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Abstract: The paper is focused on the concept of material mix
ing in dynamics. This concept introduces the spatia-temporal com
posites, i. e. material microstructures assembled and maintained in 
space-time. 

The knowledge of the relevant sets of effective material parame
ters ( G-closures) is crucial for the purpose of material optimization 
arising in dynamics of moving media, particularly acoustics and hy
droacoustics, as well as in the high-frequency electronic engineering. 

The analysis is based on covariant description of the mixing prob
lem in terms of relativistic equations acting in Minkowski space. The 
specific characterization of a G-closure is given for a special case 
of a dielectric composite in one-dimensional electromagnetic wave 
propagation. If such composite is assembled in space-time from two 
dielectrics with the same ratio E/ f-L of permittivity E to permeabil
ity f-L and different otherwise then the ratio Eo /!<o of the relevant 
effec tive parameters will preserve the same value. This is a conser
vation law for the wave impedance of the medium with respect to 
one-dimensional wave propagation. 

Keywords: mixing in space-time, spatia-temporal composites, 
hyperbolic G-closure, screening effect 

1. Introduction 

This paper is concerned with the analysis of dynamic processes governed by 
linear hyperbolic equations with their senior coefficients variable in space-time. 
The coefficients are acting as controls; since they usually characterize the ma
terial properties, we speak about the material control. 

The material control is known to be very effective in the elliptic case where 
the idea of a material mixing on a fine scale with formation of artificially as
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gap that originally exists in the properties of initially available materials. This 
gap may be covered once we know the so called G-closure of the original set 
U of materials, i.e. the set GU of all composites assembled from the elements 
of U regardless of the microgeometry of such formations. The G-closures have 
been effectively constructed for several important elliptic operators, Lurie and 
Cherkaev (1997), but no results are yet known about the hyperbolic G-closures. 
These sets, obviously, preserve their significance in this new environment; as in 
the elliptic case, they make the relevant material optimization problems well
posed, leave alone a general description of effective properties of spatia-temporal 
material assemblages. Such assemblages may produce effects otherwise not feasi
ble in the hyperbolic material control, e.g. the phenomenon of complete screen
ing of some extended domain in space-time from the invasion of long wave 
dynamic disturbances. 

The new material features incorporated in spatia-temporal composites are 
all encoded in the hyperbolic G-closures; for this reason, the problem of their 
explicit description receives a high priortiy. The efforts towards this goal were 
hampered until recently by the absence of a general scheme of constructing the 
hyperbolic G-closure as a set of invariant material characteristics of mixtures. 
Such a scheme has been proposed in Lurie (1998A) for a standard hyperbolic 
operator of the 2nd order arising in electrodynamics of moving dielectrics. It 
requires the introduction of a suitable Minkowski space and the parallel analysis 
of a Maxwell's system associated with the original hyperbolic equation. As a 
result, it became possible to characterize the G-closure in a non-trivial special 
case of one-dimensional wave propagation . 

A solution of the general G-closure problem for an arbitrary set of isotropic 
dielectrics in Minkowski's space is yet to come. Anot her goal will be to develop 
the Gm -closure for a set of two isotropic dielectrics, i.e. the G-closure with the 
volume fraction of original materials specified. The t hird goal will be to describe 
G-closures for some selected sets of isotropic materials with respect to hyperbolic 
differential operators arising in acoustics and elastodynamics. This specification 
will require analysis of the relevant conceptual schemes not identical with the 
Maxwell's scheme suitable for electrodynamics. 

2. Possible applications 

Material mixing in space-time arises in many practical situations. 
In electrical engineering, the slow wave circuits and t he traveling wave tubes 

are used to maintain an effective coupling and the t ransport of energy between 
the electronic beams and transmission lines. To this end , the specific material 
characteristics of the line, i.e. its linear inductance and capacitance, are sub
jected to external activation in the form of a "pump wave" traveling along the 
line of Louisell (1960). This activation supplies the energy needed for an effec
tive coupling. The "wave of linear capacitance" is generated through the use of 
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time, Louisell (1960); a similar "wave of inductance" is created through the use 
of a linear arrangement of non-linear inductances. Both types of activation are 
maintained electronically at a desired speed. A spatio-temporal material pat
tern may also be generated in the dielectric continuum by a purely mechanical 
means, i.e. by bringing the neighboring portions of such continuum into a rela
tive mechanical motion. This will occur if we apply a high frequency background 
mechanical vibration in the form of standing waves. The electromagnetic dis
turbances with wavelengths much larger than that of a background wave will 
perceive the medium as a spatio-temporal composite produced as a result of a 
high-frequency vibration. 

