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Abstract: In this survey we analyze the possibility of obtain-
ing information on regularity and irregularity properties of the value
functions of some optimal control problems from their more precise
description as marginal functions of finite-dimensional type,
in terms of certain "generalized characteristic flows™ which, in turn,
may be constructed using either necessary optimality conditions
(PMP-Pontryagin’s Minimum Principle), whenever applica-
ble, ar suitable extensions of Cauchy’s Method of Characteristics for
the associated Hamilton-Jacobi-Bellman equation.

This type of representation, which may be justified either by the
application of PMP “combined” with existence theorems or by the
application of a suitable verification theorem of Dynamic Program-
ming type, not only facilitates numerical computation of the value
function but also may allow identification of its discontinuity points,
non-differentiability points, propagation of singularities, etc.; this
approach is illustrated with three significant examples from classical
Caleulus of Variations.
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1. Introduction

We consider a Holze avtonomous optimal control problem for differentiol inclu-

sions, By = (Y5, Y1, 00) g0(,,.), F(.),8%.) which consists in minimizing each of
the cost functionals

Cly: () = glz(t1)) + [ﬂ (1), (1) dt, y € Yo C R” (L1)

over the corresponding set of admissible frajeclories ,(vw), v € Yo, delined as



780 5. MIRICA

satisfy constraints of the form:

'(t) € F(z(t)) a.e.(0,t1), z(0) =y, =(t) € ¥y
W ie[0,8), x(f) € Y C dYa. (1.2)

As it is apparent from this succinet formulation, the terminal time £y > 0 45 free,
depends on the admissible trajectory z(.) € Q,(y) (hence also on the initial point
y € Yp) and it may be interpreted as the first moment at which the last two
conditions in (1.2) (that define the terminafing rule of the process) are verified;
in what follows we assume that Y Nn¥; = 0 to aveid possible ambiguities;
one may note also that problem B,y denotes in fact the family of oplimization
problems Ba(y), y € Yo, defined by (1.1)-(1.2).

As it is well-known (e.g. Boltiansky, 1968, Cesari, 1983, etc.), the value
function of the problem B,, defined by:

9(v) ifyey,
Wi(y) := i sx()) i , (1.3)
(ot ot 725

is the main tool of the so called Dynamic Programming Method and its natural
extension on the “terminal set” ¥) is essential for the monotonicity property (M)
in Remark 2.9 below and therefore for the derivation of the so called “verification
theorems”.

On the other hand, the value function it is a rather abstract marginal func-
tion of infinile-dimensional type and an impressive munber of studies are aiming
at the identification of classes of problems whose value functions have different
types of regularity properties (lipschitzianily, continnity, semi-continuity, ete.);
however, for many significant problems (even for ceriain restricted classes of
problems) one may use the associated Hamiltonian:

H(z,p) = inﬁiﬁ'ﬂH{z,p, v), H(z,p,v) := (p,v) + go(z,v) (1.4)

and suitable extensions of the Cauchy's Methods of Characteristics (e.g. Mirici,
1987, 1998, Subbotin, 1995, elc.) or even necessary optimality conditions,
when applicable, to construct a “generalized characteristic flow”, C*(.;.) =
(X (0. P00 V(5. (which is more precisely defined in Sections 2, 3, 4 of the
paper), whose first component defines admissible, “possibly optimal”, trajecto-
ries, X{.;a), a € A, the last component, V(.;.), gives the corresponding values
of the cost functional, and the “classical” differential property

DV (t;a).(,a) = (P{t;a), DX (t:e).(f, a)) (1.5)

is satisfied in some generalized sense (stratified, contingent, etc. ).
Using either a “combination™ of necessary conditions (PMP - Pontryagin's
Minimum Principle} with a corresponding existence theorem or suitable “veri-
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Lupulescu and Miricd, 2000, Mivica, 1992b, 19953, Sussmann, 1990, etc.) one
may prove that, under certain conditions, the value function is given by:

gly) ifyeY;
WEy1={ infl  V(ta) ifye X(By)CYe (1.6)

Xital=y

and in many significant cases turns out to be a marginal function of finile-
dimensional type since By C (—oc,0) x R¥; this type of representation not
only facilitates its numerical computation but also the identification of points
of discontinuity, non-differentiability, propagation of singularities, evaluation of
its generalized derivatives, ete.

By identifying the natural characteristic flows we are able to prove results
of the following type:

1) in the case of the classical Brachistochrone problem (Bliss, 1925, Cesari,
1983, etc.), the value function is of class C! on the set Yy = (0,200)? of initial
points but ouly locally-radially Lipschitz at the terminal point i, = (0,0} £
Cl(Yp); moreover, in a certain “non-singular case”, the value function is locally-
Lipschitz and contingent differentiable also at the terminal point g (Mirici,
1996):

2) in the case of the classical Euler-Plateau problem of minimal surfaces of
revolution (Bliss, 1925, Cesari, 1983, etc.), the value function is C' — strati fied
and locally-Lipschitz on the whole domain ¥ = YUY, := [0,0c)? and the points
of non-differentiability are more precisely identified (Mirica, 2000);

3) the value functions of some classical problems (e.g., Cesari, 1983) are
neither lower nor upper semicontionous (Lupulesen and Mirica, 2000),

The paper is organized as follows: in Section 2 we consider the “parametri-
wed” optimal control problems for which the PMP is proved in its “standard”
form and show that the value function may be represented as in (1.6) by all the
(normal and abnormal) exfremals X[ a) = (X(2a), P a), ¢ € A, provided
an existence theorem may be applied; in Section 3 we consider the case of
“stratified problems” and show that the same type of representation of the
value function is possible using certain “stratified Hamiltonian and characteristic
flows" and Dynamic Programming arguments; in Section 4 we use "contingent
generalized derivatives” to treat in the same way more general problems and
in the last seclion we illustrate these results on several significant examples
from caleulus of variations (considered as particular examples of optimal control
problems).

