pletely different reduct generating algorithm, which was described in Romanski 
(1988). 

It is interesting that both the discernibility based algorithms outperform 
strongly the other approach. Out of the two, the FRGA seems to be noticeably 
better, which is especially clear when more difficul! data sets are analyzed. 

The computing platform in all the experiments was a SUN SPARCstation 
running at 110 MHz. 

7. Conclusions 

The purpose of this paper was to introduce and experimentally evaluate a very 
promising algorithm for generating all reducts in the framework of the new, 
Dominance-based Rough Set Approach. The DRSA is an interesting alternative 
to CRSA, over which it manifests several advantages. 

The first one is the ability of handling criteria, preference-ordered classes and 
inconsistencies in the set of decision examples, which CRSA was not able to dis
cover, namely inconsistencies in the sense of violation of the dominance principle. 
The second advantage is the ability to analyse information tables with continu
ously valued criteria without explicit pre- discretization phase. This property is 
very important because the process of discretization, depending on the actual 
method employed, may lead to different and not always consistent results of the 
CRSA (Slowinski & Slowinski, 1990). The third advantage of the DRSA lies 
in a richer syntax of decision rules induced from rough approximations, which 
may now include conditions involving both equality as well as inequality. Last 
but not least, the syntax of the DRSA rules is much more comprehensible to 
practitioners and makes the representation of knowledge more synthetic since 
minimal sets of decision rules are usually smaller than minimal sets of decision 
rules resulting from CRSA. 

The presented reduct generated algorithm is general enough to compute 
reducts both in the CRSA as well as in the DRSA. It is also a very fast algorithm 
and undoubtedly outperforms other methods as far as the computing times are 
concerned. 

Future research concerning the same domain will be directed towards devel
oping further effective algorithms in the dominance-based framework. This con
cerns, first of all, adaptation of the presented algorithm for generating reducts to 
the problem of generating decision rules and a proper experimental evaluation 
of the algorithm. 
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