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1. Introduction

There are many papers concerning differentiation of the potential energy func-
tional with respect to variable domains (see e.g. Haug Edward, Choi Kyung and
Komkov, 1986, Petryk and Mroz, 1986), mostly related to the shape design. The
theory of caleulation of material and shape derivatives in linear and unilateral
boundary value problems is developed in Sokolowski and Zolesio (1992). Deriva-
tives of energy functionals with respect to the crack length in classical linecar
clasticity can be found in Mazya and Nazarov (1987). With respect to the
analysis of dependence of solution on the shape domain for a wide class of elas-
tic problems we refer the reader to Khludnev and Sokolowski (1997) (see also
Dauge, 1988). In the recent works, Khludnev and Sokolowski (1998a, b), the
appropriate techique of finding derivatives of energy functional with respect to
the crack shape for nonlinear boundary conditions is used which can be applied
for purposes of sensitivity analveis. It g known that the nenal calonlatineg ~F
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in classical sense. In this paper, we use the generalized J-integral (G.J-integral)
which was first proposed in Ohtsuka (1981) to express the energy variation for
the crack extension (energy release rate) in a 3D-elastic body. The theory of
the GJ-integral is exposed in Ohtsuka (1985), its applications can be found in
Ohtsuka (1982, 1991, 1996, 1997); Ohtsuka and Bochniak (1998). For a solu-
tion u of the boundary value problem corresponding to a given data f, the
G J-integral J,(u,X) is defined by two parameters. The first one is a do-
main w, and the other is the vector field X. GJ-integral J,(u, X) is the sum
of a surface integral P, (u, X') and a volume integral R, (u, X), i.e., J,(u, X) =
P,(u, X)+ R,(u. X). It can be proved that

Jo(u, X) =0, (1.1)

provided that function w is smooth (see Theorem 4.3). Meanwhile, J,(u, X)
does not vanish, if « has some singularity inside of w. For example, for a
body having cracks, a solution belongs to WH2(2) and does not belong to
W?22(Q). The starting point in the G'J-integral method is that the variation of
the potential energy £(7) with respect to the shape sensitivity parameter 7 has
the expression

d&(T)
dr 7=0

= —Ro(u,X) + /n {X-V(f u)+(f u)divX} de, (1.2)

where the vector field X is obtained from shape sensitivity. In fracture mechan-
ics the derivative dff(rﬂ [r=0 is used to formulate rupture criteria (see Parton and
Morozov. 1985). Formula (1.2) will be proved in Theorem 5.4. In this paper,
we prove (1.2) with the assumptions that are weaker than the ones of Ohtsuka
(1985). In (1.2), function u solves one of the variational problems given in Sec-
tion 2 and the vector field X is derived from the family of mappings presented
in Section 6. In the present paper we also analyse shape derivatives of solutions
using the first variation of the integral R, (u, X') with respect to w.

2. Boundary value problems

Let © be a bounded domain in RY (N = 2, 3, --+) which can be divided into
finite number of domains with Lipschitz boundaries, and I' be a boundary of
the domain Q. Denote by W12(Q) the Sobolev space of functions having the
first square integrable derivatives in Q.

Let E be a given function in C?(IRN x IR™ x IRN™), We define the functional
of potential energy type

E(v; £,Q) = /Q {E(x,v,Vv) = f-v} de, ve V()

an o elaced enhenaee VIO). V) € WE2(Q)™, and consider the following
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PROBLEM P(f.V(£)): For a given f € L*(Q)™, find an element u € V() such
that

E(u; £,Q) < E(w: £,0) for all v e V(). (2.3)
Let us denote
OE(v)[w] = Eli_l;l(lle_l{E(tl + ew) — E(v)} for v, w € C¥(IRN)™,
where E(v) = E(z,v, Vv).

ProrosiTION 2.1 The solution w of the problem P(f,V(Q)) satisfies the iden-
tity

/ SE(u)[v)dx = / [vdz for all ve V(Q). (24)
Jo Ja
We first introduce some notations:
if m > 1,then we denote A;j(x,2,p) := D, E(x, 2,p) (2.5)
for1<i<m,1<j<N,
if m = 1,then Ay;(z,2,p) := D, E(z,2,p) for 1 < j < N, (2.6)

Bi(x,z,p) = D, E(z,z,p) for 1 <i<m,

where D denotes a differentiation operator. By variation of £, we obtain the
equation

/ {Aij(z,u, Vu)Djp; + Bi(w,u, Vu)p;} do = ] f-edz (2.7)
Q Q
valid for all ¢ € V(£). This means that « is a weak solution of the problem

—Qiu=fiinQ, 1<i<m, (2.8)

where —Qqu = =D Ajj(x,w, Vu) + Bi(2, u, Vu) with boundary conditions pro-
vided by the space V(Q). In what follows, we denote A = (4;;5): 1 <i<m, 1<
JEN, Ai=(Aij);1<j<Nand B=(Bj); 1 <i<m.

