PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

General method of relaxation. [Pt. 1], Functionals defined on BD(Omega) space

Autorzy
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to find the lower semicontinuous regularization of a functional of displacement energy, with a constrains on the boundary of Omega. This functional describes the elasto-perfectly plastic energy of a solid made of a nonhomogeneous (or homogeneous) Hencky material. In this contribution we prove that the mentioned above regularization is equal to the relaxation found in [4], i.e. B** = B#*.
Rocznik
Strony
289--301
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Świętokrzyska 21, 00-049 Warszawa, Poland
Bibliografia
  • [1] L. Ambrosio, G. Dal Maso, On the relaxation in BV(f2,I17') of quasi-convex integrals, J. Funct. Anal., 109 (1992) 76-97.
  • [2] L. Ambrosio, D. Pallara, Integral representation of real functionals on BV(Rn, Rk) and polyhendral approximation, Indiana Univ. Math. J., 42 (2) (1993) 295¬321.
  • [3] P. Aviles, Y. Giga, Variational integrals on mappings of bounded variation and their lower semicontinuity, Arch. Rational Mech. Anal., 115 (1991) 201-255.
  • [4] J. L. Bojarski, The relaxation of Signorini problems in Hencky plasticity, I: Three-dimensional solid, J. Nonlinear Anal., 29 (1997) 1091-1116.
  • [5] N. Dunford, J. T. Schwar z, Linear Operators, Part I, Interscie.nce Publishers, New York 1958.
  • [6] I. Ekeland, R. Temam, Convex Analysis and Variational Problems, North Holland, Amsterdam, New York 1976.
  • [7] R. Engelking, General Topology, Państwowe Wydawnictwo Naukowe, Warszawa 1977.
  • [8] I. Fonseca, S. Müller, Relaxation of guasiconvexfunctionals in BV(12, RP) for integrands f (x, u, Vu), Arch. Rational Mech. Analysis, 123 (1993) 1-49.
  • [9] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, in: Lecture Notes Written by G. H. Williams, Dep. Math., Australian National University, Canberra 10 (1977).
  • [10] R. Kohn, R. Temam, Dual spaces of stresses and strains with applications to Hencky plasticity, Appl. Math. Optim., 10 (1983) 1-35.
  • [11] R. Temam, Mathematical Problems in Plasticity, Gauthier-Villars, Paris and Trans-Inter-Scienta, Toubridge 1985.
  • [12] R. Temam, G. Strang, Functions of bounded deformation, Arch. Rational Mech. Analysis, 75 (1980) 7-21.
Identyfikator YADDA
bwmeta1.element.baztech-article-BAT2-0001-0571