2. Generalized characteristic flows generated by PMP

In this section we consider the particular case of parwmetrized optimal control
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imization of each of the funciionals

Cly;u(.)) = glz(tr)) + [] " fola(t), u()dt, y € Yo € R® (2.1)

over the corresponding set UWa(y), v € Yo of admissible controls that are map-
pings w{.) in a prescribled class, I{,, (usually measurable, if I/ is a topological
space) for which the corresponding (AC) solutions, z(.), of the differential sys-
tem:

(1) = f(z(t), u(t)), ult) € U a.e. ([0,1,]), 2(0) =y, (2.2)

belong to given class £, of admissible trajectories, and satisfy the state con-
struinds and the ferminal constraints in (1.2),
We recall ficst that PMP is usually proved under the following:

HyproTHESIS 2.1 The data of the problem PB4 have the following properties:

(i) The set U (of control parameters) is non-empty {usually a subset of some
Euclidean space but also a Hausdorff topological space and even an “unstruc-
tured” set), D = Int(D) € R™ and the mappings f(.,u) := (f(..u). fo(., 1)) :
DxU— R % R, uel are of class C!;

(ii) The class M, of admissible controls is a prescribed sel of mappings u(.) :
[0,¢;] — U such that the mappings

Fult,x) == flz, u(t)) = (F(z. u(t)), folz,u(t)). (t.z) € Dy
= [0,8;] x D (2.3)

are at least of Carathéodory - C' type in the sense that the mappings f,_.[ oI
Dy f (.. .) are of Carathéodory type and moreover, the (unigque) solutions, ={.) =

zulaw), ¥ € ¥o, of the problems in (2.2) as well as the “extended trajectories”
T(.) defined by:

T(.) := (z(.), xol.)), xalt):= 'L Solz(s). uls))ds, te]0,t] (2.4)

belong to the prescribed class, 2, of admissible trojectories;

{iti) The sel of initial states, Yy © D is open (i.e. Yy = fnt(Yy)), the set of
terminal states, ¥y C 8Yy = CHY,) \ Yy, 13 a differentiable manifold and the
terminal cost function g(.) 0 Y7 — R is differentiable. u

We note that the class U, ol admissible controls ranges from the “small-
est” one, Uye of piecewise conlinuous admissible controls” (that “generates”
the class £, of “piecewise-C" admissible trajectories) to the largest one. I).
that generates { “through” f{.. ), the largest class, £y, of absolutely continuous
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the classes of admissible control and trajectories is required by the so called
“Lavrentiev phenomenon” (e.g. Cesari, 1983) and may be essential in the Dy-
namic Programming approach; from this point of view, an important case is
that of the U, of regulafed admissible controls that generates the class £, of
reqular admissible trajectories for which the derivatives, '(.), have a countable
number of discontinuities, all of the first kind.

As it is well known, Pontryagin's Minimum Principle (PMP) is formulated
in terms of the associated “psendo-Hamiltonians” (" Pontryagin's functions”,
ete.):

HP(x pou) = Hix,popo,u) = {p, flx,u)) + pofolz.u), pe A" (2.5)
where pg € {1,0}, and of the (“true”) Hamiltonians:

H™(2,p) = inf HP(a,p,u), UP(z.p)

= {ueU; H(z,p,u) = H™(z,p)}, (2.6)
ZP = dom(U™(.,.)) := {(x,p) € D x R*; U™ (z,p) # 0},
po € {1.0}.

The equivalent formulation that we will present is expressed in terms of certain
“canonical Hamiltonian orientor field” and (£, 4, }-solutions of the correspond-
ing “canonical Hamiltonian inclusion™ that are defined as follows:

DerintTION 2.2 A mapping X°(.) = (X{.). P(.)) is seid lo be an (12,U,) -
solution of the canonical (Pontryagin's) Hamiltonian inclusion:

(', p) € dLH™(2,p)

- {("’HW (0,8, S {x.p_.u}): ueﬂf“{x.m} @.7)
dp da
if theve erists an udmissible control, %(.), in the cluss Uy, such that:
(X°(t), P'(1))
O Hm _ aHre _
= (T O, P00, - (X 0. PO e 28)
ii(t) e U™ (X(t), P(t) a.e. (2.9)

and, moreover, the first component, X(.), as well as the real funclion: Xgl.)
defined as in (2.4), are of the type £2,. [ |

The term “Hamiltonian inclusion” for (2.7) has been used for several rea-
sons from which we mention the fact that, as it is easy to see, if HPY(, ) 48
differentiable at (x.p) € Int(Z7) then one has:

d® HP e o) = [dFHP (. p)) o= I{BHW (. w), —ﬂﬂmi‘u- u‘l“lll (2 1m
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so (2.7) becomes a classical Hamiltonian system al such points,

We recall now the statement of Pontryagin's Minimum Principle (PMP) for
whose proof, extensions and generalizations we refer to the abundant literature
on this subject.

THEOREM 2.3 (PMP). If Hypothesis 2.1 is satisfied and (Z(.),%(.)) : [0,6] —
Y x U ts an optimal pair with vespect fo the mitiol pomnt y € Yy then there exist
pl.) € AC and pg € {1,0} such that the following properties hold:

I {canonical Hamiltonian inclusion). The pair (2(.), p(.})) ix an (0,, 44, )-
solution of the canonical Hamillonian inclusion in (2.7) in the sense of Def. 2.2;

II (minimum condition). Hesides the relations (2.8), (2.9), the following
“minimum condition” is also safisfied:

HP(E(1), p(t)) = H™(E(2), p(2), W(2)) = 0 ae. ([0, £2]); (2.11)

III (transversality condition). At the terminal point £, > 0 the following
condilion 15 satisfied:

(p(E1),v) = po.Dg(E(01))v ¥ veTom Vi (2.12)

where Te Yy denotes the tangent space to the manifold Yy af the point £ € Y);
IV (non-triviality condition).

(p(t)po) # (0,0) € R" x R Ve [0,4;].m (2.13)

We refer to Boltiansky (1968), Cesari (1983), Miricd (1992a), etc., for the
(very difficult) proofs of the usual statement in which the canonical inclusion in
(2.7) is replaced Ly the “adjoint equation”

(1) = =22 (0.0, 5(1) . 0.6]

sinee (£(.),u(.)) satisfies (2.2) as an admissible pair.