In acoustics, a similar phenomenon may be implemented in the propagation 
of sound through ducts with variable cross sections. If a duct is filled by a 
mixture of water and air (or vapor) bubbles, then, under a suitable bubbles ' 
concentration, the effective velocity of sound in the mixture may be made fairly 
low, of the order of meters per/sec, and the cross section of the duct may be 
subjected to a mechanical change in the form of a periodic wave traveling along 
the duct at a comparable speed. The duct will then be acting like a transmission 
line with variable parameters Morse, and Uno Ingard (1968). 

The concept of smart materials Russell (1994) capable of changing their 
properties both in space and time appears to perfectly fit into this scheme as 
well. 

In all cases, we assume that the senior coefficients of the relevant hyperbolic 
equations reveal a chattering behavior , i. e. they appear to be t he fast periodic 
functions in space-time. 

3. Second order hyperbolic equation with chattering co
efficient and a screening phenomenon 

To give an example illustrating the effect of chattering, consider a model hyper
bolic equation 

(pvt)t - (kvz)z = 0, - oo ::=; z ::=; 00, t ;::: 0. (1) 

T he coefficients p, k will be assumed fast periodic, i.e., periodic in the ar
gument (z- Vt)jb where b is a small parameter and V is the velocity of the 
"property wave" 

_ ( z -Vt) p- p b , (2) 

At t = 0, this wave becomes a periodic pattern 

p = p(z/b ), k = k( z/b ), 

and (2) may be perceived as t his pattern moving with a uniform velocity V 
along the z-axis. 

To make this descrip tion more spec ifi c. we will assume that: 
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(a) at each point (z, t) the controls p and k can take either the values 
(PI, ki) or (p2 , k2 ) ( we will refer to "material 1" and "material 2", 
respectively) ; 

(b) these materials are placed within alternating layers having the slope 
dzjdt = V in the (z, t)- plane; 

(c) the period of the pat tern is combined of two successive layers filled by 
materials 1 and 2, the volume fractions of these layers being mi and 
m2, respectively, (mi, m2 2: 0, mi + m2 = 1). 

The slope V will be so chosen as to ensure regular transition of continuous 
disturbance v(z, t) through the interface from one layer to another. In other 
words, we shall consider smooth solutions with both kinematic and dynamic 
compatibility conditions observed across the interface. 

This condition will be satisfied if we postulate the following relationship 
between the characteristic slopes (phase velocities) a; = Jkd p;, i = 1, 2, and 
v 

v2 a2 
V2- ; 2: 0. 

- a2 
(3) 

This inequality is obviously satisfied if V = 0 or V = oo. Applying the 
standard procedure of homogenization, Bakhvalov and Panasenko (1997), we 
arrive at the following difl'crential equation for the function (v) - the value of v 
averaged over the period of the array, Lurie (1997 A,B): 

ata~ [v2
- k (~ ) ] (v)tt + 2V [p (i) -(!2 )] (v)tz 

i'm [v'- i'(o] (v) .. ~o. (4) 

Here, (v) = 1nivi + m2v2 , k = mik2 + m2ki, etc.; the subscripts 1 and 
2 are related to materials 1 and 2, respectively. Eq. ( 4) is hyperbolic once 
ineq. (3) is satisfied. It has no dispersion, i. e. it possesses wave solutions 
(v)(z- ,\It), (v)(z- ?-2t). The characteristic velocities ,\I and ,\2 have the 
product 

(5) 

Assuming that a2 = Jk2/P2 2: a1 = Jkifpi , we shall consider two cases: 

(a) k2 2: ki, P2 :S PI (regular mode), 

(hi b, >b . n,., > n. (irn~Q"nlar mode). 
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Inequality a2 2' a 1 that apparently holds for case (a), will be assumed to 
hold for case (b) as well. 

Eqs.(4) , (5) show that , Lurie (1997), 

J(k- l)-1(p) - 1 for V = 0 (static spatial pattern), 

J(k)(p-1) for V = oo (dynamic temporal pattern). (6) 

It can be seen from these formulas that for the regular mode the long wave 
disturbances may propagate at the speed that always belongs to the interval 
[a1 , a2]. For the irregular mode, however , this speed may lie beyond this inter
val. Particularly, if V = 0, then always Ai = A~ ::; a~; however , either of the 
inequalities Ai = A~ 2' ai or AI = A~ ::; ai may occur. Also, if V = oo, then 
always AI = A~ 2' ai, but there may either be Ai = A~ ::; a~ or AI = A~ 2' a~. 
Long wave disturbances are slowed down by a static pattern and may be speeded 
up by a dynamic pattern. 