2.1. Examples of variational problems P(f,V({))

In this subsection, we give typical examples of the problem P(f, V(Q)). In par-
ticular, the relation (2.9) below is the differential equation (m = 1); (2.17) is
the lincar differential system (m = N); (2.21) corresponds to the nonlinear dif-
ferential system (m = N); (2.26) corresponds to the lincar differential system
(m # N): (2.10), (2.16) provide Dirichlet boundary conditions: (2.13). (2.90)
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2.1.1. Elliptic boundary value problem
Consider the elliptic bonndary value problem on €2 with the Dirichlet condition:

= Diaij(a)Dju+bu= [ in §, (2.9)
w =0 on JE.

We put E(x. z.p) = (aijpip; + bz*)/2 with a;; = aj;, and
V(Q)={ve W(Q): v=0onTI}. (2.10)

Then the problem P(f. V(£2)) provides the weak solution of (2.9). In this case
m =1, and in (2.5), (2.7), we have

Aj(m,z,p) = Dy E(w,z,p) = ajp; for 1 <j < N,
By(z,z,p) = D.E(z,z,p) = b.

If a;j. b are smooth functions defined on IRY, and there is a positive number a
such that

aij(z)pipj = alpl’, Va € RN, p e RN, (2.11)
b(z) >0 VYae RN,

then the problem P(f, V(£2)) is uniquely solvable.
Next, we consider the mixed boundary value problem with the equation
(2.9), which is given by the following boundary conditions

f"' =.-0 on [:D- (2.12)
ufony (= mnia;;Djn) =0 on 'y,

where 92 ='p Uy and Up Ny = 0. In this case, we introduce the space
V() :={veW"Q); v=0onTp}. (2.13)
Then the problem P(f, V() is nuiquely solvable, provided that the measure

of I'p is nonzero.

2.1.2. Linear elasticity

We consider the linear elastic field (the case m = N) which is given by the
following formulac

: 1
E(x,z,p) = 5(1,-1-(‘::._?;)9.,-)-(;)). (2.14)
Aij(z,p) = aij(x,p) = cijre(@)eii(p). (2.15)

eiilp) = (pii+pii) [2Tor 1 <4, j <,
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The variational problem P(f; V(§)) corresponding to the space

= {v e WH)N; v=0o0n 09}, (2.16)

implies the boundary value problem
= Digpmen(u) = fi in &, t= Ly N, (2.17)
u =0 on JN. (2.18)

For uniqueness of the solution to the problem P(f, V(£2)), we assume that the
clements ¢ are smooth function defined on IRY and satisfy the following
inequality
g 1, .
(J,'ij,‘jfj]\. = (.lif,‘jf,'j for all f,'J' celR; a>0. (21())
The clastic field corresponding to the mixed boundary condition is given by
the space

V) ={ve W™ Q)";v=00nTp}. (2.20)

2.1.3. Elasto-plasticity

Consider the case corresponding to clasto-plasticity (sce Necas and Hlavacek,
1981, Chapter 8)

) T'(v,0)
E(v) = k82 (v)/2 + / ple,o)da, (2.21)
Jo

where 8(v) = div o, (v, w) = =20(v)0(w)/3+2¢;(v)eij(w). Here e;;(v) denotes
the infinitesimal strain tensor, i.e., ¢;j(v) = {D;v;+D;v;}/2. To apply the result
obtained in this paper. we require £ 1'() satisfy the following conditions. Assume
that k € C*(IRY), p € C*(IRN x [0,0)). and suppose the existence of constants
ko > 0. ky > 0 and pg > 0. iy >0 such that

0 < ko < k(z) < ky < o0, |Vh(z)| < ky < oo for all w € RY, (2.22)

0 < po < p(z,s) < 3k(2)/2, (2.23)
|V, 8)] < p1 < oo, for all 2 € RN and s > 0.
We also assume that the inequalities

0< &< lm,s)+2(0pu(n,5)/0s)s < & (2.24)

hold with some constants &;.¢&.
Let the space V() be chosen like in (2.16). Then, the problem P(f.V(§2))
implies the equation (2.17) with nonlinear Hooke’s tensor

o

5)

3 a2, . 2 - ;
Cijkl = </\‘, = T)—/l,(l'"(’ll,))> (3,'.,'(5;\.1 + /1,(1 “(’ll,))((s,'/,»(jl'] -+ (5,'1(5_“..). (2.