REMARK 2.4 According to the usual terminology, an admissible pair (£(.), 4(.))
that has properties I-IV from Theorem 2.3, is said to be an extremal pair with
multipliers (p(.), po) which is normal (in the sense of Mathematical Program-
ming) if pp = 1 and abnormal if pg = 0; in fact, the (possibly optimal) “ex

tremal pairs” (Z(.), @(.)) may be “recovered” from the (normel and, respectively
almormal extremals X*(.) = (X(.}), P(.)) defined as (£,,U4,) -solulions of the
canonical Homillonian inclusions in (2.7) in the sense of Def. 2.2 with ferminal
values in the folowing terminal transversality sets:

Z={(&,q) e Y1 x RB*; (q,v) = Dg(€).v ¥ v € TeY1} (2.14)
Z',:' ={(&q) e Y1 x (B"\{0}); {g,v}=0¥ve TV} i

mmew:wer, sume m Iually CAses l,Ile Hamlltmuans Hi'ﬂ{ 3 F p.;. e {l 0} are * I";'ﬁt.

f i -y .} fd 11 5%
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be automatically satisfied if the terminal sets in (2.14) are “diminished” upon
addition of the conditions:

Hrﬂ'{{’ ¢) =0,
HPEq) = - i H%(z,p), (£,9) €Y1 x R". 2.15
i (6:9) L g R (2.15)
DeFviTION 2.5 The mapping X7(.:.) = (X2, P'(.)) : B! — 2" s said to
be a normal Hamiltonian flow for the problem P8, in (2.1)-(2.2) if it has
the following properties:

(i) for each z = (£,¢) € Z! there exists a (possibly empty) set A'(z) and an
extended real function t7(.) : A’ = [—o0,0] such that:

Ali={a=(z,A); 2= (€.q) € Z}, A€ A'(2))

B'i={(t,a); a = (3,\) € A", L€ I(a) = (¢ (a), 0]}: 3a8)

(i1) for each & = (2,X) € A" the mapping X}(;a) = (X'(;a),P(;a)) is
a “maximal to the left” (i.e non-continuable) (£}, U, ) -solution of the “normal
canontcal Humillonian inclusion”

(') € dEH(z,p) i= {(f{r. W, -2 e, p,u}): ue ﬁ'tx,m}w.m

that satisfies the “terminal conditions”:

Xi(0;a) = (X'(0:a), P (0;a)) =z = (E,q)if a=(2,A) € A',  (2.18)
the “minimum condition”

HYXY(t;a), P'(;a)) = 0 ae. (I{a)) ¥ a € A (2.19)
and its first component satisfies the “state constraints™:

XYt:a) e Yy ¥t e Lhla) := (" (a).0), a € A" (2.20)

Further, the mapping C}(.;.) .= (X7(;;.),VY{(.;.)): B' = Z' x Rissaid to be a
normal Characteristic flow for the problem PB4 in (2.1)-(2.2) if X](.;.) =
(XY(.;.), PY{.;.)) is a normal Hamiltonian flow in the sense above and at each
point (¢,a) € B!, a=(z,A) € A! the last component is given by:

t
Vi(tia) = ?'[ﬂ'*_[ (Pl(s;a), (XY (s:a))dsif 2= (§,9) €2, (221)

1]
where (X1)'(.;a) denotes the derivative of the mapping X '(.: a). [ ]

REMARK 2.6 The terms “Hamiltonian” and, respectively, “Characteristic flow”
may be justified by several arguments from which we mention only the fact
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differentiable, the (generalized) Hamiltonian inclusion in (2.17) turns out Lo be
a smooth Hamiltonian system and the components of C7{.;.) satisly the basic
relation in (1.5) (e.g. Mirici, 1998) which may be very important in the Dynamic
Programming approach.

On the other hand, from Definitions 2.5, 2.2 it follows that for each (¢, a) €
B} :={(t,a) € B, t € Iy(n) := (¢~ (a),0)}, there exists an U, -mapping u!(.;a)
such that the mapping (X!(.;a), u'(.; 2)) verifies (2.8) and defines the admissible
pair;

Teals) = Xt + 510), ueals) ;= ul(t +5:a), s €[0,=1] (2.22)

with respect to the initial point y = X'(t;a) € Yo: moreover, (zy4(.), ural.)) is
a normel extremal pair in the sense of Remark 2.4 with the “adjoint variable”
Prals) == PYt+s:a), s € [0,—t] and, since from condition (2.19) it follows that
(Pls;a), (XYY (s;0)) = = fo( X (s:a), u'(s;a) ae. ([(a)), the last component
of the characteristic flow characterizes the value of the cost functional in (2.1)
as follows:

Vi(tia) = Cyiunal.) if y = X'(t;a) € X'(B)) € Yo (2.23)

Since the “nornnal trajectories” may “overlap” at some points, the optimal ones
are identified ftom the following additional optimization problem:

Wotw) = inf _ V()

. .a =u
if ye X' (BY) € Yy, Yy = dom(B}(.)) N (2.24)
Bi() := {(t.0) € BY: X'(ka) =y, V() = Wi(y))

which define the proper normal value function Fleﬁ,::{,} {which may also be
called “the value function of the normal extremals™).

However, as simple examples show, some optimal trajectories of a problem
may be “abnormal extremals” in the sense of Remark 2.4 which may be “orga-
nized” as “abnormal Hamiltonian and Characteristic flows" defined in the same
way as the normal ones in Definition 2.5,

DEFINITION 2.7 The mapping X3(.;.) = (X°(.;.), P°(.;.)) : B® = Z° is suid
{o be an abnormal Hamiltonian flow for the problem PB4 in (2.1)-(2.2) if
it has the following properties:
(1) for each z = (€,q) € Z° there exists a (possibly emply) set A%(z) and an
extended real function t~(.) : A% — [—oc,0] such that:
AV:={a=(z,A); z=(&¢q) € 22, A e A%2)}

i ey
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(ii) for each a = (z,A) € A® the mapping XJ(.;a) = (X% ;a), PY(;a)) is a
“mazimal to the left” {i.e non-continuable) (N,.4,) -solution of the “abnormal
canonical Hemiltonian inclusion”

(',p') € dhH(z,p) := {(!(z:‘u}. v-f'%j-i{::.p,u]): uE f}“(::_.p}l} (2.26)
that satisfies the “terminal conditions”:

X5(0:a) = (X°(0:0), P'(0i0) =2 = (&) if a= (2, M) € A%, (227)
the “minimum condition”

HYX%t:a), PP(:a)) =0 a.e (I{a))VaeA® (2.28)
aned its first component sefisfies the “stale consiraints™:

X%t;a) € Yo V t € Jo(a) := (t"(a),0), a € A% (2.29)