In the first case, high frequency harmonics arc suppressed because of re
distribution of energy through the multiple reflections and refractions on the 
interfaces that do not move. In the second case (V = oo), the situation is differ
ent. Energy is then pumped into the system each time the value of p decreases , 
and it is withdrawn from it as p increases. The phasing of these events , by a 
suitable choice of m 1 , affects the phase velocity of the long wave disturbances. 

Another phenomenon associated with the irregular mode occurs when V =1-
0( 00 ) . Eq. (5) shmvs that AIA2 may become positive. This happens vvhen V 2 

belongs to either of the following two ranges: 

1 2 2 2 _ (l) < V < a 1 < a2 ( slow range) , 
p /,; 

ai <a~< V2 < k (~)(fast range) . 

Both ranges arc possible for the irregular mode and do not apply for the regular 
mode. 

With this choice of V 2 , one obtains spatia-temporal arrays (laminates) for 
which both effec tive phase velocities A1 , A2 become of the same sign. This sign 
may be switched to opposite as we go from V to - V. 

The relevant waves will become coordinated: they will propagate both in the 
same direction relative to a laboratory frame. INc will then refer to the right 
(left) laminate if both waves travel to the right (left). 

The use of such laminates may implement the effect of screening mentioned 
in section 1. To this end we may place the right laminate in the 1st quadrant 
z > 0, t 2' 0 of the (z, t)-planc, and the left laminate in the 2nd quadrant. Within 
a sector bounded by the characteristic rays starting a t the origin and having 
slopes -A2, A2(l )q 1>1 A2 I), there appears to be a shadow zone nrotec ted from 
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the invasion of long wave disturbances initiated at t = 0. Such disturbances will 
propagate into the rest of the half plane t > 0. A similar effect was observed in 
Lurie (1971) for the first order equation 

Vt + UVz = 0, (7) 

with u(z, t) treated as a control. It was shown that a "control wave" u(z- Vt) 
may create a "shadow zone" on (z, t)-plane totally screened from the invasion 
of all dynamic disturbances. This phenomenon is typical in the traffic control 
(see Whitham, 1974). 

Contrary to Lurie (1971), the screening now affects the long-wave distur
bances alone; it does not apply in narrow regions near the boundary of the 
domain in the (z, t)-plane. If the system occupies a segment [a, b] of the z-axis, 
then the boundary layers will arise close to its endpoints. 

Coordinated wave motion will not apply there; waves will be reflected from 
the endpoints and travel back to the interior of [a, b] but these waves will carry 
only higher harmonics. 

The analysis of Eq. (1) with coefficients periodic in the argument z - Vt 
has also been carried out with the means of Floquet theory, Lurie (1998B). Eq. 
( 4) then becomes a long wave Floquet approximation related to a low frequency 
passing band. A shorter wave approximations may also be obtained by this 
theory. 

4. The analytic scheme of constructing the hyperbolic G
closures for dielectr ic materials. The use of Maxwell's 
system 

A correct setting of the hyperbolic G-closure problem requires the use of Min
kowski space. We will illustrate the relevant procedure by an example related 
to electrodynamics of inverse dielectric medium. The basic differential equation 
(1) is then perceived as a consequence of the Iviaxwell's system describing the 
behavior of a dielectric medium. The variable coefficients p, k then stand, re
spectively, for parameters f.L and 1/ E interpreted as the magnetic permeability 
and inverse dielectric permittivity of the medium. They are incorporated into 
a single material tensor of the 4th rank entering the material equation which 
becomes a part of the ultimate Maxwell's system represented in covariant form 
in Minkowski space. 

The material tensor becomes the main object of the future work on G
closures; the elements of these sets are defined as invariants of a G-limiting 
material tensor. 

In the absence of currents and charges , the 1\!Iaxwell 's system combines the 
equations 

f'llrlF. -H •. 
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divB 0, (8) 

curlH Dt, 

divD 0, 

with the material relations that take the form 

D = cE, B = JLH (9) 

in a laboratory frame, i.e. the frame immovable with respect to a material 
medium. 