Here 1?(u) = D(u.u), 8;; are the clements of Kronecker’s symbol, and (2.25)

is derived from the consideration of ceneralived Hanlo’e Taw (eon Nasoce and
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2.1.4. Micropolar elasticity

Considering the case N # m, we introduce micropolar continuum mechanics
(see Eringen, 1968). For this material, N = 3, m = 6. Let @ = (v,w) be
six-component vectors, and let v = (v;.v2,v3).w = (W), ws,w3) be defined in
the domain €2 C IR®. The lincarized approximation is called the couple-stress
theory, see Kupradze, Gegelia, Basheleishvili and Burchuladze (1979, p. 147),
in which

2B(@) = {(3\ + 2u)/3}|div v|?
+(p/2) Z |Djvi + Divj — (2/3)6:;div v|*

+(a/2) ’zj: |Djvi = Diwj + 2epjiwr|* + {(3e + 2v)/3}|divw)?
ij
+(v/2) Y IDiw; + Djw; — (2/3)bi;divw|®
ij
+(8/2) 3 |Djwi = Diwsl*, (2.26)
where A, p, a, ;‘,J‘u. [ are constants satisfying the conditions
p>0,3\+2u>0,a>0,v>0,3c¢+20v>0,0>0,

and €;,; is the permutation tensor. If displacements and rotations are zero on
I'p and the couple stresses are zero on [y, then

V(Q) = {t=(v,w) e W*Q)°la=00onTp}. (2.27)
From Ohtsuka (1985) the following estimate for @ € V(§2) is obtained,
/ E(T‘L)dﬂf 2 Cg”ﬂ-”'f’_{n,:(ﬂjﬁ (2‘28)
Q

with a constant Cy > 0 independent of @. Under the conditions (2.26)-(2.27),
the variational problem P(f, V(£2)) implies the following boundary value prob-
lem with f = (f1, f2, f3), fm = (fa, f5, f6), for i =1,2,3,
(14 a)Au+ (A + ;= a)grad divu + 2arotw = —f in €,
(v+ B)Aw + (e + v — Bgrad divw
+rotu —4daw = —f, in,
{u=0,w=0 on I'p, (2.29)
Angdivu + (i + a)n; Diwj + (i — a)n; Dju;
—2agijpnjwr =0 on Iy,
Lenidivw + (u + B)n;Diw; + (1 — B)n;Djw; = 0 on I'y.
In this paper, we treat the Dirichlet and mixed boundary conditions. As a
matter of convenience we introduce the notations

VP(Q):={v e H'(Q); v=0on I}, (2.30)
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3. Perturbation P(f,,V;()(7))) of problems P(f,V(2))

Let a domain 2 satisfy the conditions shown at the beginning of Section 2. We

consider the family of problems P(fr,V;(Q(7))), 0 < 7 < T. Let {Q(7)}. 0 <

7 < T, be a family of domains in R™ and, for each 7, Q(7) and €2 be connected

by the mapping ¢,.. We assume the fulfilment of the following hypotheses.

(H1) The map @, : RY — R" is one-to-one, ®,(Q(7)) = Q, and &, has the
positive Jacobian, ®o(z) = x for all z € RV.

(H2) 7~ &, € C2([0,T]), W2(RN)™N). Here C2([0, T), W2 (RN )N) stands
for the space of twice continuously differentiable functions with respect to
7,0 < 7 < T, with the values in W2 (IRM)V,

By (H1) and (H2), the map v(y) — ®*v(x) := v(P,(x)) is one-to-one from

WL2(Q)", y € Q, x € Q7), onto WH2(Q(r))™ and satisties the estimate

C M olhg < 1970l £ Cllvllne for all v € Wh2(Q)"™ (3.1)

with a constant C' independent of 7. v. The next assumption concerns the

perturbation of boundary conditions given by V. (€2(7)), namely.

(H3) The map ®* : WH2(Q)™ — WL2(Q(7))™ is one-to-one from V() onto
Ve (7).

In Sections 3.1, 3.2 we will give examples of ®,. As for the crack theory,
suitable examples can be found in Mazya and Nazarov (1987); Khludnev and
Sokolowski (1999).

Under the hypotheses (H1) - (H3) and for f. € L*(Q(7))™, we consider the
following variational problem P(f., V- (22(7)) with the parameter 7.

PROBLEM P(f,, VA ((7))): For agiven f, € L*((7))™, find an element u(r) €
Vo (Q(7)) such that

E-(ulT); fri UT)) £ &2 (Y f7,2(T)) for all v € VA (Q(7)). (3.2)
Here

El Fre UT)) = [)( ){E(.’T;"U,V‘U) = fr v} de, v e Vi (Q(r)).

The solution u(7) of the problem P(f;, V- (2(7))) satisfies the following identity
for cach T,

/ SE(u(r))[v]dx = / fr -vdz for all v € V- (Q(1)). (3.3)
JQT) JQT)
We consider f, € L2(Q(7))™ for the following two cases:
supp f C Qr) for 0 < 7 < T (3.4)
In this case, we can omit the subscript 7.
fr s the restriction f |gy of f € EY{R¥ Y™, (3.