Further, the mapping C3(.:.) == (X3(.:.),V(;.)) : B® = 2° x R 15 said lo
be an abnormal Characteristic flow for the problem PBy in (2.1)-{2.2) o
X5(:) = (X%:.). PY.:.)) is an abnormal Hamiltonian flow in the sense above
and at each point (t,a) € BY, a = (2,X) € A” the last component is given by:

0
VO(t;a) := gl€) + f Jo(XO(s:a),u%(s;0))ds if 2 = (£,9) € 20, (2.30)
t
wlere tt"{,:u], a € A" are the admissible controls sutisfying (2.8) for Xﬂ[,,‘ a) W

As in the case of normal extremals, the minimizing abnormal ones may be
identified by the abnormal value function:

Wo(y) := colnl VO(t;a) if
XM g ~
y € X°(BY) C Yo, ¥? := dom(B2(.)) (2.31)
Bi(y) = {(t.a) € Bg: X°(t:;a) =y, VO(tia) = Wg(u)}.
which may also be called “the value function of the abnormal extremals”.

Therefore, the PMP-value function (actually, “the value function of all
the extremals”) is naturally defined by:

W{T],_{;iy} P fyevy
| Woly) := min{Wg(y), Wo(y)} iflyeYo:=YJuYy

and may obviously be written in the form of (1.6} if one “concatenates” the
normal and the abnormal charactenstic flows:

sin v o | Crit;a) if(ta) e A
elan)A= {C:;{t:u} if (t,a) € A,

(2.32)
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THECREM 2.8 (PMP solution). Lef the date of the problem PB4 in (2.1)-(2.2)
satisfy Hypothesis 2.1 and also the following ones:

(1) the date of the problem PB4 salisfy the hypotheses of one of the theorems
stating the existence of un oplimal control for each wmatial poind y € Yo fe.q.
Cesurs, 1983);

(ii) the mappings X'(.;a), a € A', X%.;a), a € A® in Definitions 2.5, 2.7
are all the normal and, respectively, abnormal extremals of the problem.

Then the funclion W[} defined 1 (2.32) comncides with the resiriction lo
Y :=YouY, of value function in (1.3) of the problem PB, and, moreover, the
pairs (Feal.), upal.)) i (2.22) that correspond to the minimizing poinls (L, a) €

Eﬂ{y], y € Yo of the problem in (2.32) are the only oplimal pairs. @

REMARK 2.9 We note that the very restrictive liypotheses of Theoremn 2.8 are
severely limiting the class of problems for which its conclusion is valid; in the
first place, the hypotheses of the available “existence theorems” are not only
restrictive but also very difficult to verify (e.g. Cesari, 1983); on the other hand,
from a slightly different point of view, the description of all the extremals as
solutions of the differential inclusions in (2.7) may be rather difficult; finally,
Hypothesis 2.1 itself {under which the PMP in its classical form is proved) is
very restrictive, eliminating the problems with active stufe space consiraints (for
which Yy # Int(Yy)), with “non-smooth data” j(.,u), fol.,u), g(.), Y1 or the
more general (non-parametrized) problems defined by differential inclusions.

In the case Hypotheses (i), (ii) in Theorem 2.8 are not satisfied one may still
obtain the same conclusion using suitable Dynamic Programming amquments
that are based on the following rather obvious statement (e.g. Cesari, 1983,
Proposition 4.5.1): the function W(.) in (2.32) coincides with the value function
in (1.3) of the restriction PB4 |Yy iff it has the following:

Monotonicity property (M): for any y € Yo and any admissible pair
(u(.), () that satisfies:

() e Yo ¥V te[0,6) (2.33)

the real funclion
welt) = W(I{i]] +L Solz(s), u(s))ds, t € [0,4] (2.34)
15 increasing (Le. wels)) < wels2) ¥V 0 < 5y < 52 < ). ]

In turn, the monotonicity property (M) is implied by hypotheses of the
so called verification theorems containing different types of regularity prop-
erties (i.e. Lipschitzianity, continuity, semi-continuity) of the function W{.)
accompanied by suitable busic differential inequalities of the form:
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satisfied by the restriction Wy(.) := W(.)|Ys, where DWy(z;.) denotes a suitable
generalized directional derivative, usually, either a stratified or a contingent one
{e.g. Lupulescu and Miricd, 2000, Miricd, 1992b, 1995, Sussmann, 1990, etc.),

The experience shows that in many significant examples the “normal Hamil-
tonian inclusion” in (2.17) turns out to be a “piccewise smootl” Hamillonian
system and therefore the components X1(.;.), P(;.), V!(.;.) of a “normal
characterisitic flow” in Definition 2.5 satisly relations of the form in(1.5) in a
piecewise manner (e.g. Miricd, 1998); in turn, these relations usually imply the
fact that the “proper normal value function” W2 (.) in (2.24) satisfies differential
inegualities of the form from (2.35), which are fundamental in any DP verifi-
cation theorem; on the other hand, the “abnormal extremals” X% :a), a € A"
in (2.27)-(2.29) seem Lo have a very “singular” nature, the minimizing ones
in (2.32) "filling-up” in a certain sense the domain covered by the normal ex-
tremals.

THEOREM 2.10 (Dynamic Programming partial solution). Lel the duta of the
problem PB,y i (2.1)-(2.2) sabisfy Hypothesis 2.1 and also the following ones:

(i) the mappings X'(.;a), a € A", X%.;a), a € A® in Definitions 2.5,
2.7 are speeific (“chosen”) families of the normal and, respectiely, abnormal
extremals of the problem.

(i) the function W{.) in (2.32) satisfies the hypotheses of one of the ex-
isting DP verification theorems (e.q. Lupulescu and Mirted, 2000, Miricd,
1992h, 1995, Sussmann, 1990, elc.).

Then the function ﬂlfl_-’[] defined in (2.32) coincides with the value function
in (1.3) of the restriction PBAl}T'g and moreover, the pairs (T .(.), % q(.)) in
(2.22) thai correspond lo the minimizing points (8, a) € ﬁu{y], ¥ € ir""ﬂ. of the
problem in (2.32) are optimal pairs for the problem PB4|Y;. =

REMARK 2.11 We note that besides avoiding the very restrictive hypotheses (i)
and (ii) of Theorem 2.8, the Dynamic Programming (DP) argument in Theorem
2.10 may have the following possible advantages:

= one may choose remarkable families of extremals (possibly, only the “nor-
mal” ones) for which one may check the hypotheses of a suitable verification
theorem;

- one may extend the procedure to much more general problems for which
Hypothesis 2.1 15 not verified.