Considering a one-dimensional plane wave 

E = E(z, t)j, B = B(z, t)i, H = H( z, t)i, D = D(z, t)j, (10) 

we obtain a system 

E z = Bt, Hz= Dt. (11) 

By introducing the vector and scalar potentials A, A* , ¢, and ¢* through the 
formulas 

E =-grad¢- At , B = curlA, 

H =-grad¢*+ A;, D = curlA*, 

and by taking 

A = -uj, A* = vi, ¢ = ¢* = 0, 

we satisfy Eqs. (11) because 

The use of (9) now yields 

(12) 

(13) 

(14) 

(15) 

which is equivalent to (1) with the correspondence JL <--t p, 1/c <--t k. The pair 
( E ( z , t), JL ( z, t)) is assumed to take at each point ( z, t) of space-time only one of 
two admissible values (cf. condition (a) in section 3) 

(c(z, t) , JL(z, t)) = { ((
101

' Jl l )) 
t2' Jl2 

("material 1") , 
("material 2"). (16) 

The law of dependence of (c,JL) on z, t is arbitrary, with a sole observation of 
Ineq. (3). 

Starting from Eqs.(15), we may recover the relevant Maxwell's system (8)-(9) 
applying the above argument in the inverse direction. This step is important 
because it creates the conceptual basis for a covariant formulation of the G
closure problem. In the next section, we develop the relevant scheme for a 
o·0nPrl1 1 r >1 "P nf " l'llf >1 Ym0ll '" ""dPnl 
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5. The Maxwell's system for a moving dielectric medium. 
A material conservation law in one-dimensional wave 
propagation 

The pairs of vectors (B , E) and (I-1, D ) are known to generate two skew-symmetric 
tensors in Minkowski 4-space (x1 = x, x2 = y, X3 = z, x4 = ict) 

( 
0 cE3 -cE2 -iE, ) 

F = (cB, -iE) = - cE 3 0 cE1 -iE2 
cE2 - cE1 0 -iE3 
iE1 iE2 iE3 0 

(17) 

J ~ (H,-icD) ~ ( 

0 H3 -H2 -icD, ) 
- H3 0 H1 -icD2 
H 2 - H 1 0 -icD3 · 

icD 1 icD2 icD3 0 

(18) 

Here, c denotes the velocity of light in vacuum, and E 1 , . .. , D3 denote the 
relevant vector components. 

Eqs. (8) now obtain the covariant tensor form 

(19) 

where F/;_ is a tensor dual to F;k , i.e. 

(20) 

with eikl m denoting a completely antisymmctric tensor of the 4th rank. 
In the space of skcw-symmctric tensors of the 2nd rank in four dimensions 

we introduce an orthogonal bas is defined as a set of skew-symmetric 2nd rank 
tensors a;k( i, k = 1, 2, 3, 4) specified by the formulas 

a12 = 1jh(i1i2 - i2ii), a 13 = 1/v'2(i li3- i3i1) , a14 = 1/h(ili4 - i4i1), 

a23 = 1jv'2(i2i3- i3i2), a24 = 1/h(i2i4- i4i2), 

a34 = 1/h(i3i4- i4i3) , 

wiLh i17 , u = 1, 2, 3 , 4 being t he orthonormal basis of unit vectors pointing along 
the X 17-axcs; we see that 

i = l,k =m,, 
otherwise . 

The material equations (9) arc now incorporated in a single tensor relation
ship 

f = s : F (21) 
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where the 4th rank material tensor s is given in a laboratory frame by the 
formula, Lurie (1998A), 

1 
s = --(a12a12 + a13a13 + a23a23) - t:c(a14a14 + a24a24 + a34a34). (22) 

J.l.C 

Eqs. (17)-(21) constitute a standard system required for constructing the G
closure. This system possesses the same structure as in the relevant elliptic 
case: it includes two original entities - t he skew symmetric tensors F and f in 
Minkowski space; these tensors are linked through a linear material equation 
(21). When homogenization is applied to this system, it reveals a G-limiting 
material tensor, and invariants of this tensor become the elements of a G-closure. 

Eq. (22) shows that a dielectric medium that is assumed isotropic in space 
is anisotropic in space-time unless c2 = 1/t:J.L. This latter possibility holds for a 
vacuum which is the only medium isotropic in Minkowski space. Disregarding 
this case, we may single out the following three types of problems of mixing the 
materials isotropic in a conventional sense. 

First, there is a case of materials differing in t he eigenvalues 1/ ~tc, t:c of 
their s-tensors, i.e. in the values of their (c, ~t)-pairs. These pairs may address 
different values in the spatio-temporal domains with interfaces consistent with 
Incq. (3); the layers of multiple rank matching this condition may serve as 
examples of such a situation. As to the cigentensors, they will be assumed 
the same for both materials in this case. This means that the materials arc 
not subjected to a relative motion which is the only factor responsible for the 
difference in cigentensors. The difference in material properties is implemented 
in these circumstances through the mechanism of activation described in sectiou 
2. 