A
~
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For the Dirichlet conditions the spaces V- (§2(7)) satisfy (H3), if

Ve(8(1)) = {v: v =0 on I'(7)}, I(7) = &7 4(I). (3.6)

3.1. Deformation in the normal direction

Let us consider the smooth boundary I'. Let Us(I') € IRY be an open neigh-
borhood of the surface I', consisting of points whose distance from I' is less
than 6.

We can take 6 such that for each point 2 € Ug(I') there exists a unique point
P(x) € T satisfying the condition |z — P(z)| = minger|z — y|. Let h be a
C>-function defined on I'. We counsider the surface I'; j, defined by the formula

Irp={x+rh(z)n(x) |z € '},

and let €, 5 be a domain with the boundary [, .

Let £ be a function in C§°(Us(I')) such that 4 > 0,4 = 1 near I', where
Cio(Us(1')) is the set of smooth functions with compact support in Us(I'). Set-
ting

3 \ _ Ja=1B(x)h(P(2))n(P(x)) for x € Us(I"),
Bra(z) = { p for z € R3\U(T) (3%)

we get the C>-diffeomorphisms @, 5, from IR? onto IR? satisfying the condition
D4 (2:0) = Q. In this case, the vector field Xy, can be defined by the formula

d
Xp(z) = d—‘l’r w(2) |r=0= =B(x)h(P(2))n(P(x)). (3.8)
The maps ®, , satisfy the assumptions (H1)-(H3) since
VP(Q(r)) := {v e WI(Q(1))™; v =0 on 99(r)}. (3.9)
VM (Q(T)) == {v e W(Q(7))™; v=0o0nI'p(7)}, (3.10)

Tp(r) == &7 (I'p).

3.2. Deformation in the tangential direction

Let © € IR? be a bounded domain with C%-smooth boundary 9. Assume that
vy=1Ip ﬂ[ ~ is a smooth curve. There exists a C*-diffecomorphism F from
v % (=1,1)% onto a neighborhood U(y) of 4 such that

v={F()0,0); A€~} (3.11)

MNNU(y) = {F(MNE0); Aeqy, §e(-1,1)},

QNU®y) = {F()\&,&); Aer, & e(-1,1), &€ (0,1)}

We consider the curve v of perturbation on 992 and suppose that there are



(@51
oo
et

Generalized J-integral method for sensitivity analysis of static shape design

curves y(7) = (), 0 < 7 < T, is the interface I'p(7) N I'n(7) between the
Dirichlet boundary I'p(7) and the Neumann boundary I'y(7). Then, we can
prove existence of the function h, defined on « as follows

y(7) = {F(A\ h:(1),0); A€l (3.12)
We put (AM(z), &1(x), E2(2)) == F~1(2) and define

B, (2) = { ﬁ‘(mv).a(m) - 7h(2)hr (A(2)), E2(2)) ﬁ?;ﬁ . ; gm (3.13)
where f € Cg°(IRY) satisfies the conditions
B(x) >0, f=1ncar v, =0 outside U(xy). (3.14)
Then, &, ,(x) satisfy the assumptions (H1)-(H3) since
VM(Q(r)) := {v e WL2(Q(r))™; v =0 on T'p(7)}. (3.15)

The vector field X, = d®, - /d7|;=0 is constructed as follows. Consider the
vector field ay := d¢- /dr|= defined on 7. Next. consider the parallel displace-
ment yy of x4 along the geodesic curve on I normal to . Finally, consider the
parallel displacement Y, of y, along outward normal direction to I'. The vector
field =Y, equals X, near +.

4. Generalized J-integral (G J-integral)

The generalized J-integral was proposed in Ohtsuka (1981); it expresses the
crack extension force in the three-dimensional case. Later, in Ohtsuka (1982),
the concept of G'J-integral was extended so that the theory is applicable for
the sensitivity analysis of potential energy with respect to the perturbation
of boundary and movement of interfaces in mixed boundary value problems.
Moreover, the concept of GJ-integral includes J, L, M-integrals (see Ohtsuka
1981, Theorem 3.5).

DEFINITION 4.1 Let O(IRY) be the set of domains w with local Lipschitz prop-
erty in RN, For a given f, let u be a solution of the problem P(f, V(2)),
and X = (X1,---, X,,) be a vector field defined on IRN. We define GJ-integral
Jo,(u, X) by the formula

Jo(u, X) i= Po(u, X) + Ry (u, X), (w,X) € O(RN) x W2(RV)N (4.1)
provided that the following integrals P, (u, X). R (u, X) are finite,

Po(u,X) = - / {E(u)(X -n) = T(u) - (X - Vu)} dS, (4.2)

Ja(wne)

R (u, X) = / {(X V) E(z,u,Vu) + f- (X - Vu)}

JwN

- / {Aij(z,u, Vu)(D; X)) (Drui) — E(u)(div X)} da, (4.3)
wN
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4.1. Fundamental properties of the G J-integral
PRroposITION 4.2 If

] |E(, u, Vu)|?dx < oo, / |Dy, B (2. w. V)| da < oo,

Q Q

and A;j(z,u, Vu) € L3(Q), then by the Schwarz inequality, the integral Ry, (u, X)
is finite.

