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1. Introduction 

Consider a linear control system 

x'(t) = Ax(t) + Bu(t) (1) 

where A generates a C0-semigroup, S(t), t ~ 0, on a Banach space X and 
B E L(U, X ), U being also a Banach space. For p E [1, oo] suppose that the 
control system (1) is £P null-controllable for every T > 0, that is , for each time 
T > 0 and 17 E X there exists u E LP(O, T; U) such that x(O) = 17 and x(T) = 0, 
where x(-) is the mild solution of (1), i.e., 

x(t) = S(t)x(O) +lot S(t - s)Bu(s) ds . 

By the open mapping theorem (see e.g. , Carja, 1993, Zabczyk, 1992) , if we 
prescribe p > 0, there exists a(T) > 0 such that all points from the ball of radius 
a(T) can be transfered to zero by controls u E LP(O, T; U) with lluiiLP(O,T;U) ::::; p. 
In other words, 
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where 

H(T)u = 1T S(T- s)Bu(s) ds 

and B(O, r) stands for the closed ball of center zero and radius r. 
This, in particular, implies the continuity in 0 ofthe minimum time function 

defined by 

T(ry) = inf{T; x(O) = ry , x (T) = 0, 

u E LP(O,T;U), lluiiLP(O,T;U)::::; p}; (3) 

see Carja (1993). 
As remarked there, more precise estimates of a(T) for T small give more 

precise estimates for the minimum time function arround the origin. 
Our aim here is to show that there is a complete equivalence between the 

following problems: 
(a) estimates of a(T) in (2) forT small; 
(b) estimates of the minimum time function; 
(c) estimates of the minimum LP norm for T small . 

In the next theorem CT(x) := inf{llull; u E V(O, T; U), S(T)x = H(T)u}. 

THEOREM 1.1 (i) Suppose there exists a function a : [0, T] --+ lR strictly in­
creasing, continuous, with a(O) = 0, and such that (2) is verified forT ::::; T1 . 

Then T(x)::::; a-1(llxll) for llxll::::; a(T1). 
(ii) Suppose there exists a function (3 : [0, a] --+ lR strictly increasing, con­

tinuous, with (3(0) = 0, such that T(x) ::::; f3(11xll) for llxll ::::; a. Then for each 
x EX and each T with T ::::; (3( a) we have 

p 
CT(x)::::; (3-l(T) llxll · 

(iii) Suppose there exists afunction<p: (O,T2]-+ (O,+oo) such that CT(x)::::; 
<p(T) llxll, for each x E X and each T E (0, T2]. Then we have (2) forT E (0, T2] 
with a(T) = pj(2cp(T)). 

Proof. (i) Take x with llxll ::::; a(T1). There exists T::::; T1 such that llxll = a(T). 
By (2) there exists u with !l ull::::; p such that S(T)x = H (T)u, hence T(x)::::; T, 
that is T(x)::::; a-1(llxll). 

(ii) Take T ::::; (3(a). There exists b ::::; a such that T = (3(b). For x E X, 
x -::j; 0, and c E (0, 1), define y = cb 11 ~ 11 , observe that IIYII <band conclude that 

T(y) < (3(b) = T . This shows t at there exists a control with !lull ::::; p such that 

S(T)y = H(T)u. Clearly S(T) x = H(T)JWlu, hence 

p 
CT(x)::::; c(3-l(T) ll x ll· 
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(iii) Let x be such that llxll ~ 2<p{T). We have llxll < 'PCT) , cp(T)IIxll < p and 
Cr(x) < p. This implies that there exists a control u such that S(T)x = H(T)u 
and llull < p, hence the conclusion. • 

REMARK 1.1 We note that (i) and (iii) above were first proved by the second 
author in Carja (1993). We also note that the referees brought our attention 
to the paper Gozzi and Loreti (1999) where a similar relationship between the 
problems (b) and (c) above is presented. 