The second type of mixing problems arises when the original materials differ 
in their eigentensors alone. This difference will not exist if both materials are 
isotropic and identical in a conventional sense, and if they are not exposed to 
a relative motion. This motion alone makes the materia ls different from one 
another in this situation because it creates the difference in t heir eigentensors. 
vVhen such mot ion occurs, we arrive at what may be called a spatia-temporal 
polycTystal assembled in space-time from t he conventionally isotropic materials. 

The required type of motion may be created as a high frequency background 
mechanical vibration imposed on a dielectric continuum in the form of standing 
waves. Tllis mechanism, also mentioned in section 2, makes the long wave elec
t romagnetic disturbances perceive the medium as a spatio-temporal polycrystal 
of the above type. 

The t hird type of mixing problems arises when both factors - activation 
and motion - are acting simultaneously, geuerating the difl"erence in t he ulti
mate material properties in space-time. In this case, both the eigenvalues and 
eigentensors of Lhe relevant s-tensors become different for the original materia ls 
involved. 



292 K. LURIE 

A similar classification applies when the original materials possess a spatial 
anisotropy, i.e .. they are anisotropic in a conventional sense. 

In one spatial dimension, the G-closure of a set of two conventionally isotropic 
materials allows for an important characterization when the determinant E/ f..L of 
the s-tensor possesses the same value for both materials; otherwise, these ma
terials may be arbitrary and particularly exposed to a relative motion. Namely, 
the determinant Eo/ J.Lo of the effective tensor s0 appears in these circumstances 
to be equal to Ed f..Ll = E2/ f..L2 , i.e. the common value of the original determi
nant, Lurie (1998A,B). This conservation law represents a hyperbolic analog of 
the statement that holds for a similar elliptic 2nd order situation in a plane 
( cf. Lurie and Cherkaev, 1997) ; particularly, a hyperbolic polycrystal preserves, 
like its planar elliptic analog, the value of the determinant dets0 of its effective 
material tensor. 

6. The problem of material bounds 

In the case of a plane elliptic polycrystal, the sole fact that the determinant 
detso = >-1>-2 of an effective material tensor remains equal to the determi
nant dets of the original material tensor, does not completely characterize the 
G-closure, i.e the set of all possible plane polycrystals. This characterization 
becomes complete after we add the inequality h(so) ::;: h(s) indicating that 
the mixing operation may only reduce the original material anisotropy. This 
latter inequality appears to be a consequence of the Reuss-Voigt estimates of 
the eigenvalues of an effective tensor s0 , and these estimates come up as a conse
quence of the minimal variational principle that generates the basic differential 
equation of elliptic type. 

The hyperbolic equation (1) is also generated by a variational principle, but 
this principle establishes just stationarity, not minimality of the relevant func
tional of action. For this reason, the point (>-1, >-2) in the plane of eigenvalues 
of the s0-tensor for a hyperbolic polycrystal may move along the hyperbola 
dets0 = >-1>-2 = dets either towards or away from the diagonal , thus making 
the effective tensor s0 either less or more anisotropic compared to the original 
tensor s. The reason for this is because the estimates of Reuss-Voigt type are 
no more in effect since the functional of action itself is not positive (or negative) 
definite, and, consequently, it is neither lower nor the upper bounded. 

We may expect to regain control over the eigenvalues once we deliberately 
restrict the set of admissible tensors F (or f) to make the functional of action 
bounded on this new set. How to specify such restrictions, still remains an open 
question. 

7. Acoustics, elastodynamics 

The general scheme of constructing the G-closures developed above for electro-
, . ,, 1 l , _ - ----- ..1....~ --- -- ..l 
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elastodynamics. 
In both cases, it will be necessary to single out entities that will enter the 

scheme as analogs of the tensors F and f appearing in electrodynamics of di
electrics. Material tensors (the analogs of s) that link those entities should also 
obtain a clear conceptual characterization. These objects may be adequately 
identified on the basis of the relevant relativistic equations. 

8. Conclusion 

Over the last two decades, structural design has become optimal to a large ex
tent. Optimization is understood in this context primarily as an appropriate 
layout of constructive materials in space, i.e. throughout the body of a structure. 
This design is necessarily static, i.e. it works well in a static environment, and 
is less appropriate whenever the construction is exposed to dynamic environ
ment. A suitable dynamic response requires that the material medium possesses 
characteristics variable both in space and time, and conventional optimization 
technique must be adjusted to fit into this new environment. The results may 
find applications through the design of devices aimed to effectively command 
the dynamic behavior of distributed systems; particularly, these devices may 
either suppress undesired vibrations, or, contrary to that, maintain and control 
vibrations whenever they should come into being. 
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