For all examples considered in the subsection 2.1., the values of R, (u, X)
are finite.

THEOREM 4.3 Let u be a solution of the problem P(f,V(Q)). Assume that u
is sufficiently smooth so that the divergence theorem

/ (X-VJE(-u)d:z::[ E(u)(X -n)dS
wg}

Jd(wnil)
—/ E(u)div X dz (4.4)
wn

is applicable. If, moreover, Green's formula
/ OE(u)[X - Vu]de = / T(u) - (X -Vu)ds
Junn D(wne)

~ / {div A(z,u, Vu) = B(z.u.Vu)} (X - Vu)dz (4.5)
wni?

holds for w, then we obtain

Jo(u, X) = 0 for all vector fields X € W>=(RY )N, (4.6)
Here the elements of div A(x,u, Vu) are DjAg(x.w,Vu), i =1,---,m.
Proof. From the chain rule, we have

(X -V)E(u) = (X - Va)E(z,u, Vu)

+0E(u)[X - Vu] — Aij(z, u, Vu)(D; Xy ) Dyu;.

Next, from (4.4) and (4.5), it is easy to obtain
] E(u)(X -n)dS
wnR)

- {E(u)div X + (X - Vy)E(2,u, Vu) — Ajj(2,u, Vu)(D; Xy ) Dyu; } d

wni}

= / T(u) - (X -V)udS + . [ (X - Vu)dz.
8(wn)

wM§l

Here we use the equation —div A(x,w. Vu) + B(a,u, Vu) = f holding in
alminet avorvwhere dne to the reenlarity assumption on . ]
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COROLLARY 4.4 Let w be a solution of the problem P(f,V(§)). For any do-
mains wy C wy C Q in RN, we denote by u ]-..;2\:; the restriction of u to wy \Wy.
If u |__‘,,__ \&7 18 smooth enough as required in Theorem 4.3, then

i by X)) =dis (e X, (4.7)

Proof. The result (4.7) is easily obtained from (4.6) by replacing w with ws \@7.
[ |

4.2. Examples

We give below the forms of the GJ-integral for the problems considered in

Section 2..

4.2.1. Poisson equation
Po(u,X)=— /
Jo(wna)

R.(u,X)= j {f(‘( cVu) = (Vu - VX)) Dy + %|Vu|2div)(} dz.

Wil

Lo _ou iy g,
{QIVuj (X - n) On('x Vu)}dS’,

4.2.2. Elliptic equations

LPo(u,X)= - f {1(mijuD.,-u + bu?)(X - n)
A(wnil) 2

&

—(niaijDju)(X - Vu) }dS,

Ry(u,X) = /m {%((X -Vaij)DjuDiu+ (X - Vb)u?) + f(X - Vu)

1 Ok s
—(aijDjuD;Xy)Dyu+ §(aiij-tsDiu + bu”)divX } dax.

4.2.3. Linear elasticity

Po(u,X)=- / {iog_,-(-u,)e,-j(u)(x n) —oini(X - Vu;)} dS,
J Hwnil) 2

Ry(u, X) = ./nﬂ {é(.\’ <Vegr)er(u)eij(u) + fil X - V)

1
— AN Xu Do 4+ = (Ve (a)eiv Yl i
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4.2.4. Elasto-plasticity
P.(u,X)= -—/ {E(u)(X - n) = (njeijr(wer(u))(X - Viy)} dS,
A(wnQ)

)

T w,u)
R,(u,X)= /rm {(X - Vk)(diva)? /2 -1-/{ X Voulz, o)do

+fi(X - Vu;) —cijr(u)ern(u)D; X, Dpu; + E(u)('livX} dx,
where ¢;;jri are given by (2.25).

4.2.5. Micro-polar elasticity
P,(u,X)= - / {E(u)(X n) = (op,ijnj(u,w))(X - Vu;)

Jo(wna)
—(or,ij(w.w)n; (X - Vw;)} dS,

Ro(u,X) = [ {filX - V) + 0g,ij(u)D; X, Dpu;

Jwn
—op,ij(w)D; X, Dyw; + E(u)divX} de,
where
Aé;jdiv“ + (n+ a)Diw; + (p — a)Dju; — 20w,
€d;jdivw + (v + B) Diw; + (v = B)Djw;.