One may nole here thal although the ypotheses of a verification theorem
are not always easy to chieck, in the absence of Hypotheses of Theorem 2.8, this
is the only possibility left Lo prove the optimality of the minimizing trajectories

Al tha additinnal “moaramateivad antimieatinng aeahlom®? e (9 293
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3. Stratified optimal control problems

In this section we use the DP arguments in Theorem 2.10 to obtain represen-
tations of the form in (1.6) for the particular case of stratified oplimal control
problems in (1.1)-{1.2) for which not only the data but also the Hamiltonian in
(1.4) and the value function in (2.32) are "stratified” in the following very weak
sense:

DEFINITION 3.1 A non-empty subset X C R"™ is said to be (weakly) C" -stratified
by Sx if Sy is a countable partition of X inte C-submanifolds of R™ (called
“strata”); in this case, the langent space (with respect lo the stratification Sy )
al x € X is defined by: To X ;=125 if x € § € Sx; nexd, the mapping [(.) :
X C R" — R* is said to be differentiably stratified if there exists a stratificalion
Sy of X such that for each S € Sy the restriction fs(.) := f(.)|S is differentiable
{(in the clussical sense); in tis case, the derivative of f(.) with respect to the
stratification Sy is defined by: Df(z) := Dfs(z) € L(T:5;R¥) ifz € Se 5, m

As illustrative examples we consider the functions fi(x) 1= |z|. fa(z) := 3%,
x € R which are, both, analytically-stratified by Sg={(—oc.0), {0}.(0,0c)}.

We note first that if the set of initiel states Yo in (1.2) is stratified in the sense
above then from the state constraints in (1.2), z(t) € Yo ¥ £ € [0,¢,) it follows
that an admissible trajectory should satisfy also the condition z'(t) € Ty Yo
ae. (0,¢;) (eg. Mirici, 1995) hence the differential inclusion in (1.2) may be
replaced by the following one:

«'(t) € Fr(z(t)), ae. (0.4;), Fr(z):=Flz)NT.Y, z € Yy (3.1)
which “produces™ the (restricted) Geometric Hemiltonians:
HN ¥ = i o I1 4 1
T (#:p) = sﬁ-f:;:.'” (z,p,v)

F*(2,p) = {v € Fr(z); W (z,p,v) = HP(z,p)}, (3:2)
HP(z, p,v) := (p, v} + pogolz, v).po € {1,0}

which at the boundary points x € 9% may be considerably larger than the
“original” ones in (2.6) (e.z. see Example 3.2 below).

The so called “stratified problems™ are characterized in the first place by the
following properties of the data:

HyroTHESIS 3.2 The date of the problem B, in (1.1)-{1.2) have the following
properiies: the set Yo C R™ of admissible initiol stales is C'-stralified and the
terminal cost funclion g(.) : Y7 — R as well as the geometric Hamiltonians
HE(L,): BP0 — R, pg € {1,0} in (2.2) are differentiobly stratified in the sense
of Definition 3.1, |
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Iu this case the terminal transversalily sels £7 . py € {1,0} are defined in
the same way as in (2.14) by the “stratified derivative™ Dg(.) but the “canonical
Hamiltonian inclusion™ in (2.7) is replaced by the following (“stratified”) one:

(z',9') € dFHE (x,p), (2(0),p(0)) = z = (§,q) € 2, po € {1.0}
d¥ HP (2, p) := {(, 1) € Tz ;) 2™; 2’ € FP(2,), (3.3)
(«".p} = (¢, T} = DHP (2,p)(Z.F) ¥ (.P) € T(z p 2™}

We note that on open (i.e. 2n-dimensional) strata S € Sﬁ_;’p the “stratified
Hamiltonian orientor field” in (3.3) coincides with the classical one in (2.10),
while on lower dimensional strata it either may have empty values (on “transver-
sal strata”) or may be multi-valued (on strata corresponding to the so called
“singular extremals” in oplimal control); one may note also that in the case
both Hypotheses 2.1 and 3.2 are satisfied the canonical Hamiltonian field in
{2.7) and the stratified one in (3.2) are related a follows:

dﬁHm{—"-F] N7 p&™ € d¥ HP (x,p)
Yiz,ple M = duruﬁ,::"{" J (3.4)

g0 the use of the “stratified Hamiltonian inclusion™ in (3.3) to construct gen-
eralized Hamiltonian and Characteristic flows as in Definitions 2.5, 2.7 may
“produce” non-extremal admissible trajectories which, however, could be elim-
inated by the minimizing processes in (2.24), (2.31), (2.32).

In this case the optimality of the minimiging trajectories of the additional
problem (2.32) may be proved only in the framework of Dynamic Programming:

THEOREM 3.3 (DP partial solution). Lel the date of the problem By i (1.1)-
{1.2) satisfy Hypolthesis 3.2 and also the following ones:

{t) the mappings C;n{,:u] = (X*(.;a), PPo(;a),VP(.;a)), a € A™, py €
[1,0} are specific (“chosen”) fumalies of the generalized “generchzed” normal
and, respectively, abnormal extremals of the problem i the sense of Definitions
2.5, 2.7, respectively, generated by the stratified Homillonian inclusion in {3.3);

{11} the function W{] in (2.32) salisfies the hypotheses of one of the ex-
isting DP verification theorems.

Then the funclion W{} defined in (2.32) coincides with the value funclion
in (1.3) of the restriclion H,1|ﬁ|. and moresver, the mappings T, .(.) i (2.22)
that correspond to the minimizing points (t.a) € By(y). v € Yo of the problem
in (2.32) are optineal trujectories for the problem Hﬂli;ﬂ, [ |

REMARK 3.4 Experience shows that in many examples the stratified Hamilto-
nian orientor fields dﬂ#h';“[,._ ) in (3.3) have “sinooth selections™ on the singular
{(non-transversal) strata so (3.3) becomes a piecewise smooth Hamiltonian sys-
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moreover, one may choose the Hamiltonian and the Characteristic flows such
that its components are stratified and verify (1.5) at each point in stratified
sense and this fact may facilitate the verification of the differential inequality in
(2.35) that is needed in the verification theorems.