We give now an application in the finite dimensional setting. In this case A 
and B are constant matrices n x n and n x m respectively. Assume that the 
system is controllable, so that the matrix 

[B, AB, ... , An-l B] 

has the rank n; see Lee and Markus (1967). Let k be the minimal exponent 
giving 

rank[A, AB, ... , Ak B] = n. (4) 

If this is the case, then for every ~, ry E !Rn and for every time T > 0 there exists 
an £ 00 control u that, applied to (1) gives x(O) = ry, x(T) = ~· Gyurkovics 
(1984) proved the following result: 

THEOREM 1.2 For the finite dimensional control system (1), let k be the min­
imal exponent giving the rank condition ( 4) and let T be the minimum time 
function defined by (3) with p = oo. Then there exists w > 0 such that 

T(x) ~ wllxll k~l 

for llxll small. 

Combining Theorems 1.1 and 1.2 we deduce 

(5) 

COROLLARY 1.1 For the finite dimensional control system ( 1), there exists 'Y > 0 
computable from A and B, such that for every ry E !Rn and for every T small 
there exists an L00 control u that transfers ry to 0 in time T and such that 

where k is the minimal exponent giving the rank condition. 

This result has been proved recently by Seidman and Yong (1997) using 
methods somewhat along the lines of the previous paper of Seidman (1989) 
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2. A new approach 

We present here a completely different approach in obtaining estimates for the 
minimum LP norm problem for T small (estimates for fast controls, in the 
terminology of Seidman) in the finite dimensional setting as well as in some 
infinite dimensional cases. It allows us to get also estimates of the t ransfer 
control for T large. It is based on a nice result of Triggiani (1992) which gives 
an explicit formula for a transfer cont rol u (suboptimal), involving A and B. 
Let us present that result (see also Zabczyk, 1992) . 

Let A E L(X) and B E L(U, X) be bounded operators on the Banach 
space X, and from the Banach space U to X, respectively, such that 

span{BU,ABU, ... , AkBU} =X, (6) 

for some nonnegative integer k. Define the linear bounded operator Q: Xk+lU 
---+X by 

Q(uo, u1, ... , uk) = Buo + ABu1 + · · · + Ak Buk. 

Assume that ker Q has a closed complement (in Hilbert spaces this is alaways 
true). Then , since Q is surjective, it is well known that there exists a right 
inverse for Q, i.e. , there exists E E L(X, Xk+IU) such that QE =I (the identity 
operator in X). This implies the existence of k + 1 linear bounded operators 
E; E L(X, U), i = 0, 1, ... , k, such that 

BEo + ABE1 + · · · + Ak B Ek =I. (7) 

Let cp be a function of class Ck from [0, T] into lR such that 

cp<il(o) = cp<il(T) = 0, i = 0, 1, ... , k; 1T cp(s) ds = 1. (8) 

Here ¢(i) means the derivative of order i . 

THEOREM 2.1 Assume (6) and let <p be a function that satisfies (8). Then the 
control 

u(s) = Eo'I/J(s) + E1'1/J' (s) + · · · + Ek'I/J(k) (s) , s E [0, T], 

applied to the dynamical system ( 1), where 

'ljJ(s) = S(s- T)(~- S (T)ry)cp(s), s E [0, T], 

transfers rJ to ~ at time T. 

Our main result is 

THEOREM 2.2 Assume condition (6). Then there exists 1 > 0 that depends only 
on A and B such that for each ry, ~ E X and for each T > 0, the C""' control u 
given by Theorem 2.1 satisfie s 

rm-l.~-1 m-1)111""1/, 
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Proof. We take in Theorem 2.1 the function <p(t) = h(t)/ J0T h(s) ds, where 
h(t) = tk+ 1(T- t)k+l, t E [0, T]. 

First, observe that 

1T h(s) ds = c1T2k+J 

where c1 depends only on k. 
In the next step we show that 

lh(il(t) l :S c T 2k+2- i, t E [0, T], i = 0, 1, ... , k, 

(10) 

(11) 

where c depends only on k. This fact follows by an induction argument on k, 
writing 

h(t) = j(t)k+l, t E [O,T], 

with, of course, f(t) = t(T- t), and using the formula 

By (10) and (11) we obtain 

l<p(il(t)l :S .!:.r-i-1 , t E [0, T], i = 0, 1, ... , k, 
C1 

therefore, if T ::; 1 we have 

l<p(il(t)l :S .!:.r-k-1, t E [0 , T], i = 0, 1, .. . , k, 
C1 

while if T > 1 we have 

Now, the result follows from Theorem 2.1 taking into account that S(t)' x = 
AS(t)x, so that all the derivatives up to the order k of S(t- T)x are bounded 
above by a iiS(t- T)xll with a depending only on A. The proof is complete. • 

REMARK 2.1 If~= 0 we obtain the statement given in Corollary 1.1, because 
for 0 < T ::; 1 the max in (9) is r -k-1 and IIS(t)ll is bounded by a constant 
independent ofT. 