Il

JE‘,'I_;('U, w) :

oRij(u,w) :

Il

5. Variation of potential energy functional

In this section, we calculate the variation of potential energy functional d€(u(7);
fr, 7)) /dr |2=0 when 7 — @, satisty (H1)-(H3) and f(7) = f |a¢). f €
WL2(IRM)N | under the following conditions (5.1)-(5.5):

The functional v f E(v)dx
o(r)

is Gateaux differentiable on V(Q(7)). (5.1)
There is a constant My > 0 such that
16 E(x, v1, Vor) = §E(x,v2, Vs )llo a(ry SMollvr = v2ll1 0¢) (5:2)
for all vy, vs € V(Q(1)).

There exists a constant My > 0 such that
V. Aij (. 2.p), [VeBilz. 2, p)| < My (|22 + Ip2)'7° (5.3)
. 9 9y 1/2
[Aij(@,2p) = Aij(a, G a)l < My (|2 = P +Ip—al?)"
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There is a constant. Ms > 0 such that

L]

V,V:E(x.z,p)én < Mal€|[] (5.4)
VY, Vo E(x, z.phm’ < Maln|ly'|

for all z € RN, € € R™, 5,9/ € R™Y,
There is a constant ag > 0 independent of 7 such that

/m ) {0E(v + w)[w] - dE(v)[w]} dz > m!l"hr||"f‘n(ﬂ

for all v, w € V(Q(7)).

—_—
£
(3

—

REMARK 5.1 The examples considered in Section 2. satisfy the conditions (5.1)-
(5.5) (see Ohtsuka 1985, p. 344 for elasto-plasticity).

PRroprOSITION 5.1 Under the assumptions (5.1)-(5.5). the problem P([fg.;.
Vi (SU1)) is uniquely solvable for each f € L*(R™)Y., and the functional u —
Ra(u, X) is bounded in V (€2).

Note that inequality (5.5) implies the coercivity and weak lower semiconti-
nuity of £(v: fr. Q1)) on the space V(7)) (see Necas and Hlavicek, 1981),
and the statement follows.

We calenlate the derivative d€(u(7); fr.r.Q(7))/dT |+=0 in Theorem 5.4 be-
low. First. we provide some lemmas,

LEMMA 5.2 Under the ussumplions (H1). (H2), we have the following estimate
for f € WHA(IRY),

”q):-fﬂ - fﬁ.r”[}_g”,—} < CT“f”l.lR‘\' (5{’)

with a constant C' > 0 independent of 7.
Proof. Since the space CF(IRY) is dense in WH2(IRY), it suffices to prove
(5.6) for f € C3°(IRY). By the formula

or

d T d 13
Q’tf{l} = _,I"(.'r:} = /“ Z(l): f{l) ils = /U (E‘;{[’,.,‘) (5:—}) (‘bs (:I.‘_” s

and the Schwarz inequality. we get the estimafe

) o . . 2 |
(Ed),m) (:)-r_,j) [\J\(:)}l ds

T

|07 ()~ [()2 < 7 /

S
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with a constant C; > 0 independent of 7. Integrating next both sides over 2(r)
and using Fubini's theorem, we obtain

o T' 'rtb*_v 2ds da
/ﬂmw P _/Qmjﬂ 183 f)|Pds da

= Clr/ / |93 (V f)|Pdz ds < czr/ /13 mvds = Cor? || FI} -
0 my 4]

Taking square root both sides, we arrive at (5.6). ]

LEMMA 5.3 Let u(r) be the solution of the problem P(fr.., 7)), and u*(7)
be the solution of the problem P(®(f |), Q7)) for a given f € WLE(IRN)™.
Under the hypotheses (H1), (H2), (H3) and (5.1) - (5.9), we have the estimate

llu(r) = w*(7)ll1.0¢) < CTIfllry (5.7)

with a constant C' > 0 independent of 7.

Proof. Since u(r) — u*(7) € Vo (7)), from (5.5) we have

/ {E(u*(T)[u(r) — u*(7)] = 6E(u(r))[u(r) — w*(7)]} dz
Q(r)

> aollu(r) = v ()|} o) (5.8)
From the identity (2.4), by the Schwarz inequality and (5.6), we obtain

/Q{ : {8E(u* (7)) [u(r) = u* (1)) = 6E(u(r))[u(r) -« (7))} dz

= [, @ ) =) lat) -l
< Gyl fllmw llulr) = v (7)l1.0¢r)- (5.9)
Combining (5.8) and (5.9), we derive (5.7). @

THEOREM 5.4 Let u be the solution of the problem P((f |a), V(Q)) with f €
WEY2(RN)N. Then, under the hypotheses (H1)-(H3) and (5.1)-(5.5) the fol-
lowing formula holds

dE(u(T); fr- 7)) /dT |- =0
= —Rg(u,X)+ / [X-V(f - u)+ (f - uw)div X]de, (5.10)
0
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Proof. To simplify the notations, we prove (5.10) for the case of m = 1. The
arguments used to prove the statement will be applicable for m > 1. For any
v € V(). we put

ar(Pru, drv) = / OB (., Oru. V(P u))[Prv]d.
Q(r)