4. General optimal control problems

In case the problem B4 in (1.1)-(1.2} is no more stratified in the sense of Hypoth-
esis 3.2 one may use other concepts and results from the so called “Nonsmooth
Analysis” (e.g. Aubin and Frankowska, 1990) to obtain similar results.

MNatural generalizations of the concepts and results in Sections 2 and 3 may
be obtained using the conlingent and, respectively, the quasifangent cones to a
subset X C R" at a point x € X:

KX :={ve R"; 3 (sk,ve) = (04,v): T+ s € X VK€ N}
QX ={veR ;Yo =0 Jwmp—v: s+ EXVEEN} (4.1)
K: X =KIXNnK;X, Q:X:=QXnQ_ X

and the extreme contingent derivatives of a real-value function g{.): X — R at
a point x € X in a direction v € KX X:

ﬁ:ﬂ{-‘ﬂit’]= lim sup g(z + s.u) — g(z)

[#u)={Ds v) 5§ {4 2]
ﬂfcﬂ{:ﬂlﬂ‘l lim inf g(z + s.u) _-'-“:"“'].
(8u)—{04 ,v) g

We note first that from the state constraints in (1.2), (1) € Yo ¥ t € [0,4;) it
follows that an admissible trajectory should satisly also the condition 2'(t) €
Q: Yo ae. (0,8) (e.g. Miricii, 1995) hence the differential inclusion in (1.2)
may be replaced by the following one:

z'(t) € Fgl(z(t)), ae (0,4), Folz):=Fz)nQ:Ys, z€Yp (4.3)
which “produces” the (restricted) Quositangen! Homiltonians:

= i P fPoy, = {a s\
HE' (2,p) : EEMH (z,p,v), Fy' (2, p) := {v € Fl(x);

g
H™(z,p,v) = HY (z,p)}, (44)
HP(z, p,v) == (p,v} + pogo(z.v), po € {1,0}

which at the boundary points x € #Y; may be considerably larger than the
“original” ones in (2.6).

In this case the lerminal transversality sets Z2, py € {1,0} in (2.14) should
be replaced by the following ones, that are defined by the “extreme contingent
derivatives” of g{.):
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where (g, pg) # (0,0), and the “canonical Hamiltonian inclusion” in (2.7) as well
as the stratified one in (3.3) are replaced by the following ( “contingent™ ) one:

(«',9) € T HE (. D), (2(0),p{0)) = 2 = (£,4) € 222, po € {1,0}
T HY (z,p) = {(«'\9) € K[, 27; &' € FIP(z,p), (4.6)
(«',F) - ¢/, ) < DR HY ((z.p): @) ¥ (Z.7) € K, 2"}

We note that at interior points (z,p) € Ind(Z™ ) at which HE”I{.1 .} is differen-
tiable, the “contingent Hamiltonian orientor field” in (4.6} coincides with the
classical one in (2.10), while at other points either it may have empty values
or may be multi-valued; one may note also that in the case Hypothesis 2.1 is
also satishied, the canonical Hamiltonian field in (2.7) and the contingent one in
{4.6) are related a follows:

d#H”{;ﬂ‘p} r KE;.::}ZN c H:f-Hfl,"l[.r.p} Y (x,p) € 2P = dmn.f‘a"l[.,.}.

s0 the use of the “contingent Hamiltonian inclusion™ in (4.6) to construct gen-
eralized Hamiltonian and Characteristic flows as in Definitions 2.5, 2.7 may
"produce” non-extremal admissible trajectories which, however, could be elim-
inated by the minimizing processes in I{"' 24), ('2 31). (2.32).

In this case the optimality of the minimizing trajectories of the additional
problem {2.32) may be proved only in the ramework of Dynamic Programming:

THEOREM 4.1 (DP partial solution). Let By be the problem in (1.1)-(1.2) and
let the mappings C} (.;a) = (XP(;a), PP(;a), V(. a)), a € A%, pp € {1,0}
be specific {“chosen”) families of the “generalized” normal and, respectively, ab-
normael exivemals of the problem in the sense of Definitions 2.5, 2.7, vespectively,
generaled by the conlingent Hamillonian inclusion in (§.6).

If the function ﬁ"{.} in (2.32) satisfies the hypotheses of one of the ex-
isting D verification theorems ten the funclion ‘l?l?l[]l defined in (2.32)
coimcides wilh the value _fim{.‘hwl e “J} uf e restriclion Bdl?ﬂ and more-
over, the mappings J"?!J,{.} in (2.22) that corvespond lo the ;I'J'””i:]'u;'zl"y points
(t.a) € f?ul{y]_. uE 'Fi; of the probleme in (2.32) are opltimal trgjectories for the
problem ﬁ_.1|‘}"n. [ |

REMARK 4.2 The comments in Remark 3.4 remain obviously valid for the gen-
eralized characteristic flows generaled by the contingent Hamiltonian orientor
fields ;E: HP(..) in (4.6), which may turn out to be a piecewise smooth Hamil-
tonian system for which the basic relations in (1.5) are verified in a piecewise
manmner; moreover, in certain cases one may choose the Hamiltonian and the
Characteristic flows in Definitions 2.5, 2.7 such that its components verily the
basic relation in (1.5) in the following generalized sense:



794 5. MIRICA

where K~ X({t;a);.,.) denotes the set-valued “left” contingent derivative of the
mapping X(.;.) at the point (t,a) € By; as in the case of relation (1.5) verified
in classical or “stratified sense”, certain results on the marginal functions of the
form in (1.6) show that the inequality in (4.7) may facilitate the verification
of the “basic” differential inequality of the form in (2.35) that is needed in the
verification theorems.

5. Examples

In this section we illustrate the method above on several significant examples
for whose value functions one may obtain representations of the formn in (1.6)
as marginal functions of finite-dimensional type.

ExampPLE 5.1 The Brachistochrone problem, formulated and solved first
by Johann Bernoulli in 1696, is considered by most authors to mark the begin-
ning of Caleulus of Variations and it is more or less completely studied in most
books and monographs in the field, using the multitude of classical results in
Calculus of Variations {e.g. Bliss, 1925, Cesari, 1983, etc.).