Taking into account that for every p E [1, oo] we have 

lluii£P(O,T;U) :S T 1/PIIullc(O,T;U)> 
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COROLLARY 2.1 Assume (6). Then for every p E [1,oo) there exists a coo 
control u that, applied to the dynamical system ( 1), transfers ry to 0 (or 0 to ry) 
in time T and satisfies 

forT sufficiently small, where 1 is independent of T and ry. 

This agrees with the result of Seidman and Yong (1997) where estimates for 
the minimum norm control were investigated. 

The following theorem shows that the estimate given in Theorem 2.2 is sharp. 

THEOREM 2.3 Assume (6) and let p E [1, oo]. Consider ry E X and suppose 
EkrJ 'I 0, where the operator Ek is given by (7). Then there exist 1 > 0, that 
depends only on A, B and rJ, and a coo control u that, applied to the dynamical 
system ( 1), transfers TJ to 0 (or 0 to rJ) at time T, and satisfies 

II II > T -k-1+.!. 
u LP(O,T;U) -I p, 

for T small enough. 

Proof. We show that the control u given by Theorem 2.1 with ~ = 0 (the 
other case is similar) satisfies 

(12) 

with some 1 > 0. If this olds true, then the result follows by the Holder's 
inequality which gives 

1T llu(t)ll dt::; T 11
qll u iiLP (O,T;U)• 

for p E (1, oo], where 1/p + 1/ q = 1. 
Let us prove (12). The control u given by Theorem 2.1 may be written as 

u(s) = cp(k)(s)EkS(s)17 + cp(k-l)(s)Rk-l(s)ry + · · · + cp(s)Ro(s)ry 

where R;(-) are continuous. 
Since 

where Wi > 0 and depends only on i, by a mean value theorem we have 

(T rnl."'. fl."'. ) I \II y--, l"'f l \ II ' 
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and 

lim fT Tkllcp(k- 1)(s)Rk-1(s)ry + ... + cp(s)Ro(s)ryll ds = 0. 
T--+O lo 

Taking into account that 

1T Tkllu(s)ll ds 2: loT Tkcp(k)(s)IIEkS(s)ryll ds 

-loT Tkllcp(k- 1) Rk-1(s)ry + · · · + cp(s)Ro(s)ryll ds, 

the proof is complete. 
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• 
REMARK 2.2 If~ = 0, formula (9) gives estimates for the set of initial states 
which can be transfered to zero by bounded controls, on a given interval. In 
particular it shows that if IIS(t)ll is bounded fort 2: 0 then, forT large, a coo 

control u transfering 77 to 0 can be obtained such that 

llu(t)ll::; ;yT-1117711, t E [0, T] (13) 

with 1 independent ofT and ry. Moreover, 

for T large. This shows that, if uT is an V minimum norm control with p > 1, 
we get 

T
lim lluTIILP(O,T;U) = 0. 
--+oo 

This also gives the well-known result that if S(t) is bounded fort 2: 0, then 
null-controllability with controls in V, p E (1, oo], implies null controllability in 
finite time with bounded controls. In this situation the domain of the minimum 
time function is the whole space X. 

REMARK 2.3 It is well known that, in the finite dimensional case, there exists 
a minimal integer k 2: 0 such that 

Xk := span{BU, ABU, ... , Ak BU} 

is the reachable set, i.e., 

RangeH(T) = Xk 

for all T > 0. All the above estimates remain true for ~' 77 E Xk. To get these 
facts we work in Xk instead of X. It is important to note that, in the proof of 
the corresponding variant of Theorem 1.1 in this situation, we use the fact that 
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