Recall that 7 — ®, € C*([0, 7], W2*(IRV)N). By a simple modification of the
arguments used in Ohtsuka, 1985, Theorem 4.2, and by the use of the mean
value theorem, we can derive

Jar (2, ®30) = a, (u* (7). 20) [<Carll fllmn [0l (5.11)

for all v € V. (2(7)) with a constant C; > 0 independent of 7.
By taking ®¥u—u*(7) as ®Lvin (5.11), from (5.5) we can prove the following
inequality

ag||Pru — ’U}*(T)”?.Q(T) < ar(Pru, Pru—u*(7)) — ar(u*(r), Pru — u" (7))
< Curllflhma 197w = v ()]l Lacr)

Together with (5.7), this implies the estimate
”’U.(T) = (I):UHI,Q(T) S 0’51C171|f”1,m~ (512)

with the constants g, C; > 0 independent of 7. Applying the mean value
theorem to the function

5 / E(®Iu+ s(u(r) — ¢Tu))dz,
we obtain the following equality for each 7 > 0,
/ E(u(r))dx
(r)

= / E(®Tu)dr + / SE(PTu)u(r) — Prulda + 11 ((), (5.13)
Q(r) J(r)

with (¢ j(,(T {§E(@ru+ ((u(r) — Pru)) — SE(PLu)} [u(r) — Pru)dz, and
¢ e (0,1). By the assumption (5.2), there is a constant Cy = Ca(u) such that

IHo(¢)] < Col|®Fu — w(7)l} or)

Since w*(7) is the solution of the problem P(®L(f |a), V-(8(7)), we have the
equalities

/ frru(r)de = / O2(f ) (u(r) = ®Tu)dx
JQ(r) JQ(T)

+ / (fr-—9*(f lo)) ulrT)dx + / (O 1N DF N dr
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= [ SR ) = @+ [ (= 9200 fa)) u(riae

)
+/ (o) (Pru)de.
Q(r)

Then, by letting

| Une =@ ) u(ride = [ (fne = 8307 o) #uds

Q(r) Q)
+ [ Une =83 ) (ulr) - )i
Q(r)

and taking into account (5.6) and (5.7) we have the following equality

E(ul(r); fr+UT)) = / {E(®7u) = fr.(Pru)} de + o(7). (5.14)

Q(r)

Here o(7)/T — 0 as 7 — 0. By H, we denote the matrix whose components
hi ; are given by the formulae

hij = Dj®.; — 6 j € C*([0,T), L=(RM)Y), i,5=1,2,-,n.

Setting
Iy(s) = f {E(z, Piu, P (Vu) + sH, 27 (Vu))} da
Q(r)

and using the mean value theorem. we derive following equality,
(1) = 11,(0)
+/ Az, @Tu, P (V) + (H P (V) ) H, @1 (Vu)dz, (5.15)
2T

with ¢ € (0,1). We can next rewrite the first term of the right-hand side of
(5.15) as

/ E(z, ®%u, & (Vu))ds = [ E(®, (), 8% u, & (Va))da

Qr) JET)

+/ {E(x, ®iu, L(Vu)) - E(P-(z), iu, 7 (Vu) )}rir (5.16)
)

Replacing @ (2) with y, we obtain

/ E(® (), Plu, @L(Vu))dae = /E(y,u. Vu)dy
Q(r) Jo

[ Bas we a)d J1AAeS7d~IN —_ 1\ A (517}
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Next, it is seen that

gl / f‘b’:-nd:::-—/ﬁ:.d:r
Q(r) 40

= r—l/ (f’—-@;f}@;ud:::ﬁ—-r_l/fu{(lct(VQ):l)—l)d:z:
JQ(7) Q

— —/ {(X -Vf)u+ fudivX}de
Q

= —] {X - V(fu)+ fudivX}dz +[ (X - Vu)de (5.18)
Q 0

as 7 — 0. Since Hy = {0}, we obtain the limit

T—()

nmr-i/ (A (, %, B2 (Vi) + CHy 0% (Va) e (V) } do
ST

o / Ay, uw, Vu) ({—ihj_;,. ]f=0) Dyuda, (5.19)
Ja d‘l’

where 4Lh; . |r=0= (;,‘-";D;,.d)_,-)r___o = DyX;. By collecting the terms (5.15),
(5.17) and (5.16), it is easy to rewrite (5.14) as

E(u(r); fror UT)) = E(us fr. Q) + f E(y, w, Vu){det(V@;") - 1}dy

Q

+ [ {A(z, PFu, 7 (Vu) + CH- 21 (Vu)) ((Hr — Ho) 1(Vu))} de
JT)

+/ {E(x. @Iu, @7 (Vu)) — E(®,(x), Iu, @7 (Vu))} dr
Q(r)

= fOludx — | fudz p + o(7)
Jagr) Q

with some 0 < ¢ < 7. Therefore the formulae (5.13), (5.18), (5.19) provide for
the proof of Theorem 5.4, i.c.,

Tli_l}})‘r“ {E(u(T); frr SUT)) = E(u; £.9)} .