The Dynamic Programming solution we are poing to describe very shortly
(for details see Mirici, 1996) is not only simpler and more complete but also
allows a more precise description of the value function and of its regularity
properties,

We recall first that “geometrically”, the problem consists in finding a curve
Joining two given points, Fy, Py, in a vertical plane, such that a material point
of mass m > 0 folling under gravity and without friction, travels from Fy to
Py in the shortest time; analytically, fixing one of the points, P = (0,0),
as a problem of the form in (1.1)-(1.2), the Brachistochrone problem may be
formulated as follows:

Given k := (v)*/2g > 0 (where vy > 0 is a possible “initial” velocity),
minimize each of the functionals:

O]

Cly; z(.)) := ﬁtﬂ ¥ = (1,¥2) € Yo = (0,00) x (—k,00) (5.1)

[u]

subject Lo
z(.) € AC, z(0) =y, z(t) € Yo VL € [0,t1), z(t1) € Y1 := {(0,0)}. (5.2)

The *normal Hamiltonian™ in (1.4), which in our case is defined by:

Hi@p) = inf H(z,pv), Hz,p,v)i= o) + _f' 1

turns out to be given by:

- [
Hieatmd 72 HIRl> ey
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-9 if lpll > Zpber

Fla,p) = { {piu< 0} if [lp]l = oten
(0} if Il < ey
and is obviously C'-stratified in the sense of Definition 3.1 by 8y = {8y, 52},

81 = {(z.p): llpll = 1/ V=2 + Kk},
Sz = {(z,p): llpll < /a2 +k}.

As it is easy to see, on the only “stratum” of interest, Sy, the "geometric Hamil-
tonian feld” in (3.3) is given by:

d¥ H(z,p) = {ph(—2(z2 + k)p,(0,1)); p5 > 0} if (z,p) € &,

and therefore upon choosing p5 = p2/p1, ;i > 0, we obtain the following smooth
Hamiltonian system:

{1{ = —2z2+k), #1(0)=0 {:ri =0, p(0)=q€Q;
oh= =222 + KB, 22(0)=0, 5= L((m)* +(p2)?)

on the “non-symplectic” (3-dimensional) differentiable manifold S,.

Regarding the problem of choosing suitable Hamiltonian and Character-
istic flows (and of the end-point transversality values in (2.14})) we have to
treat separately the “singular case” in which & = 0 and for which the function
golz,v) = ||v]l/ /T2 as well as the Hamiltonian are not defined at the terminal
point ¥ = (0,0).

(5.3)

The nonsingular case k > 0 may be treated in the ramework of Sections 2-
4 choosing the following set of “terminal transversality values” {that correspond
to Z! in (2.14), (4.5)):

Q! := {#{cmﬁ,sinﬂ]; §e (— % -;5)} (5.4)

standard computations show that the differential system in (5.3) with the termi-
nal values in the set Q! in (5.4) “produces” the following smooth Hamiltonian
flow:

k
XI“:E]I = k.tan@ = m[zi + CDS{E“ + ﬂnj
k &
Xa(t:0) 1= =k + o1+ cos(2(t+ )] (5.5)
cong

P(t:6) i= (L tan(t + ).~ t € 1(6) = (_%-s,:}], g e (—123%)

while the V!-function in (2.21) is given by:

Ve gy —_"h.-'TL f+ e R — I.l'a ah. .a.‘i" L '-'T.‘. i~ T .rm.l
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and therefore the “would be” value function of the problem is given by the
formula of the form in (1.6):

1l — : - § t [
Wi(y) := - [ w’IwE]. y € X(By) C Yo (5.6)
A further “Calculus result” shows that the mapping X(.;.) : Bg — Y in (5.5)
(that defines the “cycloids”, X (.:6), 8 € (—F, 3)), is a C'-diffeomorphism with

the inverse Eiq{ ) = (H.), B )}, hence the “proper normal value function” in
(5.6) is given by the formula: Wu y) = =2kl ”’"L ., ¥ € X(By) =Yy and
moreover, its derivative is given by: Dwg{y] = [ﬁu{y]] = (1,tan(fy) +
E{y]]].“%-;i-"-', y € Yp. Finally, from the properties of the inverse ﬁu{,} it follows
that DW}(y) — :,',-:{].l]jl as y — y1 = (0,0) hence the value function in (1.3),

(1.6) is of class C" on the set ¥y of initial states, locally-Lipschitx on the set
Y = YyU¥; and also contingent differentiable at the terminal peint ¥, = (0,0).

In the singular case k = 0 the only Hamiltonian low that verifies the
conditions in (2.18)-(2.20) is obtained from the differential system in (5.3) with
the terminal condition py(0) = ¢; = A € (0, 0¢) which “produces” the mappings:

X(t;A) = {{Sill{ﬂl] = 2”!’2)'2151"2 U‘J"g}r tel(A):= [--11'..“], (5.7)
Pt: A) := AL, = cot(t)), A€ (0, 0c) ’

while the function in (2.21) is given by: V(t:A) = =2t/A, (LX) € By :=
(=m.0) x (0,00) and therefore the “would be” value function of the problem
is given by the formula of the form from (1.6): W5(y) = infx(ray=y[=2t/ A,
yeE X(By)C Y.

A similar “Caleulus result” shows that the mapping X{. : .) : By = Yy
in (5.7) is a Cl-diffeomorphism with the inverse Bo(.) = (Z(.).A(.)). henee
the © ‘proper normal value function” above is given by the formula: Wﬂ (y) =
-Etiy]fh{ﬂ i € X(Bg) = Yo and moreover, its derivative is hwnub:-.r DWH{J}
= A{y]{l = mt.‘{y}] [;:_na]ly from the properties of the inverse Hu{ ) it follows
that the derivative DW{(y) is unbounded as y — y; := (0,0), hence the value
funetion in (1.3), (1.6) is of class C? on the set ¥g of initial states, bul not locally-
Lipschitz at the terminal point ¥, = (0,0); moreover, a further study leads to
the conclusion that the value function W(.}) is “locally radially-Lipschitz” (hence
continuous) but not contingent differentiable at the terminal point gy = (0,0).