= —-Ro(u,X) + /{ {fudivX + X - V(fu)}dx.

JOROLLARY 5.5 If supp f s contained in Q, then f(7) = [ for small T, and

we have

iéf(nfﬂ: F.OAUY™ N ein = =Rolu. X). (590
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COROLLARY 5.6 Ifsupp f is contained in 0, and u is sufficiently smooth, as in
Theorem 4.3, then

2 £(u(r); £.9(r))lr=0 = Pa(u. X)

= &/ {E(u)(X -n) — T(u) - (X - V)u} dS. (5.21)
J O

6. Global variation of solutions by perturbations

DEFINITION 6.1 We denote the first variation of R, (u, X') with respect to u by
the formula

G Ro(u,w; X) := Iil%c”l{ﬁu{u +ew, X) — R, (u, X)}. (6.1)
Here, for an arbitrary ¢ € C§°(Q2), w is the solution of the problem P(¢p, V(2)).

THEOREM 6.2 For each f € WI2(IRY)™, let u(T) be the solution of the problem
P(fr,V-(27)). Assume the existence of a constant My > 0 such that

ID:.-D:;E(.-, < ]D;;,J.D b Lwn}') |, |DP DPHE(:;:,z‘pN S ‘Ma, (5.2)
for all z € RY, 2z, e R™, pe R™,

Then, under the hypotheses (H1)-(H3), and (5.1)-(5.5) we have the formula

d

e mﬂu(f)(pda;

= 6, Ro(u,w; X), p € C3°(52). (6.3)
r=0

Proof. Since E € C*IRYN x IR™ x R™V), by the mean value theorem, for
C.n € C(RN)™ and € > 0, we obtain the following relation

E(x,n+ ¢, V(n+eQ) = E(x,n,V(n)) + edE(n)[(]
+% {Dy; Dy Bz, + 0¢, V(0 + 0C))Di¢; DiGi

2Dy, Dy B, + 66, V(0 +00))GDic;
+D. D. E(x,n+ 08¢,V (n+0¢))¢i¢;} (6.4)

with some number 0 < # < 1. Let u(7), w(7) be the solutions of the problems
P(fr, V-(Q(1))), P(p. Vo(2(1))). respectively. From (6.4) and (3.3), we obtain

E(u(r) + ew(r); frr Q7 ))— E(u(r); fr.r 7))
= —E/ - u(T)dz . “R(u(r) w(7)), (6.5)
Q(r)

. 2
2 PR P - / S T ne oo e ey
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where
Ru(r),w(r)) :=
/ {Dp, Dy Bl u(r) + Br(r), Y (au(r) + B1w(r)) Diw; () Do ()
Qr)

+2D,,,. D., E(z,u(t) + 0yw(7), V(u(r) + Ow(r)))wi(7)Diw;(7)
+V., V., E(x,u(r) + 61w(r), V(u(r) -|-91'w('r)))'m;(r]wj(r)} dz,

R(u, w) [ {JDI,,lj Dy, Bz, u+ 02w, V(u+ Oaw))Diw; Dy

+2D,, D, E(z,u+ 63w, V(u + Oow))wi Diw;
+D.,D., E(x,u+ 0w, V(u+ 921.':)}?:;1-%} dx

with some numbers 0 < 8,6, < 1. Combining (6.5) and (6.6), we can derive

[ P (w(7) — u)dx
JIRN

= —e "V [E(ul(r) + ew(r); frr, UT)) = E(lT); frir, UT)))
+e E(u+ ew; fr, Q) — E(u; fr, Q)]

2
+%WWvanhMmmy (6.7)
From (6.2) and (5.12), the following estimate is obtained

[R(u(r), w(7)) — R(u,w)] < Ci7||¢|l1.0 (6.8)

with a constant Cy > 0 independent of 7. Hence, by Theorem 5.4, it follows
that

lim 77! / - (u(r) = u)dz
7—0 By

B {Rn(u-l—ew,X) —f [X-V(f-u)+f-udivX]dx}

1{1’?9((& X)+/ [X-V(f-u)+f- udle]d'z}

+ lmhr' E{R(u ), w(r)) = R(u,w)}. (6.9)
Letting e — 0 in (6.9), by (6.8), we arrive at (6.3). |

COROLLARY 6.3 Assume thal solutions u and w have the same smoothness as
in Theorem 4.3, then under the hypotheses used in Theorem 6.2, we have

d l £\ R | | coor™