We note that in both cases, the justification of the representation in (1.6)
relies on the straightforward application of the DP “elementary verification
theorem” in which the value function W(.) is continuous and the restriction
Wal.) := W(.)|Ys is differentiable (in our case, of class C') and satisfies (2.33)
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ExampPLE 5.2 The Euler-Plateau problem on minimal surfaces of rev-
olution, as famous as the Brachistochrone, “geometrically”, is formulated as
follows: find a curve joining two given points, By, Py, in the same half-plane,
such that the surfoce obfained by rofating the curve around the azis has the
minimal area; analytically, fixing P, = (0,1), as a problem of the form from
{1.1)-(1.2), the problem may be formulated as follows:

Mintmize each of the functionals:

ey () = jﬂ O OF F@OPdy = ) €Ye,  (58)
subject to:

2(0) = y, x(t) € Yo := [R x [0,00)] \ V1 -
Vie[0,t), () € ¥ := {(0,1)}. :

Since the set Yy is C'-stratified in the sense of Def.3.1 and its tangent space is
given by:

_JR® ifzeV¥=(0,x)’\ 1}
ﬂ“—{ﬁ if v € Y i= R x {0},

the “restricted” (geometric) orientor fiekl in (3.1) is given by: Fr(z) = T:Y
and the “pormal geometric Hamiltonian” in (3.2), which in our case is defined
by: Hr(z,p) := infyeppoy Mz, pov), Hiz,p.v) = {p,v} + z2|lv|| turns out to
be given by:

—oo i (z,p) € ¥ x B2\ U}S;
0 il (z.p) € U}S;,

= {ppip <0} i (5,p) € 5
Fr(z,p) = { Rx {0} if (z,p) € 52
{{ﬂfﬂl} if (311"} € 53

where the “strata” §;, j = 1,2,3 are defined by: 8; := {{z,p);z2 = ||p|| > 0},
Sy =R x {(0,0)} x R, 83 :={(z,p) € Y3 x B%||p|| < =2}

As it is easy to see, on the only “strata” of interest, Sy, 5z, the "geometric
Hamiltonian field™ in (3.3) is given by:

d* H(x,p) = { {(Ep,(0,p5)); P4 <0} : EM} €5,
it [, p) € 52

and therefore by choosing ph = —1 we obtain the following smooth Hamiltonian
system:

Hr(z,p) =

=-pifx:, z(0)=
= —pa/x2, #2(0)=
P =0 p0)=q, ¢=(n.:) €Q}

J'
&y
J'
% (5.10)
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on the “non-symplectic” (3-dimensional} differentiable manifold 5.

For the set of “termina)l transversality values” (corresponding to Z} in (2.14),
(4.5)):

T 37

Q= {{msé‘-sinﬂ] fe [_E T)}" (5.11)

standard computations show that the differential system in (5.10) with the ter-
minal values in the set Q! in (5.11) “produces” the following stratified Hamil-
tonian flow:

0 ifée{-%, 2}

x:'”{t;ﬂ] e In ‘:]{i‘ #l—t—sind . -,r-f »
I+smé OSH lrﬁ ?E :ti

XVt 0) := ST —sim8)2 + (cosd)2 = [|PO(L,6)

POt 8) := (cos 8, =t + sin®)), t € I(8) := (1:(8),0),

Ly {2 f0e(-5.%)

1(f) {-1 if9=—32

(5.12)

while the function in (2.21) is given by:
VA, (8:8) = (1/2)[X{V(t; 8) cos® — sin8) + (sin 6 — )XV (L:0)].  (5.13)

Moreover, the trajectory X : |:,: 2} may be continued “backwards”, ford < =1,
first in the stratum Ss, l.Iuen nbam in the stratum 5; to obtain the following
“flow of Goldschmidt trajectories”

Xyt A)
((0,8+1),0,=t = 1)) if £ € [t3(A),0), A€ R°
((=(t + 1)sign(A),0), (0, ﬂ]] if € [12(A), (5(A)] (5.14]
(A —-t—i—l.zl{.l.” (0,=2 + £3(A))) ift € (—oc, t3(A)]

= =1, 3(A) :==1-|A], A€ R*:= R\ {0}

for which the V-function in (2.21) is given by:
111 _f —E!} 2 3
le',“:}'-] - {1 lt . J"”J ifte [EJ{J'L"]}! {5_15}
314+ (X3 (5 A))?] ift € (—oc, (3(A)

and therefore the corresponding value function of the “Goldschimidt trajectories”
may be obtained in the explicit form:

Wily) = % mm!;} [’2] (2 A)

J 3= (w2)?] iy =(0.92),92 €[0,1] (= 161






S00 5. MIRICA

while the corresponding V'-function in (2.21) is given by: V(t:&) = =(t +
1)(€2)%. (t,€&2) € By := (—oc,0) x R; therefore the “would be” proper value
function in (2.24) is given by:

W= d L ity e Yo\ ((-1} x R)
o) {u T #p=(-18) e

and is, obviously, neither lower nor upper semiceontinuos at the “singular” point
yo = (—1,0) of its domain, ¥y := ¥5\ ({-1} = K"}

However, using a more sophisticated “verification theorem”, for discontinu-
ous value functions, (e.g. Lupulescu and Miricd, 2000) one may prove the fact
that the function Wy(.) in (5.21) coincides with the value function in (1.3) of the
restriction B|¥p of the problem in (5.19)-(5.20) in the restricted class, Q... of
Lipschitzian trajecteries; on the other hand, the optimality in the largest class,
(12, of trajectories x(.) for which z'(.) € L?, remains an open problem whose
(probably negative) answer seems very difficult to find.

One may note also that though the problem in (5.19)-(5.20) satisfies Hy-
potheses 2.1 under which PMP is proved, none of the emstence theorems is valid
(at least for the initial points g € ¥, 1 < =1) hence Theorem 2.8 cannot be
applied to obtain the optimality; in fact, this problem is simple enough to show
“directly” that for initial points y € ¥y, y1 < =1 there does not exist an optimal
control since one may prove that: inf,; yem, ¢y Clyiul.)) = —c ¥V y € ¥\ Yo

6. Conclusions

The results and examples above allow us to conclude that the representation in
the form in (1.6) of the value function and its "validation” either by the use of
PMP or by the application of a suitable “verification theorem” is possible for
significant classes of optimal control problems; moreover, the formula in (1.6)
{which may lead also to different types of “Hopf-Lax formulas” for solutions of
certain types of Hamilton-Jacobi equations) may solve a multitude of problems
regarding not only the complete and rigorous solutions of the optimal control
problems but also problems concerning numerical solutions, the identification of
regularity and for irregularity properties of the value functions, the identification
of the “relevant restrictions” of the problems, etc.
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